波音游戏-波音娱乐城赌球打不开

Skip to main content

Capillary Gravity Water Waves Linearized at Monotone Shear Flows: Eigenvalues and Inviscid Damping

Professor Congchun Zeng
Date & Time
10 Mar 2022 (Thu) | 10:00 AM - 11:00 AM
Venue
Online Zoom

ABSTRACT

We consider the 2-dim capillary gravity water wave problem -- the free boundary problem of the Euler equation with gravity and surface tension -- of finite depth $x_2 \in (-h,0)$ linearized at a uniformly monotonic shear flow $U(x_2)$. Our main focus are eigenvalue distribution and inviscid damping. We first prove that in contrast to finite channel flow and gravity waves, the linearized capillary gravity wave has two unbounded branches of eigenvalues for high wave numbers. They may bifurcate into unstable eigenvalues through a rather degenerate bifurcation. Under certain conditions, we provide a complete picture of the eigenvalue distribution. Assuming there are no singular modes (i.e. embedded eigenvalues), we obtain the linear inviscid damping. We also identify the leading asymptotic terms of velocity and obtain stronger decay for the remainders. This is a joint work with Xiao Liu.

Registration URL:

https://cityu.zoom.us/meeting/register/tJIudu6pqTMvGtL2ZfXCi4fQi0N_a5A9SU1Y

棋牌娱乐平台| 淘金盈开户| 梁河县| 打百家乐官网的介绍| 明升m88| 易胜博百家乐官网下载| A8百家乐娱乐城| 博彩百家乐官网画谜网| 豪华百家乐桌子厂家| 大发888送58体验金| 百家乐官网游戏如何玩| 百家乐官网发牌规| 全讯网纯净版| 百家乐里靴是什么意识| 伟德亚洲| 免费百家乐官网过滤软件| 老虎百家乐的玩法技巧和规则| 六合彩| 新葡京娱乐城网站| 百家乐官网桌布| 聚宝盆百家乐游戏| 南平市| 玩网上百家乐的技巧| 大发888娱乐城游戏lm0| 全讯网| 百家乐官网注册开户送彩金| 大发888官网 888| 百家乐龙虎台布多少钱| 大发888在线娱乐城加盟合作| 网上百家乐官网是现场吗| 百家乐下路教学| 留坝县| 澳门百家乐娱乐城送彩金| 武鸣县| 百家乐网络真人斗地主| 百家乐官网怎么赢博彩正网| 同花顺百家乐官网的玩法技巧和规则 | 武宁县| 百家乐官| 百家乐官网太阳城菲律宾| 真人游戏大全|