波音游戏-波音娱乐城赌球打不开

Skip to main content

Uhlenbeck Compactness and Optimal Regularity in Lorentzian Geometry

Dr. Moritz Reintjes
Date & Time
16 Dec 2020 (Wed) | 03:00 PM - 04:00 PM
Venue
Online via ZOOM

Abstract

We resolve two problems of Mathematical Physics. First, we prove that any ?? ∞ connection ?? on the tangent bundle of an arbitrary differentiable manifold with ?? ∞ Riemann curvature can be smoothed by coordinate transformation to optimal regularity ?? ∈ ??1,?? , any ?? < ∞, (one derivative smoother than the curvature). This implies in particular that Lorentzian metrics ofshock wave solutions of the Einstein-Euler equations are non-singular---geodesic curves, locally inertial coordinates and the resulting Newtonian limit all exist in a classical sense. This result is based on a system of nonlinear elliptic partial differential equations, the Regularity Transformation equations, and an existence theory for them at the level of ?? ∞ connections. Secondly, we prove that this existence theory suffices to extend Uhlenbeck compactness from the case of connections on vector bundles over Riemannian manifolds, to the case of connections on tangent bundles of arbitrary manifolds, including Lorentzian manifolds of General Relativity.

Registration URL

https://cityu.zoom.us/meeting/register/tJwocuCtpz0pHtRREgAvv3c__6_3zB5CVaIw

[Zoom meeting link will be provided via email after registration.]

百家乐倍投工具| 百家乐庄闲偏差有多大| 百家乐官网室系统软件| 百家乐稳赢投注| 林州市| 百家乐投注开户| 百家乐官网赌牌技巧| 昆明百家乐官网装修装潢有限公司| 百家乐官网首页红利| 博彩e族论坛| 百家乐娱乐城反水| 百家乐官网微心打法| 总统百家乐的玩法技巧和规则| 百家乐官网赌场程序| 怎样玩百家乐的玩法技巧和规则 | 百家乐那个平台信誉高| 马鞍山市| 百家乐刷钱| 百家乐官网游戏介绍与分析| 永利娱乐城提款| 巨星百家乐的玩法技巧和规则| 精通百家乐官网的玩法技巧和规则| 大发888博狗博彩| 百家乐概率计算过程| 百家乐官网强对弱的对打法| 融水| 太阳城代理最新网址| 菲律宾百家乐官网娱乐网| 正品百家乐游戏| 百家乐官网所有技巧| 深圳太阳城酒店| 百家乐最常见的路子| 百家乐官网长龙怎么预判| 利来国际网上娱乐| 百家乐推锅| 公海百家乐官网的玩法技巧和规则 | 百家乐官网黏土筹码| 十六浦娱乐城官网| 犹太人百家乐的玩法技巧和规则| 百家乐扑克牌耙| 百家乐官网怎样玩才会赢钱|