波音游戏-波音娱乐城赌球打不开

Skip to main content

Modeling Dependence: From Copulas to Neural Networks

Dr. Marius Hofert
Date & Time
28 Apr 2022 (Thu) | 10:00 AM - 11:00 AM
Venue
Online via ZOOM

Copulas became popular in finance and insurance for modeling stochastic dependence. However, classical copula models often fail to provide adequate dependence models for real data. We suggest a new dependence modeling paradigm based on certain neural networks called generative moment matching networks. After a brief introduction to copula modeling, we explain why and how generative moment matching networks can replace classical copula models in a wide range of applications. We then present selected applications of this new dependence modeling approach in more detail, namely the construction of dependent quasirandom numbers (to estimate, for example, risk measures with variance reduction) and multivariate time series modeling with flexible dependence (to improve probabilistic predictions). Focus is then put on another application of generative moment matching networks in the copula modeling domain, namely model assessment and selection. The talk covers ideas from several papers of ours and aims at providing an overview over recent advances in learning dependence with neural networks.

Registration

https://cityu.zoom.us/meeting/register/tJUkfuqupjMjG91PGJNOON_Cp8DH5MzT9W3B

[Zoom link will be provided via email after registration.]

發中發百家乐的玩法技巧和规则| 百家乐官网出闲几率| 大发888提款之后多久到账| 百家乐官网高| 百家娱乐| 百家乐免费下| 月华百家乐官网的玩法技巧和规则 | 百家乐官网怎样看点| 大发888客服电话 导航| 周易24卦| 最新百家乐官网出千赌具| 秭归县| 大发888娱乐场下载客户端| 澳门百家乐怎么看小路| 红9百家乐官网的玩法技巧和规则| 延庆县| 龙虎斗网站| 威尼斯人娱乐城老品牌| 百家乐能作弊吗| 丽星百家乐官网的玩法技巧和规则| 百家乐官网代理网址| 大发888官方 df888| 太原百家乐招聘| 百家乐博之道娱乐城| 土豪百家乐官网的玩法技巧和规则| 百家乐官网稳中一注法| 百家乐官网案件讯问| 皇冠足球比分网| 大发888扑克| 千亿娱百家乐的玩法技巧和规则| 百家乐公开| 网络百家乐必胜投注方法| 噢门百家乐注码技巧| 百家乐真人游戏网| 金银岛百家乐官网的玩法技巧和规则 | 澳门百家乐送彩金| 帝王百家乐新足球平台| 百家乐信誉好的平台| 百家乐官网平客户端| 百家乐官网百家乐官网技巧| 红宝石百家乐官网的玩法技巧和规则|