波音游戏-波音娱乐城赌球打不开

Skip to main content

On the Borel summability of formal solutions of certain higher-order linear ordinary differential equations

Dr. Gerg? Nemes
Date & Time
21 Nov 2023 (Tue) | 10:00 AM - 11:00 AM
Venue
Y5-203, Yeung Kin Man Academic Building

ABSTRACT

We will consider a class of $n$th-order linear ordinary differential equations with a large parameter $u$. Analytic solutions of these equations can be described by (divergent) formal series in descending powers of $u$. We shall demonstrate that, given mild conditions on the potential functions of the equation, the formal solutions are Borel summable with respect to the parameter $u$ in large, unbounded domains of the independent variable. We will establish that the formal series expansions serve as asymptotic expansions, uniform with respect to the independent variable, for the Borel re-summed exact solutions. Additionally, the exact solutions can be expressed using factorial series in the parameter, and these expansions converge in half-planes, uniformly with respect to the independent variable. To illustrate our theory, we apply it to a third-order Airy-type equation.

 

杨筠松 24山 土| 名人百家乐的玩法技巧和规则| 极速百家乐官网真人视讯| 大发888代充值存款| 格龙24山五行| 澳门百家乐官网赢技巧| 叶氏百家乐平注技巧| 玩百家乐官网有几种公式| 速博国际网上娱乐| 至富百家乐的玩法技巧和规则| 百家乐官网玩法百科| 德州扑克单机游戏| 百家乐官网视频双扣| 银河百家乐官网的玩法技巧和规则 | 百家乐足球投注网哪个平台网址测速最好 | 现场百家乐官网百家乐官网| 百家乐官网赌场详解| 南通棋牌游戏中心| 南京百家乐赌博现场被| 百家乐官网网上真钱娱乐| 百家乐官网电脑上怎么赌| 博尔国际| 真人版百家乐试玩| 致胜百家乐官网的玩法技巧和规则 | 免费百家乐统计软件| 百家乐等投注网改单| 墨尔本百家乐官网的玩法技巧和规则 | 威尼斯人娱乐平台网址| 北京百家乐网上投注| 做生意需要找风水先生吗| 百家乐官网波音平台路单| 大发888游戏平台dafa 888 gw| 威尼斯人娱乐城澳门赌场| 德州百家乐扑克牌| 新花园百家乐的玩法技巧和规则| 圣安娜百家乐代理| 星港城百家乐娱乐城| 百家乐官网博彩优惠论坛| 威尼斯人娱乐棋牌下载| 百家乐官网平注法到6| 真人游戏网站|