波音游戏-波音娱乐城赌球打不开


Self-assembled monolayer paves the way for adapting perovskite solar cells for renewable energy

Pivotal breakthrough in adapting perovskite solar cells for renewable energy
By introducing a thermally robust charge extraction layer, the improved cells retain over 90% of their efficiency, even after prolonged exposure (over 1,200 hours) to high temperatures, around (65℃). Credit: Professor Zhu Zonglong’s research group / City University of Hong Kong

A step forward in the evolution of perovskite solar cells recorded by researchers at City University of Hong Kong (CityU) will have significant implications for renewable energy development.

The CityU innovation paves the way for commercializing , bringing us closer to an energy-efficient future powered by sustainable sources. The research, titled "Stabilized hole-selective layer for high-performance inverted p-i-n perovskite ," is published in the journal Science.

"The implications of this research are far-reaching, and its potential applications could revolutionize the solar energy industry," said Professor Zhu Zonglong of the Department of Chemistry at CityU, who collaborated with Professor Li Zhong'an at Huazhong University of Science and Technology.

New approach

Perovskite solar cells are a promising frontier in the solar energy landscape, known for their impressive power conversion efficiency. However, they have one significant drawback: thermal instability, i.e. they don't tend to perform well when exposed to high temperatures.

The team at CityU has engineered a unique type of self-assembled monolayer, or SAM for short, and anchored it on a nickel oxide surface as a charge extraction layer.

"Our approach has dramatically enhanced the thermal robustness of the cells," said Professor Zhu, adding that thermal stability is a significant barrier to the commercial deployment of perovskite solar cells.

"By introducing a thermally robust charge extraction layer, our improved cells retain over 90% of their efficiency, boasting an impressive efficiency rate of 25.6%, even after operated under high temperatures, around (65℃) for over 1,000 hours. This is a milestone achievement," said Professor Zhu.

Pivotal breakthrough in adapting perovskite solar cells for renewable energy
Electrical properties and theoretical calculations of perovskite solar cells under thermal stress. Credit: Professor Zhu Zonglong’s research group / City University of Hong Kong

Raising the heat shield

The motivation for this research was born from a specific challenge in the solar energy sector: the thermal instability of perovskite solar cells.

"Despite their high power conversion efficiency, these solar cells are like a sports car that runs exceptionally well in cool weather but tends to overheat and underperform on a hot day. This was a significant roadblock preventing their widespread use," said Professor Zhu.

The CityU team has focused on the self-assembled monolayer (SAM), an essential part of these cells, and envisioned it as a heat-sensitive shield that needed reinforcement.

"We discovered that high-temperature exposure can cause the chemical bonds within SAM molecules to fracture, negatively impacting device performance. So our solution was akin to adding a heat-resistant armor—a layer of nickel oxide nanoparticles, topped by a SAM, achieved through an integration of various experimental approaches and theoretical calculations," Professor Zhu said.

To counteract this issue, the CityU team introduced an innovative solution: anchoring the SAM onto an inherently stable nickel oxide surface, thereby enhancing the SAM's binding energy on the substrate. Also, they synthesized a new SAM molecule of their own, creating an innovative molecule that promotes more efficient charge extraction in perovskite devices.

Pivotal breakthrough in adapting perovskite solar cells for renewable energy
Molecular structure of the novel SAM, schematic illustration of SAM deposition method, and photovoltaic performance of SAM-based perovskite solar cells. Credit: Professor Zhu Zonglong’s research group / City University of Hong Kong

Better efficiency in higher temperatures

The primary outcome of the research is the potential transformation of the solar energy landscape. By improving the of perovskite solar cells through the innovatively designed SAMs, the team has laid the foundation for these cells to perform efficiently even in high-temperature conditions.

"This breakthrough is pivotal as it addresses a major obstacle that previously impeded wider adoption of perovskite solar cells. Our findings could significantly broaden the utilization of these cells, pushing their application boundaries to environments and climates where high temperatures were a deterrent," said Professor Zhu.

The importance of these findings cannot be overstated. By bolstering the commercial viability of solar cells, CityU is not merely introducing a new player in the renewable energy market, it's setting the stage for a potential game-changer that could play a vital role in the global shift towards sustainable and energy-efficient sources.

"This technology, once fully commercialized, could help decrease our dependence on fossil fuels and contribute substantially to combating the global climate crisis," Zhu added.

More information: Zhen Li et al, Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells, Science (2023). DOI: 10.1126/science.ade9637

Journal information: Science
Citation: Self-assembled monolayer paves the way for adapting perovskite solar cells for renewable energy (2023, October 20) retrieved 16 June 2025 from https://techxplore.com/news/2023-10-self-assembled-monolayer-paves-perovskite-solar.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

One-step solution-coating method to advance perovskite solar cell manufacturing and commercialization

9 shares

Feedback to editors

网上百家乐解码器| 乐百家娱乐| 百家乐单机版游戏下载| 本溪棋牌娱乐网| 菲律宾百家乐官网娱乐场| 机械百家乐技巧| 百家乐官网赌场怎么玩| 大发888 打法888游戏| 百家乐官网赌场| 佳豪国际娱乐| 百家乐二十一点游戏| 17pk棋牌官方下载| 百家乐自动算牌软件| ewin娱乐城官方下载| 百家乐保单机作弊| 百家乐官网群1188999| 大发888手机客户端下载| 做生意的门的方向| 百家乐官网游戏程序出售| 百家乐庄和闲的赌法| 百家乐官网系统足球博彩通| 大发888 没人举报吗| 百家乐概率统计| 百家乐官网包赢| bet365提款| 机器百家乐作弊| 百家乐官网追号工具| 百家乐娱乐网址| 百家乐官网的桌布| 新宾| 百家乐做庄家必赢诀窍| 百家乐官网高| 赌博百家乐官网规则| 银泰娱乐城| 百家乐怎么发牌| 网络百家乐赌博赢钱| 百家乐的如何玩| 圣淘沙百家乐官网的玩法技巧和规则| 总统娱乐城| 波克棋牌斗地主| 大发888娱乐游戏平台|