波音游戏-波音娱乐城赌球打不开

Skip to main content

Convexification Numerical Method for a Coefficient Inverse Problem for the Riemannian Radiative Transfer Equation

Professor Mikhail V. Kilbanov
Date & Time
17 May 2023 (Wed) | 11:00 AM - 12:00 PM
Venue
Online via Zoom
Registration Link: https://cityu.zoom.us/meeting/register/tJIudOCoqDojEtTSnmFHPxvZSVuBmAmeOPSn

ABSTRACT

The convexification method of the presenter is the single numerical method with the global convergence property for coefficient inverse problems with non-overdetermined data. It is applicable to a broad class of Coefficient Inverse Problems, The key is the Carleman Weight Function, which is involved in the resulting cost functional. We will present this method for a Coefficient Inverse Problem for the radiative transport equation (co-authors Professor Jingzhi Li and Doctor Zhipeng Zhang). Next, we will present both Holder and Lipschitz stability estimates for a Coefficient Inverse Problem for the parabolic equation with the final overdetermination. Finally, we will present Lipschitz stability estimate for a problem of Mean Field Games. If time will allow, then we will discuss other results, which we have recently obtained for other problems of mean field games, see five most recent preprints at https://arxiv.org/search/?query=Klibanov&searchtype=all&source=header

百家乐官网怎么稳赚| 玩百家乐官网五湖四海娱乐城| 网上百家乐官网游戏哪家信誉度最好 | 德州扑克怎么发牌| 网上百家乐| 成安县| 百家乐官网任你博娱乐平台| 百家乐秘籍下注法| 大发888在线娱乐百家乐| 在线百家乐官网博彩| 优惠搏百家乐官网的玩法技巧和规则| 百家乐官网的玩法技巧和规则 | 澳门百家乐官网实战| 百家乐官网辅助分析软件| 百家乐官网出闲几率| 三合四局24向黄泉| 天猫百家乐娱乐城| 一搏娱乐| 太阳城娱乐开户| bet365投注网| 百家乐官网大小桌布 | 金三角娱乐城| 明陞百家乐官网娱乐城| 百家乐连锁| 自治县| 百家乐官网新庄| 百家乐官网娱乐平台官网网 | 百家乐博弈指| 三宝娱乐| 最新百家乐官网的玩法技巧和规则| 哪个百家乐玩法平台信誉好| 水果老虎机游戏下载| 网络百家乐官网最安全| 百家乐路纸表格| 蓝盾百家乐代理打| 百家乐官网开户导航| 百家乐大赌城| 百家乐官网游戏研发| 真人百家乐娱乐好玩| 现金斗地主| 游戏百家乐押发|