波音游戏-波音娱乐城赌球打不开

Skip to main content

A control variate method driven by diffusion approximation

Dr. Laurent Mertz
Date & Time
24 Mar 2022 (Thu) | 10:00 AM - 11:00 AM
Venue
Online via ZOOM

We present a control variate estimator for a quantity of interest that can be expressed as the expectation of a function of a random process, that is itself the solution of a differential equation (or a variational inequality) driven by fast mean-reverting ergodic random forces. The control variate is built with the same function and with the limit diffusion process that approximates the original random process when the mean reversion time of the driving forces goes to 0. We propose a coupling of the original process and the limit diffusion process that gives a control variate estimator with small variance. We show that the correlation between the two processes indeed goes to 1 when the mean reversion time goes to 0 and we quantify the convergence rate, which allows us to characterize the variance reduction of the proposed control variate estimator. The efficiency of the method is illustrated on a few examples.

Registration

https://cityu.zoom.us/meeting/register/tJUrcumqrTgiE9SmgKZWn8pvZ0e_1qZXcYO-

[Zoom link will be provided via email after registration.]

百家乐新注册送彩金| 百家乐预测和局| 百家乐官网出庄概率| 贝博百家乐官网的玩法技巧和规则 | 阴宅24山吉凶| 体育博彩| 澳门百家乐走势图怎么看| 帝王百家乐官网全讯网2| 大发娱乐场官网| 现金百家乐破解| 星期8百家乐官网的玩法技巧和规则 | 金杯百家乐的玩法技巧和规则| 七胜百家乐官网娱乐平台| 邹城市| 全讯网qtqnet| 百家乐隔一数打法| 百家乐官网博欲乐城| 一搏娱乐| 鑫鼎百家乐的玩法技巧和规则| 免费百家乐官网追号软件| 澳门百家乐官网搏牌规则| 顶级赌场代理| 哪个百家乐网站最大| 罗浮宫百家乐官网的玩法技巧和规则| 东宁县| 八大胜娱乐城| 博彩机| 真人娱乐城源码| 威尼斯人娱乐城存款多少起存| 怎样看百家乐路纸| 百家乐实战玩法| 金牌百家乐官网的玩法技巧和规则 | 邯郸百家乐园怎么样| 真钱百家乐官网五湖四海全讯网 | 做生意容易成功的八字| 百家乐公式软件| 威尼斯人娱乐场有什么玩 | 百家乐赌博技巧大全| 百家乐平六亿财富网| 澳门百家乐网上赌| 百家乐博彩桌出租|