波音游戏-波音娱乐城赌球打不开

Skip to main content

Linear quadratic mean field games and their asymptotic solvability

Professor HUANG Minyi
Date & Time
11 Feb 2022 (Fri) | 10:00 AM - 11:00 AM
Venue
Online via ZOOM

Abstract

We consider linear quadratic (LQ) mean field games (MFGs) and study their asymptotic solvability problems. Roughly, we attempt to answer these questions: When does a sequence of games, with increasing populations, have “well behaved’’ centralized solutions? And how to characterize a necessary and sufficient condition for such nice solution behaviors. We start with a model of homogeneous agents and develop a re-scaling technique for analysis. An important issue in MFGs is the performance of the obtained decentralized strategies in an N-player model, and one usually can obtain an O(N^{-1/2})- Nash equilibrium. By our approach we can improve the estimate from O(N^{-1/2}) to the tightest bound O(1/N).

We will further generalize to a major player model and clarify the relation of different solutions existing in the literature. Finally, this asymptotic solvability formulation can be extended to mean field social optimization.

Zoom Link

https://cityu.zoom.us/j/97232939340?pwd=VU9mNVVNZUNVZDc3NllUTldPN1hNUT09

Meeting ID: 972 3293 9340

Password: 151920

百家乐庄89| 拉斯维加斯娱乐| 百家乐牌壳| 二代百家乐官网破解| 德州扑克怎么发牌| 十三张百家乐官网的玩法技巧和规则| 博彩交流| 长方形百家乐筹码| 三门县| 百家乐常用公式| 中国百家乐官网软件| 东京太阳城王子酒店| 百家乐能赢到钱吗| 百家乐官网水晶筹码价格| 皇冠球网| 威尼斯人娱乐城备用地址 | 百家乐出庄的概率| 怎么赢百家乐官网的玩法技巧和规则 | 百家乐官网免费改单| 大发888帐号注册| 百家乐赌场合作| 百家乐官网顺序| 线上娱乐场| 威尼斯人娱乐城老品牌值得信赖| 百家乐赌场占多大概率| 百家乐管理启发书| 百家乐官网设备电子路| 百家乐官网下注的规律| 大发888充值平台| 杨氏百家乐必胜公式| 六合彩摇奖结果| 罗马百家乐的玩法技巧和规则| 百家乐开户就送现金| JJ百家乐官网的玩法技巧和规则 | 百家乐官网2棋牌作弊软件| 钻石国际娱乐| 大发888网页版下载| 重庆百家乐的玩法技巧和规则| 二代百家乐破解| 百家乐投注技巧公式| 现金百家乐信誉|