波音游戏-波音娱乐城赌球打不开

Skip to main content

Around the convergence problem in mean-field control theory and the associated Hamilton-Jacobi equations

Dr Samuel Daudin
Date & Time
01 Apr 2025 (Tue) | 04:00 PM - 05:00 PM
Venue
Online via Zoom
Registration Link: https://cityu.zoom.us/meeting/register/CU2-KG4SQPCKQXdOUQYEBA

ABSTRACT

The aim of this talk is to discuss recent progress on the convergence problem in mean-field control theory and the study of associated nonlinear PDEs. We are interested in optimal control problems involving a large number of interacting particles subject to independent Brownian noises. When the number of particles tends to infinity, the problem simplifies to a McKean-Vlasov-type optimal control problem for a typical particle. I will present recent results concerning the quantitative analysis of this convergence. More specifically, I will discuss an approach based on the analysis of associated value functions. These functions are solutions of high-dimensional Hamilton-Jacobi equations, and the convergence problem translates into a stability problem for the limit equation, which is posed on the space of probability measures on Euclidean space. I will also discuss the well-posedness of this limit equation, the study of which seems to escape the usual techniques for infinite-dimensional Hamilton-Jacobi equations.

 

 

百家乐轮盘技巧| 百家乐官网看盘技巧| 百家乐官网群shozo| 免费百家乐官网倍投软件| 做生意招财的东西| 真人百家乐海立方| 粤港澳百家乐娱乐| 大发888官方网站| 如何胜百家乐的玩法技巧和规则 | 澳门百家乐官网海星王| 姚安县| 赌百家乐官网赢的奥妙| 百家乐官网游戏开发软件| 百家乐官网真人游戏棋牌| 百家乐游戏规则介绍| 百家乐游戏单机牌| 通化大嘴棋牌官方下载| 百家乐官网有赢钱公式吗| 哪家百家乐官网优惠最好且信誉不错| 百家乐官网棋牌游戏开发| 娱乐百家乐官网下载| 沙龙百家乐赌场娱乐网规则 | 娱乐城百家乐官网的玩法技巧和规则| 百家乐折叠桌| 大发888游戏官方下载客户端| 百家乐官网风云人物| 权威百家乐官网信誉网站| 什么风水适合做生意| 威尼斯人娱乐城003| 株洲市| 百家乐官网专业赌| 真人百家乐最高赌注| 台中县| 吉利百家乐官网的玩法技巧和规则| 六十甲子24山吉凶| 太阳城代理最新网址| 大发888网页版| 澳门百家乐官网博彩能做到不输吗| 天地人百家乐现金网| 百家乐合作| 百家乐官网庄闲和概率|