波音游戏-波音娱乐城赌球打不开

COURSES >>>


SDSC4001 - Foundation of Reinforcement Learning

Offering Academic Unit
Department of Data Science
Credit Units
3
Course Duration
One Semester
Pre-requisite(s)
Course Offering Term*:
Semester A 2024/25
Semester A 2025/26 (Tentative)

* The offering term is subject to change without prior notice
 
Course Aims

This advanced elective course introduces the essential elements and mathematical foundations of the modern reinforcement learning: the optimal control theory, including dynamic programming and numerical techniques. It emphasizes both the fundamental theories in control theory and the numerical methods in context of reinforcement learning algorithms. It also equips students with computing algorithms and techniques for applications to some practical problems.


Assessment (Indicative only, please check the detailed course information)

Continuous Assessment: 50%
Examination: 50%
Examination Duration: 2 hours

Note: To pass the course, apart from obtaining a minimum of 40% in the overall mark, a student must also obtain a minimum mark of 30% in both continuous assessment and examination components.

 
Detailed Course Information

SDSC4001.pdf

百家乐官网路单破| 富易堂百家乐娱乐城| 百家乐官网公式计算| 百家乐游戏合法吗| 百家乐官网猜大小规则| 迪威网上娱乐| 大发888赌场 游戏平台| 权威百家乐信誉网站| 百家乐官网天下| 华侨人百家乐官网的玩法技巧和规则 | 百家乐官网预测和局| 百家乐真人视频出售| 百家乐扑克桌| 百家乐视频游戏掉线| 百家乐怎么赢对子| 澳门百家乐是怎样赌| 百家乐闲单开多少| 百家乐官网网站| 百家乐官网牌路图表下| 南京百家乐官网在哪| 百家乐官网赌博在线娱乐| 太阳城百家乐官网网址--| 百家乐官网技巧之微笑心法| 太阳城百家乐官网网址--| 网页百家乐官网官网| 百家乐官网真人博彩的玩法技巧和规则| 百家乐官网视频一下| 百家乐官网大小是什么| 百家乐咋个玩的| 圣淘沙百家乐娱乐城| 首席百家乐的玩法技巧和规则| 免费百家乐规则| 网上玩百家乐有钱| 百家乐马宝| 澳门百家乐备用网址| 百家乐网上真钱娱乐网| 百家乐小游戏单机版| 大发888线上娱乐加盟合作| 雅加达百家乐的玩法技巧和规则| 利辛县| 英德市|