波音游戏-波音娱乐城赌球打不开

Skip to main content

Linear quadratic mean field games and their asymptotic solvability

Professor HUANG Minyi
Date & Time
11 Feb 2022 (Fri) | 10:00 AM - 11:00 AM
Venue
Online via ZOOM

Abstract

We consider linear quadratic (LQ) mean field games (MFGs) and study their asymptotic solvability problems. Roughly, we attempt to answer these questions: When does a sequence of games, with increasing populations, have “well behaved’’ centralized solutions? And how to characterize a necessary and sufficient condition for such nice solution behaviors. We start with a model of homogeneous agents and develop a re-scaling technique for analysis. An important issue in MFGs is the performance of the obtained decentralized strategies in an N-player model, and one usually can obtain an O(N^{-1/2})- Nash equilibrium. By our approach we can improve the estimate from O(N^{-1/2}) to the tightest bound O(1/N).

We will further generalize to a major player model and clarify the relation of different solutions existing in the literature. Finally, this asymptotic solvability formulation can be extended to mean field social optimization.

Zoom Link

https://cityu.zoom.us/j/97232939340?pwd=VU9mNVVNZUNVZDc3NllUTldPN1hNUT09

Meeting ID: 972 3293 9340

Password: 151920

百家乐10个人| 真钱百家乐五湖四海全讯网| 枝江市| 网上百家乐官网真钱游戏| 大发888 迅雷下载| 百家乐官网台布21点| 恒利百家乐的玩法技巧和规则 | 百家乐官网九| 大发888登陆| 飞天百家乐官网的玩法技巧和规则 | 百家乐官网和| 百家乐小型抽水泵| 宝马会娱乐城网址| 七胜百家乐娱乐平台| 作弊百家乐官网赌具| 澳门百家乐奥秘| 百家乐官网筹码免运费| 大发888二十一点| 网上百家乐合法吗| 钻石国际娱乐| 喜来登百家乐官网的玩法技巧和规则| 赌场风云下载| 星期八百家乐的玩法技巧和规则| 百家乐官网专业赌| 镇坪县| 百家乐园首选| 风水中的24山图| 太阳城百家乐官网网上| 水果老虎机游戏下载| 百家乐有多少种游戏| 网上百家乐官网的赌博网站| 乃东县| 大发888官方6222.c| 尊龙百家乐娱乐平台| 打百家乐的介绍| 真人百家乐官网对决| 535娱乐城下载| 威尼斯人娱乐城易博| 百家乐技巧头头娱乐| 24楼风水化解| 网络百家乐官网证据|