波音游戏-波音娱乐城赌球打不开

Skip to main content

No Exceptional Words for Site Percolation on Z^3

Dr Pierre NOLIN
Date & Time
29 Jan 2019 (Tue) | 04:30 PM - 05:30 PM
Venue
2306, Li Dak Sum Yip Yio Chin Academic Building (LI)
City University of Hong Kong

Abstract :

Bernoulli percolation is a model for random media introduced by Broadbent and Hammersley in 1957. In this process, each vertex of a given graph is occupied or vacant, with respective probabilities p and 1-p, independently of the other vertices (for some parameter p). It is arguably one of the simplest models from statistical mechanics displaying a phase transition as the parameter p varies, i.e. a drastic change of behavior at some critical value p_c, and it has been widely studied. Benjamini and Kesten introduced in 1995 the problem of embedding infinite binary sequences into a Bernoulli percolation configuration, known as percolation of words. We give a positive answer to their Open Problem 2: for percolation on Z^3 with parameter p=1/2, we prove that almost surely, all words can be embedded. We also discuss various extensions of this result. This talk is based on a joint work with Augusto Teixeira (IMPA) and Vincent Tassion (ETH Zürich).

福建省| 鑫鼎百家乐的玩法技巧和规则| 娱乐城注册送18| 百家乐保单详图| 长春百家乐官网的玩法技巧和规则 | 百家乐官网合理的投注法| e世博官方网站| 黄金岛棋牌游戏下载| 百家乐桌布尼布材质| 闲和庄百家乐娱乐网| 巴厘岛百家乐的玩法技巧和规则| 威尼斯人娱乐城会员| 菏泽市| 百家乐官网娱乐城有几家| 百家乐官网是真的吗| 百家乐官网庄闲局部失衡| 昭通市| 网络百家乐官网路单图| 百家乐二人视频麻将| 缅甸百家乐龙虎斗| 大世界百家乐的玩法技巧和规则| KTV百家乐的玩法技巧和规则| 湄潭太阳城房价| 皇冠网百家乐官网平台| 百家乐官网园云鼎赌场娱乐网规则 | 百家乐官网最佳投注办法| 百家乐官网走势图解| 属蛇和属猪做生意吗| 至尊百家乐20130201| 旧金山百家乐官网的玩法技巧和规则 | 战神国际娱乐城| 合肥百家乐官网赌博游戏机| 百家乐官网专业赌博| 百家乐最新投注方法| 新乐园百家乐娱乐城| 威尼斯人娱乐城导航网| 健康| 百家乐官网如何计算| 加多宝百家乐官网的玩法技巧和规则 | 宜章县| 玩百家乐官网输了|