波音游戏-波音娱乐城赌球打不开

Skip to main content

Empirical approximation to invariant measures for McKean-Vlasov processes

Professor Dai KU
Date & Time
30 Nov 2022 (Wed) | 10:00 AM - 11:00 AM
Venue
Online Zoom

ABSTRACT

This work obtains  that, under a monotonicity condition, the invariant probability measure of a McKean-Vlasov process can be approximated by weighted empirical measures of some processes including itself. These processes are described by distribution dependent or empirical measure dependent stochastic differential equations constructed from the equation for the McKean-Vlasov process. Convergence of empirical measures is characterized by upper bound estimates for their Wasserstein distance to the invariant measure. The theoretical results are demonstrated via a mean-field Ornstein-Uhlenbeck process.

 

 

松潘县| 百家乐官网稳赢投注| 大发888体育在线| 百家乐官网赌场视屏| 明升网| 百家乐视频游365| 百家乐官网游戏怎么刷钱| 百家乐真人游戏娱乐| 丽都百家乐官网的玩法技巧和规则 | 金榜百家乐娱乐城| 百家乐官网赌博策略| bet9全讯网查询| 线上百家乐的玩法技巧和规则 | 太阳城论坛| 百家乐官网群到shozo网| 百家乐官网视频软件| 现金网制作| 网络百家乐| 赌场百家乐实战| 百博百家乐官网的玩法技巧和规则| 无锡市| bet365高尔夫娱乐场| 金都百家乐的玩法技巧和规则| 百家乐游戏奥秘| 百家乐官网游戏百家乐官网| 大发体育| 大发888怎么赢钱| 富田太阳城租房| 澳门百家乐网40125| 百家乐高手的心得| 百家乐官网翻天百度影音| 新加坡百家乐官网赌法| 百家乐官网赢家公式| 东兰县| 登封市| 百家乐官网招商用语| 永和县| bet365备用主页器| bet365备用bd| 博客国际| 必搏娱乐|