波音游戏-波音娱乐城赌球打不开

Submitted by cheukllui3 on
Anti-Cancer
Chemical Biology
Ultrasound-activated chemotherapy advances therapeutic potential for deep tumours

Chemotherapy for cancer treatment often results in collateral damage to healthy cells and other adverse effects. A research team led by City University of Hong Kong (CityU) recently developed “sono-sensitised chemotherapy” (SSCT), a new form of ultrasound-activated chemotherapy, which further enhances the precision for eradicating deeper tumours with centimetre range of tissue penetration and minimises side effects.

“Photoactivated chemotherapy has successfully enhanced treatment by providing location-specific therapy with reduced adverse effects,” said Professor Guangyu Zhu in the Department of Chemistry at CityU. “However, its shallow penetration depth and strong optical scattering have yet to meet the need for a non-invasive therapy capable of precise ablation of deep tumours.”

To overcome this limitation, the research team, led by Professor Zhu and Professor Lidai Wang, Associate Professor in the Department of Biomedical Engineering (BME), invented the SSCT technique by developing cyaninplatin, a sono-activatable anticancer prodrug, and tailor-making a programmable focused ultrasound system (FUS) for sono-activation.

Cyaninplatin is a small molecule platinum(IV) anticancer prodrug (a prodrug is a pharmacologically inactive compound before activation inside the body) with a modified ultrasound-responsive, theranostic (a combination of diagnosis and therapeutics) platinum (Pt) coordination compound, and a carboplatin-based Pt(IV) scaffold. It accumulates well in the tumour region and when irradiated with ultrasound, it is reduced to carboplatin, which is a typical chemotherapy drug. When activated by focused ultrasound with spatiotemporal control, it can focus directly on cancer cells. 

Cyaninplatin
Schematic illustration of the working mechanism of cyaninplatin, a small-molecule Pt(IV) anti-cancer prodrug, which is activated by focused ultrasound and reduced to chemotherapeutic carboplatin after irradiation. (Credit: Liu, G. et al., source: https://www.science.org/doi/10.1126/sciadv.adg5964)

In their experiments, the team found that the ultrasound-activated cyaninplatin sufficiently induced cancer cell oxidation, eventually leading to mitochondrial DNA damage and cancer cell death.

Cyaninplatin
The ultrasound-activated cyaninplatin drastically inhibited the growth of tumours and completely eradicated two tumours (group vi).
(Credit: Liu, G. et al., source: https://www.science.org/doi/10.1126/sciadv.adg5964)

“Another fascinating part of the research is that we successfully utilised ultrasound’s property of deep penetration in tissues for the activation of small-molecule drugs,” said Professor Wang. Previous research reported that photoactivation with near-infrared light was effective only in the millimetre range and performed poorly when the cancer cell was covered with thick body tissue. But combined with the customised FUS, the treatment with ultrasound-activated cyaninplatin successfully inhibited cancer cell viability by 51% with 1cm-thick tissue coverage and 33% with 2cm-thick coverage. 

“Our well-designed FUS enables the SSCT to be a precise tumour-specific treatment with good penetration performance,” said Professor Wang. “More importantly, our system allows the ultrasound to focus on a specific area within 8mm, and hence highly focuses the ultrasound energy on a tiny area to activate sono-responsive prodrugs, providing an efficient approach with minimal side effects.”

In addition, the prodrug’s fluorescence property enables it to act as a multi-imaging contrast agent, allowing the visualising and reconstructing of a tumour in a semi-3D fashion. This provides accurate guidance for applying FUS at a tumour site and monitoring the drug-accumulation time.

To further explore the efficacy of SSCT, the team injected inactivated cyaninplatin into mice with tumours. After the fourth treatment on day 6, the ultrasound-activated cyaninplatin drastically inhibited the growth of tumours and completely eradicated two tumours. In contrast, there was no inhibition of tumour growth for the untreated groups; the tumours continued to grow.

Cyaninplatin
The cyaninplatin is a chemical complex with a modified ultrasound-responsive theranostic Pt-coordination compound and carboplatin-based Pt(IV) scaffold. (Credit: City University of Hong Kong)

The ultrasound-activated cyaninplatin also lowered the level of the tumour proliferation factor to 24%, preventing potential tumour recurrence. And there was no notable loss of body weight, no abnormal behaviours, and no systemic toxicity to the main organs of the treated mice.

“The ultrasound-activatable prodrug can be further extended to preclinical or clinical studies for cancer treatment,” said Professor Zhu. “The findings in this study may provide an important reference for developing novel therapeutic approaches, providing new dimensions for anticancer treatment and broadening the field of medical ultrasound applications.”

The findings were published in the scientific journal Science Advances under the title “An Ultrasound-Activatable Platinum Prodrug for Sono-Sensitized Chemotherapy”.

Cyaninplatin
Professor Guangyu Zhu (second from left) and Professor Lidai Wang (second from right) and their research team, including Mr Gongyuan Liu (first from right) and Miss Shu Chen (first from left), at CityU. (Credit: City University of Hong Kong)

The study’s co-first authors are Mr Gongyuan Liu, a PhD student in the Department of Chemistry and Dr Yachao Zhang, former postdoc in the BME at CityU. The corresponding authors are Professor Zhu and Professor Wang.

This research is supported by Hong Kong Research Grants Council, the National Natural Science Foundation of China, and the Science Technology and Innovation Committee of Shenzhen Municipality.

 

This research article originated from CityU Research Stories.

e世博百家乐官网娱乐场| 棋牌游戏开发公司| 伟易博百家乐官网的玩法技巧和规则 | 威尼斯人娱乐电子游戏| 百家乐官网开线| 东阿县| 百家乐百家乐游戏| 迪士尼百家乐官网的玩法技巧和规则 | 网上百家乐官网注册彩金| 济州岛娱乐场cns| 太阳城百家乐软件| 天堂鸟百家乐官网的玩法技巧和规则 | 金冠娱乐城开户| 六合彩特码开奖结果| 百家乐平台凯发| 太阳百家乐3d博彩通| 番禺百家乐官网电器店| 百家乐官网庄闲赢负表| 大西洋娱乐城| 京山县| 玩百家乐官网优博娱乐城| 百家乐官网烫金筹码| 来博百家乐官网现金网| 百家乐官网六合彩3535| 太阳城网上娱乐城| 广州百家乐娱乐场开户注册| 百家乐赌经| 威尼斯人娱乐场开户| 博彩排名| 略阳县| 玩百家乐官网澳门皇宫娱乐城 | 大发888游戏客户端下载| tt娱乐城备用网| 百家乐官网赢的秘诀| 下载百家乐官网棋牌大厅| 百家乐官网切入法| 百家乐官网赌场玩法技巧| 百家乐官网pc| 任我赢百家乐官网软件| 百家乐官网最新破| 百家乐赌博软件下载|