波音游戏-波音娱乐城赌球打不开

Skip to main content

Second-order flow approach for solving variational problems

Prof. Ziqing XIE
Date & Time
07 Feb 2025 (Fri) | 10:30 AM - 11:30 AM
Venue
B5-310, Yeung Kin Man Academic Building

ABSTRACT

In this talk, we introduce a so-called second-order flow approach, a novel computational framework based on dissipative second-order hyperbolic partial differential equations (PDEs) designed to tackle variational problems. Our focus lies on scenarios where energy functionals are nonconvex and may entail nonconvex constraints. This motivation stems from practical applications such as finding stationary points of Ginzburg-Landau energy in phase-field modeling, Landau-de Gennes energy of the Q-tensor model for liquid crystals, as well as simulating ground states for Bose-Einstein condensates. We explore both the analytical and numerical aspects of this novel framework, showing how discretizing the PDEs leads to original numerical methodologies for addressing variational problems. Analytically, for a class of unconstrained nonconvex variational problems, we demonstrate the convergence of second-order flows to stationary points and establish the well-posedness of the second-order flow equations. Our numerical findings underscore the superiority of second-order flow methods over gradient flow methods across all discussed application scenarios.

 

休闲百家乐官网的玩法技巧和规则 | 实战百家乐博彩正网| 百家乐官网有好的投注法吗| 百家乐开户博彩论坛| 法拉利百家乐的玩法技巧和规则| 永亨娱乐城| 百家乐官网怎样做弊| 赌百家乐的下场| 澳门网上娱乐| 真人百家乐平台下载| 大发888是怎么吃钱不| 百家乐官网赌博租| 澳门金盛国际娱乐| 百家乐在线投注顺势法| 百家乐官网技术下载| 百家乐图淑何看| 百家乐官网投注哪个信誉好| 百家乐扑克牌手机壳| 大发888娱乐场下载 官方| 24山的财位| 永靖县| 百家乐在线洗码| 揭秘百家乐官网百分之50| 皇冠现金网哪个最好| 战神百家乐娱乐| 澳门百家乐官网园游戏| 大发888娱乐平台| 姚记百家乐官网的玩法技巧和规则 | 百家乐官网龙虎玩| 新澳博娱乐| 网上百家乐是真是假天涯论坛| 云博国际| 武汉百家乐庄闲和| 澳门百家乐官网规则| 如何玩百家乐的玩法技巧和规则 | 怎样看百家乐官网牌| 百家乐必胜法hk| 永利高百家乐官网开户| 皇冠即时走地| 凯斯网百家乐官网的玩法技巧和规则 | 百家乐平台导航|