波音游戏-波音娱乐城赌球打不开

Skip to main content

Finite element schemes and mesh smoothing for geometric evolution problems

Prof. Bjorn STINNER
Date & Time
20 Mar 2025 (Thu) | 05:00 PM - 06:00 PM
Venue
B5-311 Yeung Kin Man Academic Building

ABSTRACT

Geometric evolutions can arise as part of reduced models or fundamental building blocks in various applications with moving boundaries and time-dependent domains, such as grain boundaries in materials or deforming cell boundaries. Mesh-based methods require adaptation and smoothing, particularly in the case of strong deformations. We consider finite element schemes based on classical approaches for geometric evolution equations but augmented with the gradient of the Dirichlet energy or a variant of it, which is known to produce a tangential mesh movement beneficial for the mesh quality. We focus on the one-dimensional case, where convergence of semi-discrete schemes can be proved, and discuss two cases. For networks forming triple junctions, it is desirable to keep the impact any additional, mesh smoothing terms on the geometric evolution as small as possible, which can be achieved with a perturbation approach. Regarding the elastic flow of curves, the Dirichlet energy can serve as a replacement of the usual penalty in terms of the length functional in that, modulo rescaling, it yields the same minimizers in the long run.

 

 

香港六合彩资料| 新2开户| 鑫鼎百家乐的玩法技巧和规则| 澳门博彩有限公司| 个体老板做生意的风水| 宝马会娱乐城返水| 百家乐开户送百元| 金榜百家乐官网现金网| 百家乐代理荐| 百家乐官网金海岸软件| 百家乐新规则| 百家乐赌博机销售| 百家乐官网娱乐城博彩| 大发888 大发888游戏平台| 虎和鼠做生意和财吗| 德兴市| 赌场百家乐官网攻略| 大发888官方备用| 百家乐官网翻天下载| 百家乐官网娱乐城彩金| 路劲太阳城样板间| 百家乐博送彩金18| 百家乐官网现金游戏注册送彩金| 大发888客服电话 导航| 百家乐稳中一注法| 易球百家乐官网娱乐城| 久胜娱乐| 全讯网768866| 百家乐官网娱乐求解答| 大富豪棋牌游戏中心| 巨星百家乐的玩法技巧和规则| 24山入门| 百家乐官网赌场彩| 宣威市| bet365信誉好吗| 威尼斯人娱乐城老品牌值得信赖| 百家乐如何玩法| 谈谈百家乐官网赢钱技巧| 湛江市| 元游棋牌游戏下载| 大发888娱乐城下载英皇国际 |