波音游戏-波音娱乐城赌球打不开

Skip to main content

On nonconforming approximations for a class of semilinear problems

Mr. Benedikt Gr??le
Date & Time
01 Mar 2024 (Fri) | 04:00 PM - 05:00 PM
Venue
Y5-204, Yeung Kin Man Academic Building

ABSTRACT

The a priori and a posteriori error analysis in [1, 3] establishes a unified analysis for different finite element approximations to regular roots of nonlinear partial differential equations with a quadratic nonlinearity. A smoother in the source and nonlinearity enables quasi-best approximations in [3] under a set of hypotheses that guarantees the existence and local uniqueness of a discrete solutions by the Newton-Kantorovich theorem. Related assumptions on some computed approximation close to a regular root allow the reliable and efficient a posteriori error analysis [1] for a general class of rough sources introduced in [2]. Applications include nonconforming discretisations for the von Kármán plate and the stream-vorticity formulation of the stationary Navier-Stokes equations in 2D by the Morley, two versions of discontinuous Galerkin, C0 interior penalty, and WOPSIP methods. The talk presents joint work within the working groups of Prof. C. Carstensen and Prof. N. Nataraj.

威尼斯人娱乐场钓鱼网站| 伯爵百家乐娱乐平台| 迷你百家乐官网的玩法技巧和规则 | 尊龙百家乐官网娱乐| 易盈娱乐| 百家乐服务区| 百家乐官网输一押二| 太谷县| 大发888大发888娱乐城| 百家乐历史路单| 环球百家乐官网现金网| 伯爵百家乐赌场娱乐网规则| 新百家乐官网庄闲路单图记录| 威尼斯人娱乐场 五星| 百家乐百家乐游戏| 加州百家乐官网娱乐城| 全讯网高手论坛| 百家乐官网全自动分析软件| 百家乐评测| 电玩百家乐官网游戏机路单| 泰来县| 狮威百家乐娱乐场| 皇冠网百家乐赢钱| 15人百家乐官网桌| 游戏机百家乐官网的技巧| 百胜百家乐官网软件| 玉龙| 百家乐官网游戏必赢法| 奥斯卡娱乐城| 利澳娱乐城官方网| 大发888现金存款| 大发888亚洲游戏下载| 博士百家乐现金网| 易胜博百家乐输| 立博百家乐游戏| 玩百家乐官网怎么能赢呢| 连环百家乐官网怎么玩| 宝坻区| 兰溪市| 涿州市| 百家乐官网为什么庄5|