波音游戏-波音娱乐城赌球打不开

III. Exploitation on Code Injection

by JUCC ISTF

/* The following article is extracted from the "Information Security Newsletter" published by the JUCC IS Task Force. */

Code injection attacks typically occur when inputs has not been adequately validated before execution. The basic principle is to provide some form of input with additional malicious scripts for exploitation. There are numerous types of injection attacks which have different features and attributes. Major type of attacks included: 

  • SQL Injection
  • LDAP Injection
  • OS Command Injection (also known as Shell Injection)
  • Cross-Site Scripting ("XSS")
Major Type of Attacks in Code Injection
 

1. SQL Injection

SQL injection attack consists of injection of malicious SQL commands via input data from the client to the application that are later passed to an instance of a database for execution and aim to affect the execution of predefined SQL commands.

The primary form of SQL injection consists of direct insertion of code into user-input variables which are concatenated with SQL commands and executed. A less direct attack injects malicious code into strings that are destined for storage in a table or as metadata. When the stored strings are subsequently concatenated into a dynamic SQL commands, the malicious code is then executed.

A successful SQL injection exploit can access sensitive data in the database, modify database data, execute administrative operations within the database (e.g. shutdown the DBMS), recover the content of a given file present on the DBMS file system and in some cases issue commands to the operating system.

Examples for the SQL injection 

Reference:

 


http://www.owasp.org/index.php/Interpreter_Injection
http://msdn.microsoft.com/en-us/library/ms161953.aspx
http://www.beyondsecurity.com/about-sql-injection.html  

2. LDAP Injection

Lightweight Directory Access Protocol (LDAP) is an open-standard protocol for both querying and manipulating X.500 directory services. The LDAP protocol runs over Internet transport protocols, such as TCP. Web applications may leverage user-supplied input to create custom LDAP statements for dynamic web page requests.

LDAP injection is an attack technique of exploiting web applications that use client-supplied data in LDAP statements without first stripping potentially harmful characters from the request.

When a web application fails to properly sanitise user-supplied input, it is possible for an attacker to alter the construction of an LDAP statement. Once an attacker is able to modify an LDAP statement, the process will run with the same permissions as the component that executed the command. (e.g. Database server, Web application server, Web server, etc.). This can cause serious security problems where the permissions grant the rights to query, modify or remove anything inside the LDAP tree. The same advanced exploitation techniques available in SQL Injection can also be similarly applied in LDAP Injection.

Examples for the LDAP injection 

Reference:
3. OS Command Injection ("Shell Injection")
OS command injection is also known as Improper Sanitisation of Special Elements used in an OS Command and is a technique used via a web interface in order to execute OS commands on a web server.
The user supplies all or part of malformed OS command through a web interface. If the web interface that is not properly sanitised the input is vulnerable to this exploit. With the ability to execute OS commands, the user can inject unexpected and dangerous commands, upload malicious programs or even obtain passwords directly from the operating system. The problem is exacerbated if the compromised process fails to follow the principle of least privilege, because the attacker-controlled commands may run with special system privileges that increase the amount of damage.
Examples for the OS Command injection
4. Cross-site Scripting ("XSS")  
Cross-site Scripting ("XSS") is a type of injection attack, in which malicious scripts are introduced into the trusted websites. This exploitation would occur when a web application uses user-supplied inputs as an output without validating or encoding it. The malicious content sent to the web browser can takes several forms including JavaScript, VBScript, ActiveX, HTML, Flash or any other type of code that the browser may execute. XSS attacks can generally be categorised into three types: Stored, Reflected and Document Object Mode based ("DOM-Based").

Stored XSS (Persistent) - Stored XSS attacks means that the injected malicious code is permanently stored on a target server such as a bulletin board, a visitor log, or a comment field. When interacting with the target server, an end-user inadvertently retrieves and executes the malicious code from the server. 


Reflected XSS (Non-Persistent) - Reflected XSS attacks are those where the injected code is sent to a vulnerable web server that directs the cross-site attack back to the user's browser. This type of attacks aims to trick the users by clicking on a malicious link or submitting a specially crafted form. The user's browser then executes the malicious code, assuming it comes from a trusted server. 

DOM (Document Object Model) Based XSS - Unlike the previous two, DOM based XSS does not require the web server to receive the malicious XSS payload. Instead, in a DOM-based XSS, the attack payload is embedded in the DOM object in the victim's browser used by the original client side script, so that the client side code runs in an "unexpected" manner. That is, the page itself (HTTP response) does not change, but the client side code contained in the page executes differently due to the malicious modifications that have occurred in the local DOM environment. This attack is usually achieved by sending malicious URL to the users.

The above techniques may allow an attacker to hijack private data like cookies or other session information, redirect the victim to web content controlled by the attacker, or perform other malicious operations on the user's machine under the banner of the vulnerable site.

[Previous section][Next section]

百人百家乐软件供应| 大发888技巧| 战神百家乐的玩法技巧和规则| 任你博百家乐官网的玩法技巧和规则 | 博尔国际| 大发888网页版体育| 百家乐官网的关键技巧| 大发888在线网址| 大发888 casino| 网上百家乐作弊法| 专业百家乐筹码| 百家乐塑料扑克牌盒| 状元百家乐官网的玩法技巧和规则 | 哪个百家乐官网玩法平台信誉好 | 百家乐好赌吗| 百家乐官网庄闲点数| 最新娱乐城送体验金| 德州扑克过牌| 水果机技术打法| 新全讯网carrui| 百家乐官网币| 大发888备用地址| 百家乐官网在发牌技巧| 百家乐官网最佳注码法| 金花百家乐官网娱乐城| 百家乐官网娱乐平台官网网 | LV百家乐官网客户端LV| 闲和庄百家乐官网的玩法技巧和规则| 盛大百家乐官网的玩法技巧和规则 | 百家乐官网有没有稳赢| 百家乐官网体育直播| 开心8百家乐官网娱乐城| 真人百家乐官网做假| 百家乐官网程序开户发| 百家乐胜率在哪| 百家乐国际娱乐网| 威尼斯人娱乐客户端| 壹贰博网站| 百家乐官网发牌的介绍| 百家乐官网庄闲几率| 皇家娱乐|