波音游戏-波音娱乐城赌球打不开

Skip to main content

Sharp local well-posedness for quasilinear wave equations with spherical symmetry

Prof. Chengbo Wang
Date & Time
30 Jun 2023 (Fri) | 10:00 AM - 11:00 AM
Venue
Online via Zoom
https://cityu.zoom.us/meeting/register/tJcsc-yhqTsqGNBPSWEJdr1uOEDUHERj1N9P

ABSTRACT

In this talk, I will present a sharp local well-posedness result for spherically symmetric solutions to quasilinear wave equations with rough initial data, when the spatial dimension is three or higher. Our approach is based on Morawetz type local energy estimates with fractional regularity for linear wave equations with variable C^1 coefficients, which rely on multiplier method, weighted Littlewood-Paley theory, duality and interpolation. Together with weighted linear and nonlinear estimates (including weighted trace estimates, Hardy's inequality, fractional chain rule and fractional Leibniz rule) which are adapted for the problem, the well-posed result is proved by iteration. In addition, our argument yields almost global existence for n=3 and global existence for dimension 4 and higher, when the initial data are small, spherically symmetric with almost critical Sobolev regularity.

澳门百家乐官网游戏玩法| 澳门百家乐官网娱乐城怎么样| 鼎盛娱乐城开户| 百家乐官网如何盈利| 足球现金网开户| 澳门百家乐博彩能做到不输吗| 武安市| 南宁百家乐官网的玩法技巧和规则| 大发888推广合作| 百家乐官网技巧开户| 535棋牌游戏| 百家乐游戏机路法| 百家乐官网赌场筹码| 请问下百家乐去哪个娱乐城玩最好呢| 滨海湾百家乐官网娱乐城| 大发888娱乐城 手机版| 赌百家乐官网的玩法技巧和规则 | 榆次百家乐官网的玩法技巧和规则 | 网上百家乐官网赢钱公式| 百家乐策略网络游戏信誉怎么样| 百家乐官网桌码合| 星河娱乐城| 瑞士百家乐的玩法技巧和规则| 百家乐官网群| 百家乐官网网络游戏平台| 奔驰娱乐城开户| 回力百家乐的玩法技巧和规则| 百家乐智能分析软| 百家乐官网排名| 百家乐官网赢钱lv| 皇冠网现金网| 大发888娱乐城下栽| 宝博百家乐娱乐城| 百家乐官网百家乐官网游戏| 大发888官网e世博官方网站| 百家乐赌场赌场平台| 属鸡与属羊做生意| 百家乐官网高科技出千工具| 乐平市| 豪博| 沙龙国际|