波音游戏-波音娱乐城赌球打不开

Eng · 繁體 · 簡體

 [   ] 

Dr. GAO Siyang (高思陽博士)

BS(PKU), PhD(Univ of Wisconsin)

Associate Professor

Contact Information

Office:  AC1-P6611
Phone: 34424759
Email: siyangao@cityu.edu.hk
Web: Google Scholar

Research Interests

  • Simulation modeling and optimization
  • Large language models
  • Machine learning
  • Healthcare management
Dr. Siyang Gao received a B.S. in Statistics and Probability from School of Mathematics at Peking University in 2009 and a Ph.D. in Industrial Engineering at University of Wisconsin-Madison in 2014. His research interests include simulation modeling and optimization, applied probability, machine learning, and healthcare management.


Publications Show All Publications Show Prominent Publications


Journal

  • Du, J. , Gao, S. & Chen, C.-H. (in press). A contextual ranking and selection method for personalized medicine. Manufacturing & Service Operations Management.
  • Li, Y. , Gao, S. & Shi, Z. (2023). Asymptotic optimality of myopic ranking and selection procedures. Automatica. 151. 110896 .
  • Li, C. , Gao, S. & Du, J. (2023). Convergence Analysis of Stochastic Kriging-Assisted Simulation with Random Covariates. INFORMS Journal on Computing. 35(2). 386 - 402.
  • Li, Y. & Gao, S. (2023). Convergence Rate Analysis for Optimal Computing Budget Allocation Algorithms. Automatica. 153. 111042 .
  • Chen, W. , Gao, S. , Chen, W. & Du, J. (2023). Optimizing Resource Allocation in Service Systems via Simulation: A Bayesian Formulation. Production and Operations Management. 32(1). 65 - 81.
  • Gao, F. , Shi, Z. , Gao, S. & Xiao, H. (2019). Efficient simulation budget allocation for subset selection using regression metamodels. Automatica. 106. 192 - 200.
  • Gao, S. , Shi, L. & Zhang, Z. (2018). A peak-over-threshold search method for global optimization. Automatica. 89. 83 - 91.
  • Xiao, H. & Gao, S. (2018). Simulation budget allocation for selecting the top-m designs with input uncertainty. IEEE Transactions on Automatic Control. 63(9). 3127 - 3134.
  • Gao, S. , Chen, W. & Shi, L. (2017). A new budget allocation framework for the expected opportunity cost. Operations Research. 65. 787 - 803.
  • Gao, S. & Chen, W. (2017). A partition-based random search for stochastic constrained optimization via simulation. IEEE Transactions on Automatic Control. 62. 740 - 752.
  • Gao, S. & Chen, W. (2017). Efficient feasibility determination with multiple performance measure constraints. IEEE Transactions on Automatic Control. 62. 113 - 122.
  • Gao, S. , Xiao, H. , Zhou, E. & Chen, W. (2017). Robust ranking and selection with optimal computing budget allocation. Automatica. 81. 30 - 36.
  • Xiao, H. & Gao, S. (2017). Simulation budget allocation for simultaneously selecting the best and worst subsets. Automatica. 84. 117 - 127.
  • Gao, S. & Chen, W. (2016). A new budget allocation framework for selecting top simulated designs. IIE Transactions. 48. 855 - 863.
  • Gao, S. & Chen, W. (2015). Efficient subset selection for the expected opportunity cost. Automatica. 59. 19 - 26.
  • Gao, S. & Shi, L. (2015). Selecting the best simulated design with the expected opportunity cost bound. IEEE Transactions on Automatic Control. 60(10). 2785 - 2790.

Conference Paper

  • Chen, S. , Xiong, M. , Liu, J. , Wu, Z. , Xiao, T. , Gao, S. & He, J. (in press). In-Context Sharpness as Alerts: An Inner Representation Perspective for Hallucination Mitigation. 41st International Conference on Machine Learning (ICML).
  • Yu, Z. , Dai, L. , Xu, S. , Gao, S. & Ho, C. (2023). Fast Bellman updates for Wasserstein distributionally robust MDPs. Advances in Neural Information Processing Systems (NeurIPS). 36. (pp. 30554 - 30578).
  • Chen, S. , Zhao, Y. , Zhang, J. , Chern, I.-C. , Gao, S. , Liu, P. & He, J. (2023). FELM: Benchmarking factuality evaluation of large language lodels. Advances in Neural Information Processing Systems (NeurIPS). 36. (pp. 44502 - 44523).
  • Yang, L. , Gao, S. & Ho, C. (2023). Improving the knowledge gradient algorithm. Advances in Neural Information Processing Systems (NeurIPS). 36. (pp. 61747 - 61758).
  • Li, Y. & Gao, S. (2022). On the finite-time performance of the knowledge gradient algorithm. 39th International Conference on Machine Learning (ICML). (pp. 12741 - 12764).


External Services


Professional Activity

  • 2021 - Now, Associate editor, IEEE Transactions on Automation Science and Engineering.
  • 2021 - Now, Associate editor, Journal of Simulation.


For prospective students

  • I am looking for qualified Ph.D. students (with strong background in mathematics, probability and statistics) to do research in simulation optimization and machine learning. If you are interested, please send your CV and transcript to my email (siyangao@cityu.edu.hk) for consideration.


Links



Last update date : 19 May 2024
谁会玩百家乐官网的玩法技巧和规则 | 百家乐洗码全讯网| tt娱乐城备用网| 百家乐官网在线娱乐平台| 威尼斯人娱乐城赌场| 百家乐官网系统分析器| 真人百家乐官网在线玩| 百家乐电话投注怎么玩| 金宝博百家乐官网现金| 大发888在线娱乐城合营商| 玩百家乐会犯法吗| 韶关市| 真人百家乐娱乐场开户注册| 澳门百家乐官网威尼斯| 太阳城线上真人娱乐| 百家乐2号技术打法| 百家乐官网太阳城小郭| 外围赌球| 大发888网页游戏平台| 百家乐水晶筹码价格| 百家乐官网QQ群娱乐| 百家乐官网隔一数打投注法| 免费百家乐官网娱乐城| 百家乐官网声音不印网| 百家乐官网赌博工具| 真人百家乐官网蓝盾娱乐网| 百家乐官网游戏试| 真人百家乐官网软件博彩吧| 百家乐官网有没有单机版的 | 百家乐视频台球游戏| 乐宝百家乐娱乐城| 百家乐投注网中国体育| 网上百家乐官网有哪些玩法| 百家乐2号破解下载| 免佣百家乐规则| 百家乐桌颜色可定制| 百家乐最新赌王| 百家乐官网德州| 百家乐官网押注方法| E乐博百家乐官网现金网| 沙龙国际网上|