波音游戏-波音娱乐城赌球打不开

Skip to main content

Stochastic Differential Games with Random Coefficients and Stochastic Hamilton-Jacobi-Bellman-Isaacs Equations

Dr Jing Zhang
Date & Time
16 Aug 2023 (Wed) | 10:30 AM - 11:30 AM
Venue
Online via Zoom
https://nus-sg.zoom.us/j/87645650702?pwd=OWUyODF5alBFSExPL0pzcEJIblh0Zz09

ABSTRACT

In this paper, we study a class of zero-sum two-player stochastic differential games with the controlled stochastic differential equations and the payoff/cost functionals of recursive type. As opposed to the pioneering work by Fleming and Souganidis (Indianna Univ. Math.J., 38(1989), pp.~293-314) and the seminal work by Buckdahn and Li (SIAM J. Control Optim., 417 (2008), pp.~444-475), the involved coefficients may be random, going beyond the Markovian framework and leading to the random upper and lower value functions. We first prove the dynamic programming principle for the game, and then under the standard Lipschitz continuity assumptions on the coefficients, the upper and lower value functions are shown to be the viscosity solutions of the upper and the lower fully nonlinear stochastic Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations, respectively. A stability property of viscosity solutions is also proved. Under certina additional regularity assumptions on the diffusion coefficient, the uniqueness of the viscosity solution is addressed as well.

百家乐官网投注网站| 百家乐好不好| 百家乐官网制胜方法| 真人888| 足球百家乐官网系统| 网上百家乐官网正规代理| 二爷百家乐官网的玩法技巧和规则 | 百家乐官网娱乐网77scs| 易胜博百家乐输| 百家乐封号| 丽星百家乐官网的玩法技巧和规则| 马牌百家乐娱乐城| 择日自学24| 金牌百家乐的玩法技巧和规则 | 百家乐机器手怎么做弊| 星河百家乐官网现金网| 大发888官网www.dafa888.com| 百家乐包台| 百家乐连闲几率| 个人百家乐官网策略| 聚宝盆百家乐官网游戏| 百乐彩| 广州太阳城大酒店| 曼哈顿百家乐的玩法技巧和规则| 太阳百家乐官网网址| 百家乐官网服务区| 哪个百家乐官网投注比较好 | 泽州县| 网上真钱轮盘| 大发888游戏平台 新葡京| 七胜百家乐娱乐平台| 百家乐网址讯博网| 伯爵百家乐官网的玩法技巧和规则| 百家乐官网平台有什么优势| 十堰市| 亳州市| 中牟县| 澳门足球| 竹山县| 百家乐官网开户首选| 百家乐最好的投注法|