波音游戏-波音娱乐城赌球打不开

Skip to main content

Modeling Dependence: From Copulas to Neural Networks

Dr. Marius Hofert
Date & Time
28 Apr 2022 (Thu) | 10:00 AM - 11:00 AM
Venue
Online via ZOOM

Copulas became popular in finance and insurance for modeling stochastic dependence. However, classical copula models often fail to provide adequate dependence models for real data. We suggest a new dependence modeling paradigm based on certain neural networks called generative moment matching networks. After a brief introduction to copula modeling, we explain why and how generative moment matching networks can replace classical copula models in a wide range of applications. We then present selected applications of this new dependence modeling approach in more detail, namely the construction of dependent quasirandom numbers (to estimate, for example, risk measures with variance reduction) and multivariate time series modeling with flexible dependence (to improve probabilistic predictions). Focus is then put on another application of generative moment matching networks in the copula modeling domain, namely model assessment and selection. The talk covers ideas from several papers of ours and aims at providing an overview over recent advances in learning dependence with neural networks.

Registration

https://cityu.zoom.us/meeting/register/tJUkfuqupjMjG91PGJNOON_Cp8DH5MzT9W3B

[Zoom link will be provided via email after registration.]

百家乐官网网站开户| 百家乐官网singapore| 24个招财方法| 澳门赌百家乐的玩法技巧和规则 | 百家乐斗视频游戏| 百家乐作弊演示| 在线百家乐官网作| 广发百家乐的玩法技巧和规则| 百乐坊娱乐城噢门| 财神百家乐官网的玩法技巧和规则| 百家乐娱乐城官方网| 连环百家乐官网怎么玩| 女优百家乐官网的玩法技巧和规则 | 天博百家乐官网娱乐城| 百家乐官网分析仪有真的吗| 太阳百家乐开户| 永利高百家乐信誉| 威尼斯人娱乐电子游戏| 状元百家乐的玩法技巧和规则| 百家乐路单破解方法| 二八杠论坛| 增城市| 网上百家乐庄家有赌场优势吗| 大发888 代充| 将军百家乐官网的玩法技巧和规则 | 百家乐长龙太阳城| 辽宁棋牌游戏大厅| 电脑赌百家乐官网可靠吗| 棋牌评测网| 百家乐必胜方程式| 百家乐官网怎么样投注| 大发888出纳柜台| 澳门百家乐官网在线| 百家乐博送彩金18| 网上棋牌游戏| 百家乐官网赌博破解方法| 大发888怎么玩能赢| 真人百家乐官网代理合作| 娱乐城注册送18体验金| 涂山百家乐官网的玩法技巧和规则| 大发888com|