波音游戏-波音娱乐城赌球打不开


Cheap and efficient catalyst could boost renewable energy storage

Cheap and efficient catalyst could boost renewable energy storage
Preparation and characterization of exfoliated 1T′-MoS2 NSs. a, Schematic illustration of preparing 1T′-MoS2 NSs from KxMoS2 crystals through the electrochemical intercalation (step 1) and subsequent exfoliation (step 2). b,c, TEM (b) and atomic force microscope (AFM) (c) images of the exfoliated 1T′-MoS2 NSs. c, The height profiles and measured thicknesses of 1T′-MoS2 NSs (insets). d, Thickness distribution histogram of 1T′-MoS2 NSs measured by AFM (1.4?nm is the mean thickness, and 0.4?nm is the s.d.). e, HAADF-STEM image of a typical 1T′-MoS2 NS. The corresponding fast Fourier transform pattern is shown in the inset. f, XPS spectra of exfoliated 1T′-MoS2 NSs and 2H-MoS2 NSs. The empty dots and the solid curves represent the experimental XPS data and the corresponding deconvoluted spectra, respectively. g, Raman spectra of exfoliated 1T′-MoS2 NSs and 2H-MoS2 NSs. a.u., arbitrary unit. Credit: Nature (2023). DOI: 10.1038/s41586-023-06339-3

Storing renewable energy as hydrogen could soon become much easier thanks to a new catalyst based on single atoms of platinum. The new catalyst, designed by researchers at City University Hong Kong (CityU) and tested by colleagues at Imperial College London, could be cheaply scaled up for mass use.

Co-author Professor Anthony Kucernak, from the Department of Chemistry at Imperial, said, "The UK Hydrogen Strategy sets out an ambition to reach 10GW of low-carbon production capacity by 2030. To facilitate that goal, we need to ramp up the production of cheap, easy-to-produce and efficient hydrogen storage. The new electrocatalyst could be a major contributor to this, ultimately helping the U.K. meet its net-zero goals by 2050."

Renewable energy generation, from sources like wind and solar, is rapidly growing. However, some of the energy generated needs to be stored for when are unfavorable for wind and sun. One promising way to do this is to save the energy in the form of hydrogen, which can be stored and transported for later use.

To do this, the is used to split into hydrogen and oxygen, with the energy stored in the . This uses to spur a reaction that splits the water molecule, which is called electrolysis. However, although platinum is an excellent catalyst for this reaction, it is expensive and rare, so minimizing its use is important to reduce system cost and limit platinum extraction.

Now, in a study published Sept. 13 in Nature, the team have designed and tested a catalyst that uses as little platinum as possible to produce an efficient but cost-effective platform for water splitting.

Lead researcher Professor Zhang Hua, from CityU, said, "Hydrogen generated by electrocatalytic water splitting is regarded as one of the most promising clean energies for replacing in the near future, reducing environmental pollution and the greenhouse effect."

Testing tools

The team's innovation involves dispersing single atoms of platinum in a sheet of molybdenum sulfide (MoS2). This uses much less platinum than existing catalysts and even boosts the performance, as the platinum interacts with the molybdenum to improve the efficiency of the reaction.

Growing the thin catalysts on nanosheet supports allowed the CityU team to create high-purity materials. These were then characterized in Professor Kucernak's lab at Imperial, which has developed methods and models for determining how the operates.

The Imperial team has the tools for stringent testing because they have developed several technologies that are designed to make use of such catalysts. Professor Kucernak and colleagues have set up several companies based on these technologies, including RFC Power that specializes in hydrogen flow batteries, which could be improved by using the new single-atom platinum catalysts.

Using hydrogen

Once renewable energy is stored as hydrogen, to use it as electricity again it needs to be converted using fuel cells, which produce water vapor as a by-product of an oxygen-splitting reaction. Recently, Professor Kucernak and colleagues revealed a single-atom catalyst for this reaction that is based on iron, instead of , which will also reduce the cost of this technology.

Bramble Energy, another spinout led by Professor Kucernak, will test this technology in their fuel cells. Both single-atoms catalysts—one helping turn renewable energy into hydrogen storage, and the other helping that energy be released as electricity later—therefore have the power to bring a hydrogen economy closer to reality.

More information: Zhenyu Shi et al, Phase-dependent growth of Pt on MoS2 for highly efficient H2 evolution, Nature (2023). DOI: 10.1038/s41586-023-06339-3

Journal information: Nature
Citation: Cheap and efficient catalyst could boost renewable energy storage (2023, September 20) retrieved 17 June 2025 from https://techxplore.com/news/2023-09-cheap-efficient-catalyst-boost-renewable.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Scientists achieve breakthrough in highly efficient electrocatalyst for clean energy

32 shares

Feedback to editors

百家乐猜大小规则| 百家乐百乐发破解版| 百家乐官网网上投注作弊| 真人百家乐分析软件是骗局| 棋牌类单机游戏下载| 属鸡和属猪做生意好吗| 顶旺国际| 网上百家乐大赢家| 真人百家乐官网海立方| 百家乐那里玩| 百家乐官网游戏作弊| 钱大发888斗地主| 24山吉凶| 百家乐官网购怎么样| 大发888官网客服| 百家乐出千赌具| 视频百家乐官网破解| 唐人博彩论坛| 百家乐筹码币方形| 娱乐城百家乐官网可以代理吗| 木星百家乐的玩法技巧和规则 | 百家乐高手心得| 百家乐官网百家乐官网论坛| 大发888娱乐场下载com| 澳门百家乐娱乐城怎么样| 百家乐官网评级网站| 大发888娱乐场下载客户端| 百家乐是否有规律| 百博百家乐官网的玩法技巧和规则 | 百家乐官网视频表演| 百家乐网上娱乐场开户注册 | 網絡博彩| 大发888扑克| 百家乐号技巧| 百家乐官网7scs娱乐网| 大亨百家乐官网游戏| 棋牌娱乐| 大发888线上娱乐百家乐| 赌场百家乐怎么破解| 百家乐大赢家书籍| 高尔夫百家乐官网的玩法技巧和规则 |