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Abstract
Living organisms are exposed to a mixture of environmental stressors, and
the resultant effects are referred to as multiple stressor effects. In the present
work, we studied the multiple stressor effect in embryos of the zebrafish (Danio
rerio) from simultaneous exposure to ionising radiation (alpha particles) and
cadmium through quantification of apoptotic signals at 24 h postfertilisation
(hpf) revealed by vital dye acridine orange staining. For each set of experiments,
32–40 dechorionated embryos were deployed, which were divided into four
groups each having 8–10 embryos. The four groups of embryos were referred
to as (1) the control group (C), which received no further treatments after
dechorionation; (2) the Cd-dosed and irradiated group (CdIr), which was
exposed to 100 µM Cd from 5 to 24 hpf, and also received about 4.4 mGy
from alpha particles at 5 hpf; (3) the irradiated group (Ir), which received about
4.4 mGy from alpha particles at 5 hpf; and (4) the Cd-dosed group (Cd), which
was exposed to 100 µM Cd from 5 to 24 hpf. In general, the CdIr, Ir and Cd
groups had more apoptotic signals than the C group. Within the 12 sets of
experimental results, two showed significant synergistic effects, one showed
a weakly synergistic effect and nine showed additive effects. The multiple
stressor effect of 100 µM Cd with ∼4.4 mGy alpha-particle radiation resulted
in an additive or synergistic effect, but no antagonistic effect. The failure to
identify significant synergistic effects for some sets of data, and thus their
subsequent classification as additive effects, might be a result of the relatively
small magnitude of the synergistic effects. The results showed that the radiation
risk could be perturbed by another environmental stressor such as a heavy metal,
and as such a realistic human radiation risk assessment should in general take
into account the multiple stressor effects.

(Some figures may appear in colour only in the online journal)
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1. Introduction

Living organisms are exposed to a mixture of environmental stressors, and the resultant effects
due to such exposures are referred to as multiple stressor effects. Multiple stressor effects
might not be simply the sum of effects from individual stressors [1, 2]. Heavy metals like
cadmium (Cd) are ubiquitous in our environment. Cd exposure has been related to human
prostate, pancreatic and renal cancers [3–5]. While there are already many research works on
the effect of multiple stressors, relatively few of them have been on the multiple stressor effects
of simultaneous exposure to ionising radiation and Cd, the study of which formed the objective
of the present work.

The present work used embryos of the zebrafish, Danio rerio, as a vertebrate model
to study multiple stressor effects. The zebrafish and human genomes share considerable
homology, including conservation of most DNA repair-related genes [6]. There has been a
growing number of research works using zebrafish or their embryos as a vertebrate model
to study the in vivo response to ionising radiation [7–17]. In the present work, exposure to
ionising radiation was achieved by alpha-particle irradiation because (1) alpha particles due to
their large linear energy transfer will be most effective in causing DNA double-strand breaks,
which are considered the most relevant lesions for mutations and carcinogenesis, and (2) natural
and artificial radionuclides with alpha-particle emission are common in our environment.
Alpha-particle irradiation was employed together with exposure to Cd with a concentration
of 100 µM, and quantification of apoptotic signals was used as the biological endpoint.

2. Materials and method

2.1. Experimental animals

Adult zebrafish were kept in glass tanks with water controlled at 28 ◦C. To maintain a good
production of embryos, a 14/10 h light–dark period was adopted. A plastic embryo collector,
as described by Choi et al [12], was used to collect the embryos. Once the 14 h photoperiod
started, photo-induced spawning commenced, and the embryo collector was lowered onto the
bottom of the each glass tank to collect the embryos. Collection of embryos lasted a relatively
short period of only 15–30 min to ensure synchronisation of the developmental stage of the
collected embryos. The collected embryos were then immediately transferred to and incubated
in a 28 ◦C incubator.

2.2. Preparation of embryos

The embryos had to be dechorionated to avoid excessive loss of energy before the alpha
particles reached the cells. At 4 h postfertilisation (hpf), healthily developing embryos were
selected under a stereo-microscope and transferred into a Petri dish with E3 solution (5 mM
NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM MgSO4, 0.1% methylene blue) and with a layer
of biocompatible agarose as the substrate for dechorionation. All studied embryos, including
those which were not going to receive the radiation dose, were dechorionated to ensure uniform
conditions.

2.3. Exposure protocol

For each set of experiments, 32–40 dechorionated embryos were employed. These embryos
were separated into four groups, each having 8–10 embryos, and accommodated in four
separate Petri dishes, referred to as:
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Figure 1. The side-view schematic diagram of the setup for irradiation of zebrafish embryos
through the Mylar film based holder.

(1) the control group (C): embryos were dechorionated without receiving any further treatment;
(2) the Cd-dosed and irradiated group (CdIr): embryos were exposed to 100 µM Cd from 5 to

24 hpf, and also received about 4.4 mGy from alpha particles at 5 hpf;
(3) the irradiated group (Ir): embryos received about 4.4 mGy from alpha particles at 5 hpf;
(4) the Cd-dosed group (Cd): embryos were exposed to 100 µM Cd from 5 to 24 hpf.

Considering that the DNA repair mechanism in zebrafish embryos would only become
operative after the cleavage stages (0.7–2.2 hpf) [18], the embryos were exposed to Cd and/or
alpha-particle radiation at 5 hpf which was within the blastula stage (2.2–5.2 hpf). The embryos
in the CdIr group were exposed to 100 µM Cd (cadmium nitrate tetrahydrate, Cd (NO3)2
·4H2O) and ∼4.4 mGy of alpha-particle radiation, while those in the Ir and Cd groups were
exposed to ∼4.4 mGy of alpha-particle irradiation and 100 µM Cd, respectively.

2.4. Alpha-radiation exposure

The setup for alpha-particle irradiation in the present experiment largely followed that designed
by Yum et al [10]. A biocompatible substrate, Mylar film (Dupont, Hong Kong) with a thickness
of 3.5 µm was used as the support substrate during irradiation. The irradiation dish consisted
of a Mylar film glued to the bottom of a Petri dish which had a diameter of 35 mm and a hole
at the centre using an epoxy (Araldite R© Rapid, UK).

The 5 hpf embryos in the CdIr and Ir groups were placed on the substrate in the irradiation
dish and irradiated with alpha particles for 4 min using an 241Am source (with an alpha-particle
energy of 5.49 MeV under vacuum and an activity of 4.26 kBq), which corresponded to an
absorbed dose of ∼4.4 mGy. To avoid the problem of having different travelling depths of
alpha particles in the medium before reaching the embryos, these two groups of embryos were
irradiated with alpha particles coming from below through the supporting substrate instead of
coming from above. The embryos were oriented in such a way that all the cells of the embryos
faced down towards the Mylar film, to ensure that the alpha particles would be directed towards
the cells. Figure 1 shows a side-view schematic diagram of the irradiation setup [10]. On the
other hand, the embryos in the Cd group experienced exactly the same treatment, except the
use of the 241Am source. After sham-irradiation and irradiation for the Cd and CdIr groups,
respectively, they were ready for further Cd exposure.

2.5. Cadmium exposure

A 100 µM cadmium nitrate stock solution was prepared by dissolving cadmium nitrate
tetrahydrate (Sigma-Aldrich, MO, USA) in de-ionised water, and was then stored at room
temperature. The same stock solution was used for all experiments in the present project. It
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was established that significant amounts of apoptotic cells were observed in zebrafish embryos
after exposure to 100 µM Cd from 5 to 28 hpf [19], which was commensurate with other
tissue-culture studies using micromolar Cd concentrations [20–24]. Chan and Cheng [19] also
found 0.67% of apoptotic cells by flow cytometry assay for embryos which were exposed to
1 µM Cd for 24 h. With reference to these results and to the literature, they concluded that
ectopic induction of apoptosis only occurred for Cd exposures with higher concentrations [19].
As such, 100 µM Cd has been chosen for the present study. A volume of 2 ml of cadmium
nitrate solution, which was sufficient to cover all embryos accommodated in each dish, was
prepared in two new Petri dishes. Immediately after the CdIr and Cd groups of embryos
were irradiated and sham irradiated, respectively, they were removed from the medium and
transferred to 100 µM cadmium nitrate solution using a glass dropper to provide the Cd dose
until 24 hpf. All the four groups of embryos (C, CdIr, Ir and Cd) were then incubated at 28 ◦C
in an incubator until they developed to 24 hpf.

2.6. Quantification of apoptosis by vital dye staining

Quantification of apoptosis, which is the biological endpoint chosen for the current study, has
been widely adopted to examine the radiation effect on whole embryos [8, 25]. The vital dye
acridine orange (AO) (Sigma, St Louis, MO, US) was used to stain the apoptotic cells in the
24 hpf embryos as previously suggested by Choi et al [12]. Briefly speaking, the four groups
of embryos were transferred into a culture medium containing 5 µg ml−1 of AO to stain in
the dark for 60 min and then thoroughly washed twice in the culture medium. The embryos
were then anaesthetised by transferring into 0.016 M tricaine (Sigma, St Louis, MO, US). The
apoptotic signals of the embryos were finally counted under a fluorescent microscope. Vital
dye staining has been commonly employed to quantify the level of apoptosis in zebrafish
embryos [26–28]. For each embryo, three images with focus on different sections of the
embryo were captured under the fluorescent microscope with a magnification of 40×. These
images were then combined into one signal image for quantification of the apoptotic signals.
A computer program ‘Particle Counting 2.0’ (developed by Zhang) was used to count the
apoptotic signals in an embryo.

2.7. Statistical analysis

In the current study, 12 repeated sets of experiments with 32–40 zebrafish embryos each were
carried out on different days. The number of apoptotic signals on each entire zebrafish embryo
was counted as described above. After rearranging a group of data in a descending order,
values lying within the range of 1.5 times the interquartile range above the 75th percentile and
below the 25th percentile of the group of data were preserved while other values were referred
as ‘outliers’ and were excluded from further data analysis. Here, the interquartile range was
defined as the difference between the 25th and 75th percentiles of the data.

We denoted the mean numbers of apoptotic signals for the C, CdIr, Ir and Cd groups as
NC, NCdIr, NIr and NCd, respectively. If NC was interpreted as the average background apoptotic
signal for the embryos in the corresponding set of experiments, the net apoptotic signals for the
CdIr, Ir and Cd groups could be determined as N∗CdIr = (NCdIr − NC), N∗Ir = (NIr − NC) and
N∗Cd = (NCd − NC), respectively.

The multiple stressor effect was compared with the effects from individual stressors.
Two methods were employed to construct the expected mean number of apoptotic signals
considering the effects contributed by individual stressors as described in section 3 below.
Student’s t-test was performed between these constructed groups and the CdIr group, with p
values < 0.05 representing statistically significant differences.
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Figure 2. Images of the zebrafish embryos for the four groups of embryos which had been stained
with AO for 1 h. Arrows show examples of apoptotic signals.

3. Results

In the present study, the number of apoptotic signals present in the 25 hpf zebrafish embryos
was used as the biological endpoint to characterise the effects of Cd and radiation exposure.
Representative images of zebrafish embryos with apoptotic signals revealed by vital dye
staining using AO for groups C, CdIr, Ir and Cd are shown in figure 2.

A total of 12 repeated sets of experiments with 32–40 zebrafish embryos each was carried
out on different days. The mean numbers of apoptotic signals N obtained for the groups C,
CdIr, Ir and Cd, namely NC, NCdIr, NIr and NCd, respectively, are shown in table 1. In general,
NCdIr, NIr and NCd were larger than NC. In all 12 sets of experiments, the NCd values were
significantly larger than the NC values, which agreed with the findings of Chan and Cheng [19].
In 11 out of the 12 sets of experiments, the NCdIr values were significantly larger than both the
NIr and NCd values.

The multiple stressor effect was compared with the effects from individual stressors.
Table 2 shows the effects on zebrafish embryos of the combined action of 4.4 mGy
alpha-particle irradiation and 100 µM Cd. Two methods were employed to construct the
expected mean number of apoptotic signals considering the effects contributed by individual
stressors:

(1) addition of N∗Ir to each embryo in the Cd group, to form the Cd〈Ir〉 group (case 1);

(2) addition of N∗Cd to each embryo in the Ir group, to form the Ir〈Cd〉 group (case 2).

By definition, the mean numbers of apoptotic signals obtained for these two groups,
namely NCd〈Ir〉 and NIr〈Cd〉, were equal. Student’s t-tests were performed to see whether the
Cd〈Ir〉 or Ir〈Cd〉 groups were significantly different (p < 0.05) from the CdIr group. If p < 0.05
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Table 1. The average number of apoptotic signals N (±SE) obtained for different groups of
embryos (C, CdIr, Ir, Cd). n is the number of zebrafish embryos in a particular sample after removal
of outliers. The p values for the Ir and Cd groups correspond to comparisons between these groups
and the CdIr group using the t-test.

Set C CdIr Ir Cd

1 N 95 ± 2 263 ± 3 177 ± 3 153 ± 4
n 8 8 8 8
p 0.000 28a 0.000 075a

2 N 76 ± 3 167 ± 3 135 ± 3 95 ± 1
n 8 8 6 8
p 0.047a 0.0002a

3 N 81 ± 2 237 ± 5 162 ± 2 160 ± 4
n 7 7 8 8
p 0.017a 0.019a

4 N 91 ± 2 223 ± 2 157 ± 4 154 ± 3
n 8 8 7 8
p 0.009a 0.000 52a

5 N 81 ± 2 202 ± 3 156 ± 4 151 ± 4
n 7 9 9 10
p 0.032a 0.014a

6 N 138 ± 5 371 ± 4 261 ± 1 223 ± 6
n 10 10 7 10
p 0.000 55a 0.000 51a

7 N 52 ± 3 172 ± 5 95 ± 3 113 ± 3
n 10 9 9 9
p 0.0052a 0.019a

8 N 67 ± 2 209 ± 2 166 ± 3 83 ± 2
n 10 9 9 10
p 0.0041a 9.58×10−10a

9 N 95 ± 2 184 ± 3 144 ± 1 146 ± 3
n 8 9 7 8
p 0.0067a 0.025a

10 N 87 ± 2 165 ± 1 142 ± 2 115 ± 4
n 8 7 9 9
p 0.0085a 0.0045a

11 N 59 ± 2 153 ± 9 115 ± 4 79 ± 2
n 10 7 7 7
p 0.21 0.062

12 N 75 ± 1 185 ± 2 143 ± 1 90 ± 1
n 7 8 7 7
p 0.0002a 4.44× 10−7a

a Cases with p values <0.05 are considered to be statistically significant.

for both cases 1 and 2, we would conclude on either a synergistic effect if (N∗Ir < N∗CdIr − N∗Cd)
or (N∗Cd < N∗CdIr−N∗Ir), or an antagonistic effect if (N∗Ir > N∗CdIr−N∗Cd) or (N∗Cd > N∗CdIr−N∗Ir).
If p ≥ 0.05 for both cases 1 and 2 but p < 0.1 for at least one of the cases 1 and 2, we would
conclude on a weakly synergistic effect or a weakly antagonistic effect (non-significant). The
remaining cases were considered to display an additive effect.

Within the 12 sets of experimental results shown in table 2, two showed significant
synergistic effects, one showed a weakly synergistic effect (non-significant) and nine showed
additive effects. These results indicate that the multiple stressor effect of 100 µM Cd
with ∼4.4 mGy alpha-particle radiation results in an additive or synergistic effect, but no
antagonistic effect.
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Table 2. Expected values (N∗CdIr) and observed values (NCd〈Ir〉 or NIr〈Cd〉, which are equal) for
the combined effects of Cd and alpha-particle irradiation on the zebrafish embryos at 25 hpf,
indicating whether the interactions are additive, synergistic or antagonistic.

Set Expected Observed p (case 1a) p (case 2b) Interaction

1 168 ± 5 140 ± 11 0.11 0.088 Weakly synergistic
2 91 ± 6 78 ± 10 0.17 0.23 Additive
3 156 ± 7 160 ± 10 0.45 0.45 Additive
4 132 ± 4 129 ± 11 0.41 0.44 Additive
5 121 ± 5 145 ± 12 0.13 0.15 Additive
6 233 ± 9 208 ± 17 0.25 0.16 Additive
7 120 ± 8 104 ± 12 0.26 0.26 Additive
8 142 ± 4 115 ± 9 0.0049 0.034 Significantly synergistic
9 89 ± 5 100 ± 8 0.26 0.19 Additive

10 78 ± 3 83 ± 10 0.35 0.23 Additive
11 94 ± 11 76 ± 10 0.34 0.35 Additive
12 110 ± 3 83 ± 4 0.0032 0.0039 Significantly synergistic

a By comparing the CdIr and Cd〈Ir〉 groups, the latter constructed by adding N∗Ir to each embryo in
the Cd group.
b By comparing the CdIr and Ir〈Cd〉 groups, the latter constructed by adding N∗Cd to each embryo in

the Ir group.

4. Discussion

Both Cd and ionising radiation are well known gene mutagens [29, 30]. Since simultaneous
exposure to these two stressors is common in natural as well as occupational environments,
the multiple stressor effect of Cd with ionising radiation has generated considerable interest
in recent years. The present study revealed additive and synergistic effects in zebrafish
embryos for simultaneous exposure to Cd and alpha-particle irradiation. Nevertheless, the
failure to identify significant synergistic effects for some sets of data, and thus their subsequent
classification as additive effects, might be a result of the relatively small magnitude of the
synergistic effects.

Cd-induced apoptosis has been reviewed by Robertson and Orrenius et al [31]; however,
the underlying mechanisms are still not well known. Possible mechanisms such as involvement
of the caspases enzymatic pathway, suppression of the tumour suppressor gene p53 and
protection by the anti-apoptotic gene Bcl-2 have been suggested [32–35]. The induction of
apoptotic cell death by Cd has also been demonstrated in some other mammalian and fish
cell lines [36]. Besides, Cd has an impact on genomic stability by inhibiting various DNA
repair enzymes [37, 38]. There is experimental evidence indicating that Cd interferes with
many DNA repair pathways, such as mismatch repair (MMR), non-homologous end-joining
(NHEJ) and homologous recombination (HR) repair of double-strand breaks and base excision
repair [39–41]. Cd has also been found to inhibit the repair of oxidative DNA damage in
different mammalian cells both in vivo and in vitro [42, 37]. As such, the yield of DNA damage
in zebrafish embryos due to alpha-particle irradiation might be increased by suppression of
the efficiency of DNA repair systems by Cd [43, 44], which would likely lead to a synergistic
effect.

To conclude, the combined action of 4.4 mGy alpha-particle irradiation and 100 µM Cd
in general resulted in an additive and synergistic effect, while the additive effect was likely a
manifestation of the weakly synergistic effect. The zebrafish has been established as a popular
vertebrate model for studying the in vivo response to ionising radiation. The results in the
present paper show that the radiation risk can be perturbed by another environmental stressor
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such as a heavy metal, and as such a realistic human radiation risk assessment should in general
take into account the multiple stressor effects. This has far reaching consequences in radiation
protection.
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