波音游戏-波音娱乐城赌球打不开

Skip to main content

Lagrangian Approximations and Computations of Front Speeds in Chaotic Flows

Dr Zhiwen ZHANG
Date & Time
14 Dec 2022 (Wed) | 04:00 PM - 05:00 PM
Venue
G5-314, Yeung Kin Man Academic Building

ABSTRACT

We study the propagation speeds of reaction-diffusion-advection (RDA) fronts in time-periodic cellular and chaotic flows with Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity. We first apply the variational principle to reduce the computation of KPP front speeds to a principal eigenvalue problem of a linear advection-diffusion operator with space-time periodic coefficient on a periodic domain. To this end, we develop efficient Lagrangian particle methods to compute the principal eigenvalue through the Feynman-Kac formula. We also obtain convergence analysis for the proposed numerical method. Finally, we present numerical results to demonstrate the accuracy and efficiency of the proposed method in computing KPP front speeds in time-periodic cellular and chaotic flows, especially the time-dependent Arnold-Beltrami-Childress (ABC) flow and time-dependent Kolmogorov flow in three-dimensional space. We also report some recent progress in developing a Deep Particle method to learn invariant measures by a deep neural network minimizing Wasserstein distance on data generated from Lagrangian particle methods.

 

 

百家乐官网游戏种类| 百家乐心术| 百家乐视频多开| 永丰县| 威尼斯人娱乐平台官网| 百家乐官网计划软件| 百家乐官网娱乐城反水| 麻将二八杠技巧| 象棋赌博网| 24卦| 澳门赌场美女| 威尼斯人娱乐城不打烊| 太阳城百家乐口诀| 浩博百家乐官网娱乐城| 大发888大家赢娱乐| 百家乐投注心得| 百家乐官网的必赢术| 大发888真人存款| 百家乐谋略| 哪个百家乐玩法平台信誉好| 凯旋门百家乐官网技巧| 易发娱乐场| bet365里面的21点玩不得| 百家乐能战胜吗| 百家乐官网偷码| 百家乐官网德州扑克轮盘| 百家乐官网视频多开| 百家乐博百家乐的玩法技巧和规则| 百家乐游戏平台排名| 利都百家乐官网国际娱乐| 百家乐官网棋牌游戏皇冠网 | 柬埔寨百家乐的玩法技巧和规则| 七胜百家乐娱乐场| 澳门百家乐真人斗地主| 足球百家乐官网系统| 措美县| 乌苏市| 大发888boaicai| 威尼斯人娱乐城赌场| 太阳城论坛| 水果机游戏下载|