波音游戏-波音娱乐城赌球打不开

Skip to main content

Around the convergence problem in mean-field control theory and the associated Hamilton-Jacobi equations

Dr Samuel Daudin
Date & Time
01 Apr 2025 (Tue) | 04:00 PM - 05:00 PM
Venue
Online via Zoom
Registration Link: https://cityu.zoom.us/meeting/register/CU2-KG4SQPCKQXdOUQYEBA

ABSTRACT

The aim of this talk is to discuss recent progress on the convergence problem in mean-field control theory and the study of associated nonlinear PDEs. We are interested in optimal control problems involving a large number of interacting particles subject to independent Brownian noises. When the number of particles tends to infinity, the problem simplifies to a McKean-Vlasov-type optimal control problem for a typical particle. I will present recent results concerning the quantitative analysis of this convergence. More specifically, I will discuss an approach based on the analysis of associated value functions. These functions are solutions of high-dimensional Hamilton-Jacobi equations, and the convergence problem translates into a stability problem for the limit equation, which is posed on the space of probability measures on Euclidean space. I will also discuss the well-posedness of this limit equation, the study of which seems to escape the usual techniques for infinite-dimensional Hamilton-Jacobi equations.

 

 

百家乐官网倍投软件| 缅甸百家乐官网赌场娱乐网规则| 百家乐官网网页游戏网址| 百家乐官网网站平台| 网上赌百家乐正规吗| 哪个百家乐官网玩法平台信誉好| 反赌百家乐的玩法技巧和规则 | 游戏房百家乐官网赌博图片| 大发888 娱乐网| 网上百家乐官网导航| 鲨鱼百家乐游戏平台| 百家乐官网开发软件| 怎么看百家乐官网走势| 百家乐规则| 风水24山详解| 百家乐官网娱乐开户| 圣安娜百家乐包杀合作| 闲和庄百家乐官网赌场娱乐网规则| 紫云| 百家乐心得分享| 中国百家乐官网软件| 大兴区| 百家乐是不是有假| 百家乐官网微笑玩法| 太阳城大酒店| 百家乐真人玩下载| 百家乐路单打法| 线上百家乐官网网站| 百家乐官网不倒翁注码| 豪门国际网上娱乐| 大发888娱乐城 手机版| 多台百家乐官网的玩法技巧和规则 | 澳门百家乐怎么玩| 百家乐对付抽水| 做生意风水摆件| 百家乐官网国际赌场娱乐网规则| 吐鲁番市| 百家乐试玩| 现金棋牌评测网| 百家乐园太阳| 678百家乐官网博彩娱乐平台|