波音游戏-波音娱乐城赌球打不开

Skip to main content

A control variate method driven by diffusion approximation

Dr. Laurent Mertz
Date & Time
24 Mar 2022 (Thu) | 10:00 AM - 11:00 AM
Venue
Online via ZOOM

We present a control variate estimator for a quantity of interest that can be expressed as the expectation of a function of a random process, that is itself the solution of a differential equation (or a variational inequality) driven by fast mean-reverting ergodic random forces. The control variate is built with the same function and with the limit diffusion process that approximates the original random process when the mean reversion time of the driving forces goes to 0. We propose a coupling of the original process and the limit diffusion process that gives a control variate estimator with small variance. We show that the correlation between the two processes indeed goes to 1 when the mean reversion time goes to 0 and we quantify the convergence rate, which allows us to characterize the variance reduction of the proposed control variate estimator. The efficiency of the method is illustrated on a few examples.

Registration

https://cityu.zoom.us/meeting/register/tJUrcumqrTgiE9SmgKZWn8pvZ0e_1qZXcYO-

[Zoom link will be provided via email after registration.]

肯博88国际网| 百家乐官网前四手下注之观点| 老虎机在线ap888| 棋牌网站| 策勒县| 永利高百家乐官网信誉| 任我赢百家乐官网自动投注分析系统| 百家乐官网开和几率| 百家乐官网tt娱乐场开户注册 | 现金网开户| 大发888娱乐城刮刮乐| 百家乐官网庄闲收益率| 百家乐输钱的原因| 沙雅县| 百家乐棋牌游戏源码| 百家乐官网赢得秘诀| 网上赌百家乐可信吗| 大发888赌博网站| 通化大嘴棋牌官方下载| 百家乐官网注册就送| 澳门在线赌场| 百家乐官网必胜绝| 澳门百家乐官网一把决战输赢| 24山安葬择日| 皇博娱乐| 永利高百家乐进不去| 菲彩百家乐的玩法技巧和规则| 百家乐官网巴厘岛娱乐城| 三亚百家乐官网的玩法技巧和规则| 百家乐官网第三张规则| 舟山星空棋牌官网| 博狗博彩网站,| 澳门百家乐网上赌| 长泰县| 百家乐图表分析| 百家乐官网怎么赢9| 百家乐对子的玩法| 澳门百家乐官网要注意啥| 平博| 在线百家乐策略| 大港区|