波音游戏-波音娱乐城赌球打不开

Skip to main content

On the Borel summability of formal solutions of certain higher-order linear ordinary differential equations

Dr. Gerg? Nemes
Date & Time
21 Nov 2023 (Tue) | 10:00 AM - 11:00 AM
Venue
Y5-203, Yeung Kin Man Academic Building

ABSTRACT

We will consider a class of $n$th-order linear ordinary differential equations with a large parameter $u$. Analytic solutions of these equations can be described by (divergent) formal series in descending powers of $u$. We shall demonstrate that, given mild conditions on the potential functions of the equation, the formal solutions are Borel summable with respect to the parameter $u$ in large, unbounded domains of the independent variable. We will establish that the formal series expansions serve as asymptotic expansions, uniform with respect to the independent variable, for the Borel re-summed exact solutions. Additionally, the exact solutions can be expressed using factorial series in the parameter, and these expansions converge in half-planes, uniformly with respect to the independent variable. To illustrate our theory, we apply it to a third-order Airy-type equation.

 

白山市| 大发888战神娱乐| 百家乐官网的最佳玩| 大发888电话客服| 易盈娱乐| 赌博百家乐下载| 百家乐官网登封代理| 邯郸百家乐园怎么样| 百家乐官网的连庄连闲| 真博百家乐的玩法技巧和规则| 百家乐官网书| 大发888网页出纳柜台| 百家乐官网计划| 德州扑克单机版| 定24山尺寸深浅土色| 法库县| 大发888dafabet| 百家乐实时路单| 兖州市| 澳门百家乐官网真人娱乐城| 威尼斯人娱乐场内幕| 百家乐洗码全讯网| 波音百家乐官网现金网投注平台排名导航 | 澳门百家乐大小| 百家乐官网币| k7娱乐| 澳门百家乐看路博客| 百家乐官网任你博娱乐| 澳门网上博彩| 威尼斯人娱乐场 五星| 24山安葬吉凶择日| 百家乐官网如何打公式| 太阳城官方网站| 678百家乐官网博彩赌场娱乐网规则 | 百家乐官网筹码盒| 百家乐官网好的平台| 星空棋牌舟山| 大赢家百家乐的玩法技巧和规则 | 大发888卡| 网上百家乐怎么赌能赢钱| 百家乐游戏机压法|