波音游戏-波音娱乐城赌球打不开

Skip to main content

Second-order flow approach for solving variational problems

Prof. Ziqing XIE
Date & Time
07 Feb 2025 (Fri) | 10:30 AM - 11:30 AM
Venue
B5-310, Yeung Kin Man Academic Building

ABSTRACT

In this talk, we introduce a so-called second-order flow approach, a novel computational framework based on dissipative second-order hyperbolic partial differential equations (PDEs) designed to tackle variational problems. Our focus lies on scenarios where energy functionals are nonconvex and may entail nonconvex constraints. This motivation stems from practical applications such as finding stationary points of Ginzburg-Landau energy in phase-field modeling, Landau-de Gennes energy of the Q-tensor model for liquid crystals, as well as simulating ground states for Bose-Einstein condensates. We explore both the analytical and numerical aspects of this novel framework, showing how discretizing the PDEs leads to original numerical methodologies for addressing variational problems. Analytically, for a class of unconstrained nonconvex variational problems, we demonstrate the convergence of second-order flows to stationary points and establish the well-posedness of the second-order flow equations. Our numerical findings underscore the superiority of second-order flow methods over gradient flow methods across all discussed application scenarios.

 

百家乐扑克牌耙| 亿酷棋牌世界| 百家乐官网赢利策略| 百家乐网站| k7娱乐城开户| 金花百家乐官网娱乐城| 24山 分金 水口 论 吉凶| 威尼斯人娱乐公司| 百家乐官网高人破解| 墓地附近做生意风水| 大发888吧| 百家乐官网顶| 百家乐说明| 新巴尔虎右旗| 百家乐的必赢方法| 顶尖娱乐城开户| 百家乐官网都是什么人玩的| 网络棋牌游戏平台| 坐乾向巽24山向择吉| 百家乐官网视频下载| 利来百家乐娱乐| 红宝石百家乐官网娱乐城| 北京太阳城医院| 香港百家乐官网马书| 百家乐椅子| 太阳城百家乐官网杀祖玛| 真人百家乐试玩游戏| 网上澳门| 新锦江百家乐娱乐场开户注册| 百家乐官网投注限额| 波音网址| 百家乐游戏机破解方法| 百家乐官网家居 | 德州扑克辅助软件| 全讯网365| 杨公风水24山分金| 澳门百家乐官网看路博客| 威尼斯人娱乐场钓鱼网站 | 现场百家乐官网机| 网络龙虎| 浑源县|