SDSC3010: DIGITAL TRACE ANALYTICS

Effective Term

Semester A 2024/25

Part I Course Overview

Course Title

Digital Trace Analytics

Subject Code

SDSC - Data Science

Course Number

3010

Academic Unit

Data Science (DS)

College/School

College of Computing (CC)

Course Duration

One Semester

Credit Units

3

Level

B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction

English

Medium of Assessment

English

Prerequisites

SDSC1001 Introduction to Data Science* and SDSC2001 Python for Data Science

Precursors

Nil

Equivalent Courses

Nil

Exclusive Courses

Nil

Part II Course Details

Abstract

^{*} Pre-requisite SDSC1001 will be exempted for students who are enrolled in Minor in Data Science

This course provides students with an extensive exposure to the elements of opinion/behavioural data analytics. Topics include self-reported data, behavioural data, social science sampling, questionnaire design, offline surveys, online surveys, digital trace measurement, multi-source data analytics, and privacy protection.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Explain clearly fundamental principles and methods of digital trace analytics	20	X		
2	Classify various types and properties of opinion and behavioural data	20	X	X	
3	Evaluate prevailing practices in digital trace analytics and seek ways to improve the existing practices	30	x	х	x
4	Apply appropriate methods to solve given problems in digital trace analytics	30	X	X	X

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Learning and Teaching Activities (LTAs)

	LTAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture	Students will engage in formal lectures to gain knowledge about digital trace analytics.	1, 2, 3, 4	39 hours in total
2	Case studies	Students will describe and critique classic cases of digital trace analytics.	2, 3, 4	in or after classes

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Test	1, 2, 3, 4	20	Questions are designed for data collection methods of digital trace analytics to see how well the students have learned the fundamental concepts and methods, and applications in real world context.
2	Hands-in assignments	3, 4	20	These are skills based assessment to enable students to demonstrate the basic concepts, methods and algorithms of digital trace analytics, and applications of in real world context. (0-20%)

Continuous Assessment (%)

40

Examination (%)

60

Examination Duration (Hours)

2

Additional Information for ATs

Note: To pass the course, apart from obtaining a minimum of 40% in the overall mark, a student must also obtain a minimum mark of 30% in both continuous assessment and examination components.

Assessment Rubrics (AR)

Assessment Task

Test

Criterion

Ability to understand and apply key concepts, methods of digital trace analytics.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic Failure (F) Not even reaching marginal levels Assessment Task Hands-in assignments Criterion Ability to learn the basic concepts, apply methods and algorithms of digital trace analytics, and develop real world applications. Excellent (A+, A, A-) High Good (B+, B, B-) Significant Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

Examination

Criterion

Ability to solve learning tasks using digital trace analytics.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Self-reported data, behavioural data, social science sampling, questionnaire design, offline surveys, online surveys, digital trace measurement, multi-source data analytics, privacy protection

Reading List

Compulsory Readings

		Title
1	_	Analyzing political communication with digital trace data, by Andreas Jungherr, Springer, 2015

Additional Readings

	itle	
1	Til	