波音游戏-波音娱乐城赌球打不开

New! Sign up for our free email newsletter.
Science News
from research organizations

Breakthrough: Highly efficient electrocatalyst for clean energy

Date:
September 14, 2023
Source:
City University of Hong Kong
Summary:
A research team has achieved a groundbreaking advancement in nanomaterials by successfully developing a highly efficient electrocatalyst which can enhance the generation of hydrogen significantly through electrochemical water splitting. This major breakthrough has great application potential for the clean energy industry.
Share:
FULL STORY

An international team led by City University of Hong Kong (CityU) has announced a groundbreaking step forward that has added significantly to the technical know-how required to clean up the planet.

The discovery, published in the journal Nature, centres on developing a highly efficient electrocatalyst that can enhance hydrogen generation through electrocatalytic water splitting.

Titled "Phase-dependent growth of Pt on MoS2 for highly efficient H2 evolution," the paper was published on 13 September in London.

Cleaner energy sources are desperately needed, but the challenges in weaning the world off fossil fuels and onto more sustainable energies are enormous.

"Hydrogen generated by electrocatalytic water splitting is regarded as one of the most promising clean energies for replacing fossil fuels in the near future, reducing environmental pollution and the greenhouse effect," said Professor Zhang Hua, Herman Hu Chair Professor of Nanomaterials at CityU, who is spearheading the research.

Professor Zhang's collaborators include Professor Anthony R. J. Kucernak from the Department of Chemistry at Imperial College London and researchers from universities and research institutes in Hong Kong, mainland China, Singapore and the UK.

The critical development in the CityU-led research is establishing novel catalysts by using the transition-metal dichalcogenide (TMD) nanosheets as supports, enabling superior efficiency and high stability during the electrocatalytic hydrogen evolution reaction (HER), a vital step in electrocatalytic water-splitting, also known as the water electrolysis technique, for hydrogen production.

The team has been exploring how to enhance the performance of the HER process by engineering the crystal phase of nanomaterials for several years. Although TMD nanosheets with unconventional crystal phases possess great potential to be used as catalyst supports, fabricating such sheets pure enough for HER is far from straightforward.

But in this research, Professor Zhang's team has developed a new method to prepare unconventional-phase TMD nanosheets with high phase-purity and quality. Furthermore, they have investigated the crystal phase-dependent growth of noble metals on the TMD nanosheet supports.

Technically speaking, they found that the 2H-phase template facilitates the epitaxial growth of Pt nanoparticles, whereas the 1T′-phase template supports single-atomically dispersed Pt atoms (s-Pt). The synthesised s-Pt/1T′-MoS2 serves as a highly efficient catalyst for HER and can work for 500 hours in the water electrolyser, demonstrating that 1T′-TMD nanosheets could be effective supports for catalysts.

"We will develop more efficient catalysts based on this finding and explore their applications in various catalytic reactions," said Dr Shi Zhenyu, a postdoctoral researcher in CityU's Department of Chemistry and the first author of the paper.

These findings expand the scope of phase engineering in nanomaterials, paving the way for the design and synthesis of highly efficient catalysts, contributing to cleaner energies and more sustainable development.


Story Source:

Materials provided by City University of Hong Kong. Note: Content may be edited for style and length.


Journal Reference:

  1. Zhenyu Shi, Xiao Zhang, Xiaoqian Lin, Guigao Liu, Chongyi Ling, Shibo Xi, Bo Chen, Yiyao Ge, Chaoliang Tan, Zhuangchai Lai, Zhiqi Huang, Xinyang Ruan, Li Zhai, Lujiang Li, Zijian Li, Xixi Wang, Gwang-Hyeon Nam, Jiawei Liu, Qiyuan He, Zhiqiang Guan, Jinlan Wang, Chun-Sing Lee, Anthony R. J. Kucernak, Hua Zhang. Phase-dependent growth of Pt on MoS2 for highly efficient H2 evolution. Nature, 2023; 621 (7978): 300 DOI: 10.1038/s41586-023-06339-3

Cite This Page:

City University of Hong Kong. "Breakthrough: Highly efficient electrocatalyst for clean energy." ScienceDaily. ScienceDaily, 14 September 2023. <www.sciencedaily.com/releases/2023/09/230914001756.htm>.
City University of Hong Kong. (2023, September 14). Breakthrough: Highly efficient electrocatalyst for clean energy. ScienceDaily. Retrieved June 2, 2025 from www.sciencedaily.com/releases/2023/09/230914001756.htm
City University of Hong Kong. "Breakthrough: Highly efficient electrocatalyst for clean energy." ScienceDaily. www.sciencedaily.com/releases/2023/09/230914001756.htm (accessed June 2, 2025).

Explore More

from ScienceDaily

RELATED STORIES


百家乐国际娱乐平台| 百家乐桌颜色可定制| 战神百家乐娱乐| 百家乐平台送彩金| 百家乐官网转盘技巧| 永利高投注网| 全景网百家乐官网的玩法技巧和规则| 金沙城百家乐大赛规则| 百家乐官网磁力录| 太阳城百家乐出千技术| 百家乐经验在哪找| 银河娱乐场| 百家乐官网五湖四海娱乐场| 百家乐平注法到6568| 缅甸百家乐官网博彩| 百家乐桌布9人| 百家乐网上赌博| bet365合作计划| 送现金百家乐官网的玩法技巧和规则 | 百家乐官网的珠盘| 大发88817| 百家乐官网公式软件| 百家乐天下| 百家乐官网白茫茫| 大发888娱乐场168| 宁城县| 百家乐二代皇冠博彩| 真人百家乐官网是骗局| 威尼斯人娱乐公司| 真人百家乐官网视频| 八大胜娱乐城| 网上百家乐假| 百家乐官网网站开户| 二爷百家乐的玩法技巧和规则| 玩百家乐官网秘诀| 德州扑克官方下载| 百家乐2号死机| 百家乐庄闲当哪个好| 百家乐官网云顶| 老虎机下载| 澳门百家乐有没有假|