波音游戏-波音娱乐城赌球打不开


 [   ] 

Prof. NOLIN Pierre

PhD – Université Paris-Sud 11 & école Normale Supérieure

Associate Professor

Contact Information

Office: Y5126 Academic 1
Phone: +852 3442-8569
Fax: +852 3442-0250
Email: bpmnolin@cityu.edu.hk

Research Interests

  • Probability Theory
  • Stochastic Processes
  • Statistical Mechanics
Dr. Pierre Nolin received his PhD from Université Paris-Sud 11 and École Normale Supérieure, France, in 2008. Before joining City University in 2017, he worked as an instructor and PIRE fellow at the Courant Institute of Mathematical Sciences, New York University, USA, from 2008 to 2011, and then as an assistant professor in the Department of Mathematics at ETH Zürich, Switzerland, from 2011 to 2017.

Dr. Pierre Nolin's research is focused on probability theory and stochastic processes, in connection with questions originating from statistical mechanics. He is particularly interested in lattice models such as the Ising model of ferromagnetism, Bernoulli percolation, Fortuin-Kasteleyn percolation, frozen percolation, and forest fire processes.


Awards and Achievements

  • 2008 “Prix de thèse Jacques Neveu” Société de Mathématiques Appliquées et Industrielles (Modélisation Aléatoire et Statistique).


Publications Show All Publications Show Prominent Publications


Journal

  • Nolin, P. , Qian, W. , Sun, X. & Zhuang, Z. (2025). Backbone exponent and annulus crossing probability for planar percolation. Physical Review Letters. 134. 117101 .
  • Gao, Y. , Nolin, P. & Qian, W. (2025). Up-to-constants estimates on four-arm events for simple conformal loop ensemble. arXiv:2504.06202. 36 pp.
  • Gao, Y. , Nolin, P. & Qian, W. (2024). Percolation of discrete GFF in dimension two I. Arm events in the random walk loop soup. arXiv:2409.16230. 50 pp.
  • Gao, Y. , Nolin, P. & Qian, W. (2024). Percolation of discrete GFF in dimension two II. Connectivity properties of two-sided level sets. arXiv:2409.16273. 71 pp.
  • van den Berg, J. & Nolin, P. (2024). Two-dimensional forest fires with boundary ignitions. arXiv:2407.13652. 23 pp.
  • Nolin, P. , Qian, W. , Sun, X. & Zhuang, Z. (2023). Backbone exponent for two-dimensional percolation. arXiv:2309.05050. 63 pp.
  • Nolin, P. , Tassion, V. & Teixeira, A. (2023). No exceptional words for Bernoulli percolation. Journal of the European Mathematical Society. 25. 4841 - 4868.
  • van den Berg, J. & Nolin, P. (2022). A 2D forest fire process beyond the critical time. arXiv:2210.05642. 53 pp.
  • van den Berg, J. & Nolin, P. (2021). Near-critical 2D percolation with heavy-tailed impurities, forest fires and frozen percolation. Probability Theory and Related Fields. 181. 211 - 290.
  • Lam, W. K. & Nolin, P. (2021). Near-critical avalanches in 2D frozen percolation and forest fires. arXiv:2106.10183. 72 pp.
  • van den Berg, J. , Kiss, D. & Nolin, P. (2018). Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters. Annales Scientifiques de l'école Normale Supérieure. 51. 1017 - 1084.
  • van den Berg, J. & Nolin, P. (2017). Boundary rules and breaking of self-organized criticality in 2D frozen percolation. Electronic Communications in Probability. 22 (no. 65). 1 - 15.
  • van den Berg, J. & Nolin, P. (2017). Two-dimensional volume-frozen percolation: exceptional scales. Annals of Applied Probability. 27. 91 - 108.
  • Hilário, M. , de Lima, B. , Nolin, P. & Sidoravicius, V. (2014). Embedding binary sequences into Bernoulli site percolation on Z^3. Stochastic Processes and their Applications. 124. 4171 - 4181.
  • Ménard, L. & Nolin, P. (2014). Percolation on uniform infinite planar maps. Electronic Journal of Probability. 19 (no. 78). 1 - 27.
  • van den Berg, J. , Kiss, D. & Nolin, P. (2012). A percolation process on the binary tree where large finite clusters are frozen. Electronic Communications in Probability. 17 (no. 2). 1 - 11.
  • van den Berg, J. , de Lima, B. & Nolin, P. (2012). A percolation process on the square lattice where large finite clusters are frozen. Random Structures & Algorithms. 40. 220 - 226.
  • Beffara, V. & Nolin, P. (2011). On monochromatic arm exponents for 2D critical percolation. Annals of Probability. 39. 1286 - 1304.
  • Duminil-Copin, H. , Hongler, C. & Nolin, P. (2011). Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model. Communications on Pure and Applied Mathematics. 64. 1165 - 1198.
  • Nolin, P. & Werner, W. (2009). Asymmetry of near-critical percolation interfaces. Journal of the American Mathematical Society. 22. 797 - 819.
  • Chayes, L. & Nolin, P. (2009). Large scale properties of the IIIC for 2D percolation. Stochastic Processes and their Applications. 119. 882 - 896.
  • Nolin, P. (2008). Critical exponents of planar gradient percolation. Annals of Probability. 36. 1748 - 1776.
  • Nolin, P. (2008). Near-critical percolation in two dimensions. Electronic Journal of Probability. 13 (no. 55). 1562 - 1623.

Book Chapter

  • van den Berg, J. & Nolin, P. (2021). On the four-arm exponent for 2D percolation at criticality. In and Out of Equilibrium 3: Celebrating Vladas Sidoravicius. Progress in Probability, vol 77. (pp. 125 - 145). Birkh?user, Cham.


Last update date : 11 Apr 2025
大发888游戏论坛| 金龍娱乐城| 百家乐官网玩的技巧| 赌博百家乐游戏| 大发888.com| 真人百家乐官网大转轮| 百家乐三珠投注法| 百家乐最好投| 真人百家乐官网皇冠网| 百家乐官网群博爱彩| 百家乐官网珠仔路| 百家乐游戏介绍与分析| 大发888娱乐城大发888达法8| A8百家乐官网现金网| 百家乐微笑心法搜索| 优博娱乐网址| 百家乐官网技术交流群| 怎么赢百家乐官网的玩法技巧和规则 | 属鼠跟属虎做生意| 什么是百家乐平注法| 威尼斯人娱乐网注册| 百家乐官网赢谷输缩| 真人百家乐蓝盾娱乐网| 百家乐官网破解版下载| 玩机器百家乐心得| 网上百家乐作弊不| 百家乐专用桌子| 抚顺市| 百家乐视频桌球| 吉林市| 大众百家乐的玩法技巧和规则 | 网页百家乐官网的玩法技巧和规则| 致胜百家乐下载| 百家乐官网电话投注多少| 大发888是什么软件| 百家乐视频双扣游戏| 足球百家乐官网投注计算| 网上玩百家乐游戏有人挣到钱了吗| 任我赢百家乐官网软件| 荃湾区| 大发888登录器下载|