波音游戏-波音娱乐城赌球打不开

One drop of water could power 100 lightbulbs using revolutionary device

5 Feb 2020

Image: ? digieye/Stock.adobe.com

Researchers have found a way to create electricity using as little as a droplet of water, paving the way for rainwater generators.

A new device, developed by a team led by scientists from the City University of Hong Kong, could provide another renewable energy source for countries that experience regular rain.

In a paper published to Nature, the team revealed a water droplet-based electricity generator (DEG) built with a structure similar to a field-effect transistor (FET). This allows for high energy conversion and instantaneous power density thousands of times greater than other devices.

The research estimates that a drop of 100 microlitres released from a height of 15cm can generate more than 100V. This single drop would be enough to power 100 lightbulbs.

The instantaneous power density from a drop is not the result of additional energy, but simply the kinetic energy of the moving water. Also, both rainwater and seawater can be used to generate electricity in this way.

“The kinetic energy entailed in falling water is due to gravity and can be regarded as free and renewable,” said Wang Zuankai, who led the research.

A diagram showing how the technology generates electricity.

From left: The schematic diagram of the droplet-based electricity generator (DEG). The right frame is four parallel DEG devices fabricated on a glass substrate. Image: City University of Hong Kong/Nature

Raindrops instead of oil and nuclear energy

In the area of hydropower, previous work in low-frequency kinetic energy – such as in rain, waves and tides – has resulted in a fairly inefficient source of renewable electricity.

The team said that two crucial factors allowed this breakthrough. The first was when continuous droplets fall on polytetrafluoroethylene (PTFE) – an electromagnetic material with a quasi-permanent electric charge. Over time, it will accumulate and gradually reach charge saturation. This new discovery helped overcome the bottleneck of low charge density encountered in previous devices.

The second factor is that the device consists of an aluminium electrode and an indium tin oxide (ITO) electrode with a film of PTFE deposited on it. When a droplet falls and spreads over its surface, it naturally bridges the aluminium electrode and the PTFE/ITO surface, creating a closed-loop electric circuit.

“Generating power from raindrops instead of oil and nuclear energy can facilitate the sustainable development of the world,” Wang said.

In the long run, he added, the design could be applied and installed on different surfaces where water comes in contact with a solid. This could range from the hull surface of ferries or coastlines, to the surface of umbrellas and even inside water bottles.

Colm Gorey was a senior journalist with Silicon Republic

editorial@siliconrepublic.com


百家乐玩法的技巧| MG百家乐大转轮| 百家乐最新首存优惠| 江门市| 赌博百家乐官网赢钱方法| 破战百家乐的玩法技巧和规则| 百家乐官网神仙道官网| 老k百家乐的玩法技巧和规则| 百家乐官网送1000 | 百家乐制胜方法| 博九最新网址| 百家乐一般多大码| 网上真钱娱乐平台| 视频百家乐是真是假| 百家乐官网游戏机技| 蓬安县| 大发888棋牌乐城下载| 百家乐游戏机说明书| 百家乐官网平六亿财富| 太阳城娱乐| 视频百家乐官网试玩| 大发888平台啥时候最赢钱| 百家乐游戏规则玩法| 王子百家乐官网的玩法技巧和规则 | 太阳会百家乐官网现金网| 大发888怎么玩不了| 上海百家乐的玩法技巧和规则 | 百家乐官网象棋玩法| 皇冠国际足球| 水果机下载| 百家乐隔一数打投注法| 大赢家百家乐官网娱乐| 百家乐官网游戏机图片| 辽宁省| 怎么看百家乐路单| 做生意佩戴什么纳财| 福州市| 速博娱乐| 百家乐网上真钱娱乐场开户注册 | 百家乐官网蔬菜配送公司| 百家乐官网台布兄弟 |