波音游戏-波音娱乐城赌球打不开

Pivotal breakthrough in adapting perovskite solar cells for renewable energy; published in Science

 

A huge step forward in the evolution of perovskite solar cells recorded by researchers at City University of Hong Kong (CityU) will have significant implications for renewable energy development.

The CityU innovation paves the way for commercialising perovskite solar cells, bringing us closer to an energy-efficient future powered by sustainable sources.

prof zhu
Professor Zhu Zonglong. (Credit: City University of Hong Kong)

“The implications of this research are far-reaching, and its potential applications could revolutionise the solar energy industry,” said Professor Zhu Zonglong of the Department of Chemistry at CityU, who collaborated with Professor Li Zhong’an at Huazhong University of Science and Technology.

New approach

Perovskite solar cells are a promising frontier in the solar energy landscape, known for their impressive power conversion efficiency. However, they have one significant drawback: thermal instability, i.e. they don’t tend to perform well when exposed to high temperatures.

The team at CityU has engineered a unique type of self-assembled monolayer, or SAM for short, and anchored it on a nickel oxide surface as a charge extraction layer.

Molecular structure of the novel SAM, schematic illustration of SAM deposition method, and photovoltaic performance of SAM-based perovskite solar cells. (Photo credit: Prof. Zhu Zonglong’s research group / City University of Hong Kong)
Molecular structure of the novel SAM, schematic illustration of SAM deposition method, and photovoltaic performance of SAM-based perovskite solar cells. (Photo credit: Professor Zhu Zonglong’s research group / City University of Hong Kong)

“Our approach has dramatically enhanced the thermal robustness of the cells,” said Professor Zhu, adding that thermal stability is a significant barrier to the commercial deployment of perovskite solar cells.

“By introducing a thermally robust charge extraction layer, our improved cells retain over 90% of their efficiency, boasting an impressive efficiency rate of 25.6%, even after operated under high temperatures, around (65℃) for over 1,000 hours. This is a milestone achievement,” said Professor Zhu.

The journal Science has reported the research as “Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells”.

Raising the heat shield

The motivation for this research was born from a specific challenge in the solar energy sector: the thermal instability of perovskite solar cells.

“Despite their high power conversion efficiency, these solar cells are like a sports car that runs exceptionally well in cool weather but tends to overheat and underperform on a hot day. This was a significant roadblock preventing their widespread use,” said Professor Zhu.

The CityU team has focused on the self-assembled monolayer (SAM), an essential part of these cells, and envisioned it as a heat-sensitive shield that needed reinforcement.

Electrical properties and theoretical calculations of perovskite solar cells under thermal stress. (Photo credit: Prof. Zhu Zonglong’s research group / City University of Hong Kong)
Electrical properties and theoretical calculations of perovskite solar cells under thermal stress. (Photo credit: Professor Zhu Zonglong’s research group / City University of Hong Kong)

“We discovered that high-temperature exposure can cause the chemical bonds within SAM molecules to fracture, negatively impacting device performance . So our solution was akin to adding a heat-resistant armour - a layer of nickel oxide nanoparticles, topped by a SAM, achieved through an integration of various experimental approaches and theoretical calculations,” Professor Zhu said.

To counteract this issue, the CityU team introduced an innovative solution: anchoring the SAM onto an inherently stable nickel oxide surface, thereby enhancing the SAM's binding energy on the substrate. Also, they synthesised a new SAM molecule of their own, creating an innovative molecule that promotes more efficient charge extraction in perovskite devices.

Better efficiency in higher temperatures

By introducing a thermally robust charge extraction layer, our improved cells retain over 90% of their efficiency, even after prolonged exposure (over 1,200 hours) to high temperatures, around (65℃). (Photo credit: Prof. Zhu Zonglong’s research group / City University of Hong Kong)
By introducing a thermally robust charge extraction layer, the improved cells retain over 90% of their efficiency, even after prolonged exposure (over 1,200 hours) to high temperatures, around (65℃). (Photo credit: Professor Zhu Zonglong’s research group / City University of Hong Kong)

The primary outcome of the research is the potential transformation of the solar energy landscape. By improving the thermal stability of perovskite solar cells through the innovatively designed SAMs, the team has laid the foundation for these cells to perform efficiently even in high-temperature conditions.

“This breakthrough is pivotal as it addresses a major obstacle that previously impeded wider adoption of perovskite solar cells. Our findings could significantly broaden the utilisation of these cells, pushing their application boundaries to environments and climates where high temperatures were a deterrent,” said Professor Zhu.

Photo of perovskite solar cells with novel SAM. (Photo credit: Prof. Zhu Zonglong’s research group / City University of Hong Kong)
Photo of perovskite solar cells with novel SAM. (Photo credit: Professor Zhu Zonglong’s research group / City University of Hong Kong)

The importance of these findings cannot be overstated. By bolstering the commercial viability of perovskite solar cells, CityU is not merely introducing a new player in the renewable energy market, it’s setting the stage for a potential game-changer that could play a vital role in the global shift towards sustainable and energy-efficient sources.

“This technology, once fully commercialised, could help decrease our dependence on fossil fuels and contribute substantially to combating the global climate crisis,” he added.

Contact Information

Back to top
百家乐官网网络投注| 爱玩棋牌下载| 澳门百家乐官网www.bjbj100.com| 鹤乡棋牌乐| 百家乐软件购买| 百家乐官网心得分享| 来博| 百家乐官网博牌规| 大发888注册| 百家乐合作| 百家乐群html| 百家乐发牌靴遥控| 手机百家乐官网游戏| 百家乐官网是怎样算牌| 最新百家乐官网网评测排名| 百家乐官网高手论坮| 武隆县| 网上在线赌场| bet365金融技巧| 大发888娱乐城casinolm0| 大发888 34| 百家乐手机壳| 百家乐投注方法网| 百家乐tt娱乐城娱乐城| 伯爵百家乐娱乐平台| 百家乐官网大西洋| 百家乐官网怎么玩会| 百家乐官网赌场彩| 百家乐官网技巧-百家乐官网开户指定代理网址 | 大发888总结经验| 麻将百家乐筹码| 网络百家乐的玩法技巧和规则| 大发888官方免费下载| 淅川县| 皇冠网投| 百家乐官网保单破解方法| 百家乐官网论坛代理合作| 射阳县| 8彩娱乐| 运城百家乐的玩法技巧和规则| 全讯网22335555|