波音游戏-波音娱乐城赌球打不开

Skip to main content

Around the convergence problem in mean-field control theory and the associated Hamilton-Jacobi equations

Dr Samuel Daudin
Date & Time
01 Apr 2025 (Tue) | 04:00 PM - 05:00 PM
Venue
Online via Zoom
Registration Link: https://cityu.zoom.us/meeting/register/CU2-KG4SQPCKQXdOUQYEBA

ABSTRACT

The aim of this talk is to discuss recent progress on the convergence problem in mean-field control theory and the study of associated nonlinear PDEs. We are interested in optimal control problems involving a large number of interacting particles subject to independent Brownian noises. When the number of particles tends to infinity, the problem simplifies to a McKean-Vlasov-type optimal control problem for a typical particle. I will present recent results concerning the quantitative analysis of this convergence. More specifically, I will discuss an approach based on the analysis of associated value functions. These functions are solutions of high-dimensional Hamilton-Jacobi equations, and the convergence problem translates into a stability problem for the limit equation, which is posed on the space of probability measures on Euclidean space. I will also discuss the well-posedness of this limit equation, the study of which seems to escape the usual techniques for infinite-dimensional Hamilton-Jacobi equations.

 

 

噢门百家乐官网注码技巧| 百家乐官网策略大全| 百家乐官网是片人的吗| 澳门百家乐官网赢钱公式不倒翁 | 百家乐赢利策略| 百家乐视频免费下载| 大发888娱乐城欢迎您| 翁源县| 请问下百家乐官网去哪个娱乐城玩最好呢| 百家乐官网和21点| 方形百家乐官网筹码| 福布斯百家乐官网的玩法技巧和规则 | 赌神网百家乐官网的玩法技巧和规则 | 百家乐官网经典路单| 神娱乐百家乐官网的玩法技巧和规则 | 澳门百家乐官网玩大小| 试玩百家乐官网1000| 免费百家乐统计工具| 百家乐官网园搏彩论坛| 百家乐咋个玩的| 大发888娱乐场下载iyou qrd| kk娱乐城开户| 星期八百家乐的玩法技巧和规则| 百家乐博弈之赢者理论| 百家乐代理| 百家乐官网电脑上怎么赌| 娱乐城百家乐怎么样| 娱乐城注册送彩金100| 冷水江市| 真人百家乐现金游戏| 金都娱乐场| 娱乐城体验金| 百家乐官网龙虎| 太阳百家乐代理| 百家乐官网赌场大全| 新大发888娱乐城| 免费玩百家乐官网的玩法技巧和规则| 百家乐官网技巧网址| 新大发888pt老虎机| 最可信百家乐官网娱乐城| 大发888挖掘|