波音游戏-波音娱乐城赌球打不开

Skip to main content

Finite dimensional projections of Hamilton-Jacobi-Bellman equations in spaces of probability measures and stochastic optimal control of particle systems

Prof. Amdrzej SWIECH
Date & Time
03 Dec 2024 (Tue) | 04:00 PM - 05:00 PM
Venue
G5-214, Yeung Kin Man Academic Building

ABSTRACT

In this talk we will present recent results about optimal control of large particle systems with common noise, interacting through their empirical measures. One way of analyzing the problem is by studying what happens in the limit as the number of particles $n$ goes to infinity. We will discuss how to prove the convergence of the value functions $u_n$ corresponding to control problems of $n$ particles to the value function $V$ corresponding to an appropriately defined infinite dimensional control problem, which is the unique viscosity solution of the limiting HJB equation in the Wasserstein space. The proofs of the convergence of $u_n$ to $V$ use PDE viscosity solution techniques. We will show that under certain additional assumptions, $V$ is $C^{1,1}$ in the spatial variable. We will then explain that if $DV$ is continuous, the value function $V$ projects precisely onto the value functions $u_n$. We will discuss how the $C^{1,1}$ regularity of $V$ allows to construct optimal feedback controls and how optimal controls for the finite dimensional problems correspond to optimal controls of the infinite dimensional problem and vice versa. We will also discuss how to relax assumptions on the coefficients of the cost functional by using approximation techniques in the Wasserstein space to prove that $V$ projects precisely onto the value functions $u_n$ when $V$ may not be differentiable.

bet365充值| 百家乐大老娱乐| 盛世国际娱乐| 百家乐官网庄闲点| 百家乐怎赌才赢钱| 蓝山县| 百家乐官网平注资讯| 大发888游戏平台黄埔| 月华百家乐官网的玩法技巧和规则| 凤凰百家乐的玩法技巧和规则| 金尊国际娱乐城| 百家乐网站加盟| 湟源县| 澳门百家乐赌场娱乐网规则| 百家乐官网出千大全| 百家乐官网真钱路怎么看| 真钱百家乐开户试玩| 高州市| 大发888的促销代码| 八大胜百家乐官网娱乐城| 大发888 dafa888 octbay| 百家乐官网讲坛汉献| 大发888-dafa888uk.com| 678百家乐官网博彩娱乐平台| 镇远县| 电子百家乐博彩正网| 太阳城百家乐官网如何看路| 新全讯网网址112| 希尔顿百家乐官网娱乐城 | 战神国际娱乐| 模拟百家乐游戏软件| 新葡京百家乐官网现金网| 威尼斯人娱乐城官网地址| 新世百家乐官网的玩法技巧和规则 | 赌百家乐的心得体会| 属蛇和属马合作做生意谁吃亏| 百家乐官网庄闲预测| 利博亚洲| 百家乐7scs娱乐平台| 百家乐百胜注码法| 恒丰百家乐官网的玩法技巧和规则 |