波音游戏-波音娱乐城赌球打不开

Eng · 繁體 · 簡體

 [   ] 

Dr. GAO Siyang (高思陽博士)

BS(PKU), PhD(Univ of Wisconsin)

Associate Professor

Contact Information

Office:  AC1-P6611
Phone: 34424759
Email: siyangao@cityu.edu.hk
Web: Google Scholar

Research Interests

  • Simulation modeling and optimization
  • Large language models
  • Machine learning
  • Healthcare management
Dr. Siyang Gao received a B.S. in Statistics and Probability from School of Mathematics at Peking University in 2009 and a Ph.D. in Industrial Engineering at University of Wisconsin-Madison in 2014. His research interests include simulation modeling and optimization, applied probability, machine learning, and healthcare management.


Publications Show All Publications Show Prominent Publications


Journal

  • Du, J. , Gao, S. & Chen, C.-H. (in press). A contextual ranking and selection method for personalized medicine. Manufacturing & Service Operations Management.
  • Li, Y. , Gao, S. & Shi, Z. (2023). Asymptotic optimality of myopic ranking and selection procedures. Automatica. 151. 110896 .
  • Li, C. , Gao, S. & Du, J. (2023). Convergence Analysis of Stochastic Kriging-Assisted Simulation with Random Covariates. INFORMS Journal on Computing. 35(2). 386 - 402.
  • Li, Y. & Gao, S. (2023). Convergence Rate Analysis for Optimal Computing Budget Allocation Algorithms. Automatica. 153. 111042 .
  • Chen, W. , Gao, S. , Chen, W. & Du, J. (2023). Optimizing Resource Allocation in Service Systems via Simulation: A Bayesian Formulation. Production and Operations Management. 32(1). 65 - 81.
  • Gao, F. , Shi, Z. , Gao, S. & Xiao, H. (2019). Efficient simulation budget allocation for subset selection using regression metamodels. Automatica. 106. 192 - 200.
  • Gao, S. , Shi, L. & Zhang, Z. (2018). A peak-over-threshold search method for global optimization. Automatica. 89. 83 - 91.
  • Xiao, H. & Gao, S. (2018). Simulation budget allocation for selecting the top-m designs with input uncertainty. IEEE Transactions on Automatic Control. 63(9). 3127 - 3134.
  • Gao, S. , Chen, W. & Shi, L. (2017). A new budget allocation framework for the expected opportunity cost. Operations Research. 65. 787 - 803.
  • Gao, S. & Chen, W. (2017). A partition-based random search for stochastic constrained optimization via simulation. IEEE Transactions on Automatic Control. 62. 740 - 752.
  • Gao, S. & Chen, W. (2017). Efficient feasibility determination with multiple performance measure constraints. IEEE Transactions on Automatic Control. 62. 113 - 122.
  • Gao, S. , Xiao, H. , Zhou, E. & Chen, W. (2017). Robust ranking and selection with optimal computing budget allocation. Automatica. 81. 30 - 36.
  • Xiao, H. & Gao, S. (2017). Simulation budget allocation for simultaneously selecting the best and worst subsets. Automatica. 84. 117 - 127.
  • Gao, S. & Chen, W. (2016). A new budget allocation framework for selecting top simulated designs. IIE Transactions. 48. 855 - 863.
  • Gao, S. & Chen, W. (2015). Efficient subset selection for the expected opportunity cost. Automatica. 59. 19 - 26.
  • Gao, S. & Shi, L. (2015). Selecting the best simulated design with the expected opportunity cost bound. IEEE Transactions on Automatic Control. 60(10). 2785 - 2790.

Conference Paper

  • Chen, S. , Xiong, M. , Liu, J. , Wu, Z. , Xiao, T. , Gao, S. & He, J. (in press). In-Context Sharpness as Alerts: An Inner Representation Perspective for Hallucination Mitigation. 41st International Conference on Machine Learning (ICML).
  • Yu, Z. , Dai, L. , Xu, S. , Gao, S. & Ho, C. (2023). Fast Bellman updates for Wasserstein distributionally robust MDPs. Advances in Neural Information Processing Systems (NeurIPS). 36. (pp. 30554 - 30578).
  • Chen, S. , Zhao, Y. , Zhang, J. , Chern, I.-C. , Gao, S. , Liu, P. & He, J. (2023). FELM: Benchmarking factuality evaluation of large language lodels. Advances in Neural Information Processing Systems (NeurIPS). 36. (pp. 44502 - 44523).
  • Yang, L. , Gao, S. & Ho, C. (2023). Improving the knowledge gradient algorithm. Advances in Neural Information Processing Systems (NeurIPS). 36. (pp. 61747 - 61758).
  • Li, Y. & Gao, S. (2022). On the finite-time performance of the knowledge gradient algorithm. 39th International Conference on Machine Learning (ICML). (pp. 12741 - 12764).


External Services


Professional Activity

  • 2021 - Now, Associate editor, IEEE Transactions on Automation Science and Engineering.
  • 2021 - Now, Associate editor, Journal of Simulation.


For prospective students

  • I am looking for qualified Ph.D. students (with strong background in mathematics, probability and statistics) to do research in simulation optimization and machine learning. If you are interested, please send your CV and transcript to my email (siyangao@cityu.edu.hk) for consideration.


Links



Last update date : 19 May 2024
做生意必须看风水吗| 澳门百家乐官网官网| 百家乐官网视频下载| 百家乐官网破战| 百家乐博百家乐| 沙龙百家乐娱乐城| 大发888备用| 百家乐官网扫描技术| 深圳百家乐的玩法技巧和规则 | 大发888网上支付| 游戏房百家乐官网赌博图片| 网站百家乐假| 网上百家乐官网网站导航| 百家乐桌子轮盘| 真人百家乐官网皇冠网| 赌博百家乐趋势把握| 网络百家乐官网可信吗| 狮威百家乐的玩法技巧和规则 | 灌云县| 玩百家乐澳门皇宫娱乐城| 奥斯卡百家乐的玩法技巧和规则 | 网上百家乐赌博网| 百家乐官网有多少网址| 澳门百家乐赌场网址| 恒利百家乐官网的玩法技巧和规则| 百家乐技巧经| 百家乐官网游戏机的玩法| 博彩百家乐字谜总汇| 百家乐最安全打法| 哪里有百家乐官网赌博网站| 百家乐官网心术| 大发888娱乐网| 百家乐官网扑克片礼服| 大发888亚洲游戏下载| 风水24山子怎么读| 大发888真人娱乐场游戏平台| 百家乐官网正负计算| 百家乐官网视频交友| 中原百家乐的玩法技巧和规则| 乐天堂百家乐官网娱乐| 网上百家乐官网赌钱|