波音游戏-波音娱乐城赌球打不开

COURSES >>>


SDSC4001 - Foundation of Reinforcement Learning

Offering Academic Unit
Department of Data Science
Credit Units
3
Course Duration
One Semester
Pre-requisite(s)
Course Offering Term*:
Semester A 2024/25
Semester A 2025/26 (Tentative)

* The offering term is subject to change without prior notice
 
Course Aims

This advanced elective course introduces the essential elements and mathematical foundations of the modern reinforcement learning: the optimal control theory, including dynamic programming and numerical techniques. It emphasizes both the fundamental theories in control theory and the numerical methods in context of reinforcement learning algorithms. It also equips students with computing algorithms and techniques for applications to some practical problems.


Assessment (Indicative only, please check the detailed course information)

Continuous Assessment: 50%
Examination: 50%
Examination Duration: 2 hours

Note: To pass the course, apart from obtaining a minimum of 40% in the overall mark, a student must also obtain a minimum mark of 30% in both continuous assessment and examination components.

 
Detailed Course Information

SDSC4001.pdf

百家乐官网怎么玩啊| 百家乐赌场彩| 百家乐官网注册送免费金| 百家乐官网中P代表| 利来百家乐官网娱乐| 免费百家乐官网统计软件| 博九网百家乐游戏| 独赢百家乐全讯网| 亚洲顶级赌场第一品牌| 宾川县| 六合彩票| 百家乐官网发牌的介绍| 百家乐官网群b28博你| 百家乐怎样投注好| 威尼斯人娱乐城存款多少起存| 顶级赌场 足彩分析| 百家乐官网职业赌徒的解密| 百家乐玩家技巧分享| 一筒百家乐的玩法技巧和规则| 盐城棋牌游戏中心| 12倍百家乐官网秘籍| 海王星百家乐官网技巧| 太阳城百家乐出千技术| 威尼斯人娱乐城 104| 百家乐官网美食坊| 做生意店铺风水好吗| 为什么百家乐玩家越来越多选择网上百家乐 | 王牌百家乐的玩法技巧和规则| 百家乐官网全透明牌靴| 网络百家乐必胜投注方法| 大发888娱乐场 手机版| 百家乐官网单机游戏免费下| 大发888娱乐城欢迎您| 通榆县| 广东百家乐官网网| 大发888娱乐城.com| 百家乐官网双面数字筹码| 嘉禾百家乐官网的玩法技巧和规则 | bet365合法吗| 金龙娱乐城| 肯博百家乐官网的玩法技巧和规则 |