波音游戏-波音娱乐城赌球打不开

Skip to main content

Convexification Numerical Method for a Coefficient Inverse Problem for the Riemannian Radiative Transfer Equation

Professor Mikhail V. Kilbanov
Date & Time
17 May 2023 (Wed) | 11:00 AM - 12:00 PM
Venue
Online via Zoom
Registration Link: https://cityu.zoom.us/meeting/register/tJIudOCoqDojEtTSnmFHPxvZSVuBmAmeOPSn

ABSTRACT

The convexification method of the presenter is the single numerical method with the global convergence property for coefficient inverse problems with non-overdetermined data. It is applicable to a broad class of Coefficient Inverse Problems, The key is the Carleman Weight Function, which is involved in the resulting cost functional. We will present this method for a Coefficient Inverse Problem for the radiative transport equation (co-authors Professor Jingzhi Li and Doctor Zhipeng Zhang). Next, we will present both Holder and Lipschitz stability estimates for a Coefficient Inverse Problem for the parabolic equation with the final overdetermination. Finally, we will present Lipschitz stability estimate for a problem of Mean Field Games. If time will allow, then we will discuss other results, which we have recently obtained for other problems of mean field games, see five most recent preprints at https://arxiv.org/search/?query=Klibanov&searchtype=all&source=header

广元市| 诸子百家乐官网的玩法技巧和规则| 至尊百家乐吕文婉| 百家乐讲谈| 百家乐官网真人游戏攻略| 百家乐投注规则| 集安市| 粤港澳百家乐官网娱乐平台| 百家乐盈利分析路单| 全讯网是什么| 百家乐官网事电影| 百家乐翻天粤qvod| 澳客网比分直播| 百家乐官网一年诈骗多少钱| 在线百家乐作| 太阳会百家乐官网现金网| 威尼斯人娱乐场地址| 百家乐官网赌博合作| 百家乐园首选| 百家乐官网长龙太阳城| 喜达国际| 百家乐官网鞋| 财众平台| 战神国际娱乐平| 澳门百家乐赌技术| 百家乐官网群博乐吧blb8v| 大发888sut8| 风水24山详解| 垫江县| 百家乐官网高额投注| 平乐县| 信誉棋牌游戏| 威尼斯人娱乐城 老品牌值得您信赖| 大世界百家乐官网娱乐网| 百家乐官网国际娱乐| 全讯网12580a.com| 百家乐巴厘岛娱乐城| 大玩家百家乐官网的玩法技巧和规则 | 扑克王百家乐的玩法技巧和规则 | 新澳博百家乐官网现金网| 大发888网址是多少|