波音游戏-波音娱乐城赌球打不开

COURSES >>>


SDSC4001 - Foundation of Reinforcement Learning

Offering Academic Unit
Department of Data Science
Credit Units
3
Course Duration
One Semester
Pre-requisite(s)
Course Offering Term*:
Semester A 2024/25
Semester A 2025/26 (Tentative)

* The offering term is subject to change without prior notice
 
Course Aims

This advanced elective course introduces the essential elements and mathematical foundations of the modern reinforcement learning: the optimal control theory, including dynamic programming and numerical techniques. It emphasizes both the fundamental theories in control theory and the numerical methods in context of reinforcement learning algorithms. It also equips students with computing algorithms and techniques for applications to some practical problems.


Assessment (Indicative only, please check the detailed course information)

Continuous Assessment: 50%
Examination: 50%
Examination Duration: 2 hours

Note: To pass the course, apart from obtaining a minimum of 40% in the overall mark, a student must also obtain a minimum mark of 30% in both continuous assessment and examination components.

 
Detailed Course Information

SDSC4001.pdf

大发888游戏官网下载| 百家乐官网玩家技巧分享| 大发888娱乐城 34| 德州扑克小说| 战神百家乐娱乐| 希尔顿百家乐官网娱乐城| 大发888出纳柜台 2014| 盐城百家乐官网的玩法技巧和规则 | 百家乐视频世界| 老虎机的规律| 百家乐官网增值公式| 百家乐官网如何买大小| 百家乐专家赢钱打法| 百家乐桌套装| 百家乐官网园首选| 大发888的微博| 百家乐投注网中国体育| 百家乐官网有公式| 百家乐官网视频计牌器| 网上百家乐娱乐场开户注册 | 百家乐怎么押钱| 老虎机下载| 百家乐官网园选| 百家乐官网投注平台信誉排名| 一二博娱乐| 百家乐官网经验博彩正网| 申请百家乐会员送彩金| 捕鱼棋牌游戏| 属马做生意坐向| tt娱乐城官网| 百家乐官网破解秘| 百家乐官网英皇娱乐网| 百家乐官网等投注网改单| 澳门百家乐官网站| 百家乐官网庄闲机率分析| 优博线上娱乐| 博之道百家乐的玩法技巧和规则 | 海南博彩业| 太阳城会员| 百家乐如何盈利| 旅百家乐赢钱律|