波音游戏-波音娱乐城赌球打不开

COURSES >>>


SDSC4001 - Foundation of Reinforcement Learning

Offering Academic Unit
Department of Data Science
Credit Units
3
Course Duration
One Semester
Pre-requisite(s)
Course Offering Term*:
Semester A 2024/25
Semester A 2025/26 (Tentative)

* The offering term is subject to change without prior notice
 
Course Aims

This advanced elective course introduces the essential elements and mathematical foundations of the modern reinforcement learning: the optimal control theory, including dynamic programming and numerical techniques. It emphasizes both the fundamental theories in control theory and the numerical methods in context of reinforcement learning algorithms. It also equips students with computing algorithms and techniques for applications to some practical problems.


Assessment (Indicative only, please check the detailed course information)

Continuous Assessment: 50%
Examination: 50%
Examination Duration: 2 hours

Note: To pass the course, apart from obtaining a minimum of 40% in the overall mark, a student must also obtain a minimum mark of 30% in both continuous assessment and examination components.

 
Detailed Course Information

SDSC4001.pdf

兴城市| 尊龙百家乐娱乐场开户注册| 网络百家乐官网游赌博| 威尼斯人娱乐城代理合作| 百家乐官网保单机解码| 百家乐娱乐代理| 宝马百家乐官网的玩法技巧和规则 | 上海百家乐官网的玩法技巧和规则 | 德州扑克入门与提高| 凯旋门百家乐现金网| 宝马会百家乐官网现金网| 大发888娱乐城 健账号| 百家乐9人桌布| 百家乐官网桌布尼布材质| 线上老虎机| 威尼斯人娱乐城平台打不开| 百家乐注册| 百家乐官网开户导航| 永发娱乐城| 土豪百家乐的玩法技巧和规则 | 孟连| 百家乐平点| 百家乐棋牌公式| 百家乐官网游戏机技| 12倍百家乐官网秘籍| 真人娱乐城源码| 威尼斯人娱乐骰宝| 百家乐羸钱法| 百家乐百家乐伴侣| 百家乐官网押注方法| 百家乐官网博彩网排名| 晋城| 聂拉木县| 澳门百家乐秘诀| 红宝石百家乐官网娱乐城| 百家乐官网现场投注平台| 香格里拉县| 百家娱乐城| 德州扑克葫芦| 二代百家乐破解| 百家乐最佳下注方法|