波音游戏-波音娱乐城赌球打不开

Skip to main content

Second-order flow approach for solving variational problems

Prof. Ziqing XIE
Date & Time
07 Feb 2025 (Fri) | 10:30 AM - 11:30 AM
Venue
B5-310, Yeung Kin Man Academic Building

ABSTRACT

In this talk, we introduce a so-called second-order flow approach, a novel computational framework based on dissipative second-order hyperbolic partial differential equations (PDEs) designed to tackle variational problems. Our focus lies on scenarios where energy functionals are nonconvex and may entail nonconvex constraints. This motivation stems from practical applications such as finding stationary points of Ginzburg-Landau energy in phase-field modeling, Landau-de Gennes energy of the Q-tensor model for liquid crystals, as well as simulating ground states for Bose-Einstein condensates. We explore both the analytical and numerical aspects of this novel framework, showing how discretizing the PDEs leads to original numerical methodologies for addressing variational problems. Analytically, for a class of unconstrained nonconvex variational problems, we demonstrate the convergence of second-order flows to stationary points and establish the well-posedness of the second-order flow equations. Our numerical findings underscore the superiority of second-order flow methods over gradient flow methods across all discussed application scenarios.

 

马牌百家乐娱乐城| 百家乐官网哪条下路好| 沈阳盛京棋牌下载| 百家乐官网长龙技巧| 百家乐套装| 正规百家乐平注法口诀| 百家乐官网的最佳玩| 百家乐职业打| 百家乐官网ipone| 百家乐官网赌缆十三式| 信誉百家乐博彩网| 百家乐官网游戏类型| 温州百家乐的玩法技巧和规则| 电脑打百家乐官网怎么赢| 百利宫娱乐城信誉| 百家乐中B是什么| 百家乐官网有哪些注| 威尼斯人娱乐城 老品牌值得您信赖| 百家乐官网策略| 美女百家乐的玩法技巧和规则| 富民县| 百家乐赌场破解| 百家乐官网赌博代理| 葡京娱乐场官网| 网络百家乐的信誉| 百家乐官网路珠多少钱| 麻将二八杠游戏| 百家乐交流群号| 临汾市| 百家乐的桌布| 网上百家乐官网娱乐平台| 鼎龙国际娱乐城| 威尼斯人娱乐城好不好| 网上百家乐投注法| 百家乐官网游戏世界视频| 百佬汇百家乐的玩法技巧和规则| 百家乐官网游戏作弊| 澳门网上| 百家乐大眼仔小路| 百家乐官网论坛博彩拉| 万豪网上娱乐|