波音游戏-波音娱乐城赌球打不开

Skip to main content

Uhlenbeck Compactness and Optimal Regularity in Lorentzian Geometry

Dr. Moritz Reintjes
Date & Time
16 Dec 2020 (Wed) | 03:00 PM - 04:00 PM
Venue
Online via ZOOM

Abstract

We resolve two problems of Mathematical Physics. First, we prove that any ?? ∞ connection ?? on the tangent bundle of an arbitrary differentiable manifold with ?? ∞ Riemann curvature can be smoothed by coordinate transformation to optimal regularity ?? ∈ ??1,?? , any ?? < ∞, (one derivative smoother than the curvature). This implies in particular that Lorentzian metrics ofshock wave solutions of the Einstein-Euler equations are non-singular---geodesic curves, locally inertial coordinates and the resulting Newtonian limit all exist in a classical sense. This result is based on a system of nonlinear elliptic partial differential equations, the Regularity Transformation equations, and an existence theory for them at the level of ?? ∞ connections. Secondly, we prove that this existence theory suffices to extend Uhlenbeck compactness from the case of connections on vector bundles over Riemannian manifolds, to the case of connections on tangent bundles of arbitrary manifolds, including Lorentzian manifolds of General Relativity.

Registration URL

https://cityu.zoom.us/meeting/register/tJwocuCtpz0pHtRREgAvv3c__6_3zB5CVaIw

[Zoom meeting link will be provided via email after registration.]

澳门博彩公司| 原平市| 威尼斯人娱乐成| 新云顶国际| 百家乐官网任你博娱乐| 百家乐庄6点| 网上真钱老虎机| 现金百家乐官网代理| 永利高百家乐怎样开户| 大发888是什么游戏| kk娱乐城送彩金| 百家乐官网赌机凤凰软件| 百家乐代打是真的吗| 百家乐官网是否有规律| 金宝博网址| 玩百家乐官网出千方法| 百家乐棋牌技巧| 棋牌乐| 百家乐官网等投注网改单| 最好的百家乐游戏平台1| 乐至县| 百家乐官网使用技法| 沙龙百家乐官网娱乐场| 百家乐正品地址| 百家乐官网盛大娱乐城城| 百家乐折桌子| 巴林左旗| 玩百家乐如何硬| 棋牌源码论坛| 乌兰察布市| 做生意门口朝向| 金沙娱乐城| 百家乐官网秘诀| 366百家乐娱乐城| 仪陇县| 峨眉山市| 做生意办公桌摆放风水| 大发888线上娱乐城加盟合作| 评测百家乐博彩网站| 博赢国际娱乐城| 百家乐赌博代理荐|