波音游戏-波音娱乐城赌球打不开

mc
Prof. CHAN Chi Wang Michael
陳志宏教授
PhD (Durham)

Professor of Department of Chemistry


Contact Information
Office: YEUNG-P5313
Phone: +852 3442-9678
Email: mcwchan[at]cityu.edu.hk
ORCID ID: 0000-0002-2997-8577
Scopus Author ID: 29067669100

Michael Chan was born in Hong Kong, and emigrated to England in 1978. He received his Ph.D. (on catalyst design and polymerization technology) in 1995 from Durham University. His post-doctoral studies (on light-emitting materials) was conducted at the University of Hong Kong, where he was appointed Research Assistant Professor in 1998. He joined City University of Hong Kong as an Assistant Professor in 2004, and was promoted to Associate Professor (B) in 2009, Associate Professor (A) in 2013, and Professor in 2018.

His invited talks include a Plenary Lecture at 22nd International Symposium on Homogeneous Catalysis (XXII-ISHC) in Lisbon, Portugal in July 2022, and a Keynote Lecture at 16th International Symposium on Relations between Homogeneous and Heterogeneous Catalysis (ISHHC-16) in Sapporo, Japan in August 2013.  He was a Symposium Co-organizer for "Polyolefins Chemistry and Beyond - From Bench To Commercial Scale" (Symposium #211) at Pacifichem 2010 in Honolulu, Hawaii in December 2010, and has held visiting appointments at Osaka University, University of Münster and University of British Columbia.

His papers on C-H···F-C interactions in post-metallocene catalysts have been selected as Cover Pictures in Chemistry – A European Journal, and an overview was published in Accounts of Chemical Research. He has been actively engaged in collaborative research on olefin polymerization catalysts with industrial partners, and has obtained 8 international patents.

Major Honours

Founding Member, Hong Kong Young Academy of Sciences (year of induction: 2018).

Mitsui Chemicals Catalysis Science Award of Encouragement (2007).

 

Positions Available in Catalysis / Supramolecular / Organometallic Chemistry

PhD studentships are available in topics including (but not limited to): coordination/organometallic (Schlenk-type)/supramolecular chemistry and/or homogeneous catalysis.

PhD candidates must have a good MPhil or BSc degree in chemistry, and proven English proficiency (TOEFL: minimum total score of 550 (paper-based) / 79 (internet-based) / 59 (revised paper-delivered test); or IELTS: overall score of 6.5). The ideal candidate should display good problem-solving skills and creativity, and possess a strong background/experience in synthetic (organic/coordination) chemistry.

PhD applications should be made asap (applications will be accepted until all positions are filled). For initial enquiries, please contact Prof. Chan by email and include a full CV with contact details of referees.

 

Research Interests and Projects

The following topics, underpinned by utilization of supramolecular strategies, are under investigation:

  1. design of novel catalyst systems for polymerization reactions, and development of 'weak attractive ligand–polymer interactions' in catalysis;
  2. crowded and shape-persistent luminescent molecular and polymeric architectures exhibiting unusual photophysical and conformational properties;
  3. development of 'shape-persistent bimetallic design' approach for catalytic production of valuable feedstock and polymers from sustainable resources.

MC

4
picture21
mcwchan
3_rev
 
mc
ChemComm

 

Selected Publications

  1. Geometrically Constrained Cofacial Bi-Titanium Olefin Polymerization Catalysts: Tuning and Enhancing Comonomer Incorporation Density, J. Bao, Y. Li, C.-M. Chan, K.-C. Law, S.-M. Yiu, M. C. W. Chan, ACS Catal., 2024, 14, 17911–17918. https://doi.org/10.1021/acscatal.4c05888
  2. Bis-[C(sp3)-Chelating] Ti2 Catalysts Supported by Arylene-1,4-Diyl-2,3-X2 Bridges for Olefin Copolymerization: X Substituents Impose Conformational Cooperative Effects, Y. Li, J. Bao, Q. Liu, M.-K. Tse, M. C. W. Chan, Dalton Trans., 2024, 53, 14391–14398. https://doi.org/10.1039/d4dt02006e
  3. Group 4 Complexes Supported by Pyridine-2-Phenolate-6-Arylmethine Ligands: Spectroscopic and Structural Characterization and Olefin Polymerization Catalysis, J. Bao, Y. Li, Y. Chen, S.-M. Yiu, M. C. W. Chan, Organometallics, 2024, 43, 1600–1607. https://doi.org/10.1021/acs.organomet.4c00196
  4. Cooperativity in Shape-Persistent Bis-(Zn-salphen) Catalysts for Efficient Cyclic Carbonate Synthesis under Mild Conditions, Y. Xia, S. He, J. Bao, H. Hirao, S.-M. Yiu, M. C. W. Chan, Inorg. Chem., 2022, 61, 19543–19551. DOI: 10.1021/acs.inorgchem.2c03480
  5. Saccharide-Functionalized Poly(Zn-salphen)-alt-(m-and p-phenyleneethynylene)s as Dynamic Helical Metallopolymers, C. Zhao, S. Meng, H.-N. Chan, X. Wang, H.-W. Li, M. C. W. Chan, Angew. Chem. Int. Ed., 2022, 61, e202115712. DOI: 10.1002/anie.202115712
  6. Group 4 Post-Metallocenes Supported by [OCH2N,C(σ-aryl)] Auxiliaries Bearing a Seven-Membered Metallacycle: Synthesis, Characterization and Catalysts for Olefin Polymerization, C.-C. Liu, Q. Liu, S.-M. Yiu, M. C. W. Chan, Organometallics, 2019, 38, 2963–2971. DOI: 10.1021/acs.organomet.9b00307
  7. Olefin Polymerization Reactivity of Group 4 Post-Metallocene Catalysts Bearing a Four-Membered C(sp3)-Donor Chelate Ring, C.-C. Liu, Q. Liu, P.-K. Lo, K.-C. Lau, S.-M. Yiu, M. C. W. Chan, ChemCatChem, 2019, 11, 628635. DOI: 10.1002/cctc.201801008
  8. Poly(Zn-salphen)-alt-(p-phenyleneethynylene)s as Dynamic Helical Metallopolymers: Luminescent Properties and Conformational Behavior, C. Zhao, S. Sun, W.-L. Tong, M. C. W. Chan, Macromolecules, 2017, 50, 6896–6902. DOI: 10.1021/acs.macromol.7b01269
  9. Multifaceted Chelating μ-(η33-antifacial)-(cis-C4R2H2) Coordination Motif in Binuclear Complexes, C.-C. Liu, M. C. W. Chan, P.-K. Lo, K.-C. Lau, S.-M. Yiu, Chem. Commun., 2016, 52, 11056–11059 (Cover Article; Inside). DOI: 10.1039/c6cc05535d
  10. Topologically Diverse Shape-Persistent Bis-(Zn-salphen) Catalysts: Efficient Cyclic Carbonate Formation under Mild Conditions, S. He, F. Wang, W.-L. Tong, S.-M. Yiu, M. C. W. Chan, Chem. Commun., 2016, 52, 1017–1020. DOI: 10.1039/c5cc08794e
  11. Chelating σ-Aryl Post-Metallocenes: Probing Intramolecular [C–H···F–C] Interactions and Unusual Reaction Pathways, C.-C. Liu, M. C. W. Chan, Acc. Chem. Res., 2015, 48, 1580–1590. DOI: 10.1021/acs.accounts.5b00008 
  12. Luminescent Oligo(ethylene glycol)-Functionalized Cyclometalated Platinum(II) Complexes: Cellular Characterization and Mitochondria-Specific Localization, Z. Guo, W.-L. Tong, M. C. W. Chan, Chem. Commun., 2014, 50, 1711–1714. DOI: 10.1039/c3cc47150k
  13. Shape-Persistent (Pt-salphen)2 Phosphorescent Coordination Frameworks: Structural Insights and Selective Perturbations, Z. Guo, S.-M. Yiu, M. C. W. Chan, Chem. Eur. J., 2013, 19, 8937–8947. DOI: 10.1002/chem.201300421
  14. Crowded Bis-(M-salphen) [M = Pt(II), Zn(II)] Coordination Architectures: Luminescent Properties and Ion-Selective Responses, W.-L. Tong, S.-M. Yiu, M. C. W. Chan, Inorg. Chem., 2013, 52, 7114–7124. DOI: 10.1021/ic400692x
  15. Olefin Polymerization Behavior of Titanium(IV) Pyridine-2-phenolate-6-(σ-aryl) Catalysts: Impact of ‘py-Adjacent’ and Phenolate Substituents, J. C. Y. Lo, M. C. W. Chan, P.-K. Lo, K.-C. Lau, T. Ochiai, H. Makio, Organometallics, 2013, 32, 449–459. DOI: 10.1021/om300832q
  16. Scalar Coupling Across [C-H···F-C] Interactions in (σ-Aryl)-Chelating Post-Metallocenes, L.-C. So, C.-C. Liu, M. C. W. Chan, J. C. Y. Lo, K.-H. Sze, N. Zhu, Chem. Eur. J., 2012, 18, 565–573 (Cover Picture). DOI: 10.1002/chem.201102439
  17. Alternating Poly(Pt-salphen)-(p-phenyleneethynylene) as Phosphorescent Conjugated Linear-Rod and Coilable Sensory Materials, S. Sun, W.-L. Tong, M. C. W. Chan, Macromol. Rapid Commun., 2010, 31, 1965–1969. DOI: 10.1002/marc.201000266
  18. Shape-Persistent Binuclear Cyclometalated Pt(II) Luminophores: Pushing π-Mediated Excimeric Fluid Emissions into the NIR Region and Ion-Induced Perturbations, Z. Guo, M. C. W. Chan, Chem. Eur. J., 2009, 15, 12585–12588. DOI: 10.1002/chem.200902328
  19. Neutron and X-Ray Diffraction and Spectroscopic Investigations of Intramolecular [C-H···F-C] Contacts in Post-Metallocene Polyolefin Catalysts: Modeling Weak Attractive Polymer–Ligand Interactions, M. C. W. Chan, S. C. F. Kui, J. M. Cole, G. J. McIntyre, S. Matsui, N. Zhu, K.-H. Tam, Chem. Eur. J., 2006, 12, 26072619 (Cover Picture). DOI: 10.1002/chem.200501054
  20. Observation of Intramolecular [C-H···F-C] Contacts in Non-Metallocene Polyolefin Catalysts: Model for Weak Attractive Interactions between Polymer Chain and Non-Innocent Ligand, S. C. F. Kui, N. Zhu, M. C. W. Chan, Angew. Chem. Int. Ed., 2003, 42, 16281632. DOI: 10.1002/anie.200219832
亿酷棋牌官方下载| 百家乐官网平投注法| 太阳城百家乐官网投注| 盈禾娱乐场| 齐河县| 建水县| 利高百家乐官网游戏| 澳门百家乐官网娱乐城网址| 百家乐官网赢钱公式1| 火箭百家乐官网的玩法技巧和规则| 下载百家乐官网的玩法技巧和规则 | 喜达百家乐官网现金网| 百家乐官网信誉博彩公司| 百家乐官网澳门色子| 澳门百家乐网络游戏信誉怎么样| 百家乐官网2棋牌作弊软件| 百家乐游戏看路| 威尼斯人娱乐最新地址| 百家乐官网发牌靴发牌盒| 手机bet365| 吉利百家乐官网的玩法技巧和规则 | 大发888游戏官方| 博发百家乐游戏| 太阳城娱乐管理网| 百家乐官网赢的秘籍在哪| 百家乐官网赌博机有鬼吗| 百家乐筹码套装包邮| 威尼斯人娱乐城玩百家乐| 至尊百家乐官网20130201| 大发888 34| 百家乐官网赌博技巧论坛| 顶级赌场手机版官方| 百家乐官网网上真钱娱乐平台| 金都百家乐的玩法技巧和规则| 百家乐官网博赌场娱乐网规则 | 三国百家乐官网的玩法技巧和规则| 百家乐官网站| 百家乐视频双扣| 玩百家乐官网去哪个平台好| 博彩网站源码| 澳门百家乐官网必胜看|