波音游戏-波音娱乐城赌球打不开

Xiaowei Zhu (朱曉維)

Prof. Xiaowei Zhu (朱曉維)

Assistant Professor, Department of Neuroscience (NS)

Postdoc (Stanford University)

PhD (Yale University)

Prof. Xiaowei Zhu obtained the BSc in the Special Class for the Gifted Young at the University of Science and Technology of China in 2002. Between 2002 and 2009, he studied bioinformatics and computational biology in Yale University, and received PhD with his research on mapping biological networks using genomic and proteomic approaches. Between 2010 and 2021, he joined the department of psychiatry and behavioral sciences at Stanford University, first as a postdoc and then as a research scientist. During this time, he participated in the Brain Somatic Mosaicism Consortium Network and led the research on the computational and functional analysis of somatic mutations in human brain development and neuropsychiatric disorders. Prof. Xiaowei Zhu joined City University of Hong Kong in 2022 as an assistant professor.

Research Interest

Psychiatric Disorders / Computational Biology / Genomics

The genetic basis for many psychiatric disorders remains elusive. We have previously identified that the highly repetitive mobile element (ME) sequences are actively jumping, and inserting into new genomic regions, during human brain development. These mobile element insertions (MEIs) therefore can disrupt genes with important brain functions and thus may contribute to the pathogenesis of neuropsychic disorders.

Due to the sequence repetitiveness and low frequency in the brain, the study of somatic MEI presents an extremely challenging signal-to-noise problem. The Zhu lab focuses on establishing a machine learning based approach, to accurately detect somatic MEIs using high throughput sequencing. We are also evaluating its application in the diagnostic genetic testing for neuropsychic disorders and other diseases such as cancer.

Furthermore, we aim to establish the definitive evidence that somatic MEI mutations can alter brain functions and contribute to disorders. We have identified highly deleterious MEI mutations in brains from patients with autism spectrum disorders, schizophrenia, and Tourette syndrome. We will also set out a large-scale screen to systematically study their perturbations in transcriptome and proteome. This research will improve our understanding for the genetic basis of neuropsychiatric disorders, which will then shed light on novel treatment approaches.

Position Availability

We are looking for motivated postgraduate students, research assistants or undergraduate students who are interested in computational biology and/or experimental biology. Please send your CV to: [email protected].

List of Publications

  1. Zhu, X., Zhou, B., Pattni, R., Gleason, K., Tan, C., Kalinowski, A., Sloan, S., Fiston-Lavier, A. S., Mariani, J., Petrov, D., Barres, B. A., Duncan, L., Abyzov, A., Vogel, H., Zhu, X., Zhou, B., Urban, A., Walsh, C., Ganz, J., et al. Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia. Nat. Neurosci. 24, 186–196 (2021).
  2. Zhou, B., Ho, S. S., Greer, S. U., Zhu, X., Bell, J. M., Arthur, J. G., Spies, N., Zhang, X., Byeon, S., Pattni, R., Ben-Efraim, N., Haney, M. S., Haraksingh, R. R., Song, G., Ji, H. P., Perrin, D., Wong, W. H., Abyzov, A. & Urban, A. E. Comprehensive, integrated, and phased whole-genome analysis of the primary ENCODE cell line K562. Genome Res. 29, 472–484 (2019).
  3. Zhou, B., Ho, S. S., Greer, S. U., Spies, N., Bell, J. M., Zhang, X., Zhu, X., Arthur, J. G., Byeon, S., Pattni, R., Saha, I., Huang, Y., Song, G., Perrin, D., Wong, W. H., Ji, H. P., Abyzov, A. & Urban, A. E. Haplotype-resolved and integrated genome analysis of the cancer cell line HepG2. Nucleic Acids Res. 47, 3846–3861 (2019).
  4. Vondra, S., Kunihs, V., Eberhart, T., Eigner, K., Bauer, R., Haslinger, P., Haider, S., Windsperger, K., Klambauer, G., Schütz, B., Mikula, M., Zhu, X., Urban, A. E., Hannibal, R. L., Baker, J., Kn?fler, M., Stangl, H., Pollheimer, J. & R?hrl, C. Metabolism of cholesterol and progesterone is differentially regulated in primary trophoblastic subtypes and might be disturbed in recurrent miscarriages. J. Lipid Res. (2019) doi:10.1194/jlr.P093427.
  5. Zhang, X.*, Zhang, Y.*, Zhu, X.*, Purmann, C., Haney, M. S., Ward, T., Khechaduri, A., Yao, J., Weissman, S. M. & Urban, A. E. Local and global chromatin interactions are altered by large genomic deletions associated with human brain development. Nat. Commun. 9, (2018). * co-first author
  6. Velicky, P., Meinhardt, G., Plessl, K., Vondra, S., Weiss, T., Haslinger, P., Lendl, T., Aumayr, K., Mairhofer, M., Zhu, X., Schütz, B., Hannibal, R. L., Lindau, R., Weil, B., Ernerudh, J., Neesen, J., Egger, G., Mikula, M., R?hrl, C., et al. Genome amplification and cellular senescence are hallmarks of human placenta development. PLoS Genet. 14, (2018).
  7. Zhou, B., Haney, M. S., Zhu, X., Pattni, R., Abyzov, A. & Urban, A. E. Detection and quantification of mosaic genomic dna variation in primary somatic tissues using ddPCR: analysis of mosaic transposable-element insertions, copy-number variants, and single-nucleotide variants. in Digital PCR: Methods and Protocols (eds. Karlin-neumann, G. & Francisco, B.) vol. 1768 173–190 (SPringer Science+Business Media, New York, 2018).
  8. Knowles, D. A., Davis, J. R., Edgington, H., Raj, A., Favé, M. J., Zhu, X., Potash, J. B., Weissman, M. M., Shi, J., Levinson, D. F., Awadalla, P., Mostafavi, S., Montgomery, S. B. & Battle, A. Allele-specific expression reveals interactions between genetic variation and environment. Nat. Methods 14, 699–702 (2017).
  9. Kukurba, K. R., Parsana, P., Balliu, B., Smith, K. S., Zappala, Z., Knowles, D. A., Favé, M. J., Davis, J. R., Li, X., Zhu, X., Potash, J. B., Weissman, M. M., Shi, J., Kundaje, A., Levinson, D. F., Awadalla, P., Mostafavi, S., Battle, A. & Montgomery, S. B. Impact of the X chromosome and sex on regulatory variation. Genome Res. 26, 768–777 (2016).
  10. Holm, A., Lin, L., Faraco, J., Mostafavi, S., Battle, A., Zhu, X., Levinson, D. F., Han, F., Gammeltoft, S., Jennum, P., Mignot, E. & Kornum, B. R. EIF3G is associated with narcolepsy across ethnicities. Eur. J. Hum. Genet. 23, 1573–1580 (2015).
  11. Mostafavi, S., Battle, A., Zhu, X., Potash, J. B., Weissman, M. M., Shi, J., Beckman, K., Haudenschild, C., Mccormick, C., Mei, R., Gameroff, M. J., Gindes, H., Adams, P., Goes, F. S., Mondimore, F. M., Mackinnon, D. F., Notes, L., Schweizer, B., Furman, D., et al. Type I interferon signaling genes in recurrent major depression: Increased expression detected by whole-blood RNA sequencing. Mol. Psychiatry (2014) doi:10.1038/mp.2013.161.
  12. Battle, A., Mostafavi, S., Zhu, X., Potash, J. B., Weissman, M. M., McCormick, C., Haudenschild, C. D., Beckman, K. B., Shi, J., Mei, R., Urban, A. E., Montgomery, S. B., Levinson, D. F. & Koller, D. Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. Genome Res. (2014) doi:10.1101/gr.155192.113.
  13. Davies, M. N., Krause, L., Bell, J. T., Gao, F., Ward, K. J., Wu, H., Lu, H., Liu, Y., Tsai, P. C., Collier, D. A., Murphy, T., Dempster, E., Mill, J., Battle, A., Mostafavi, S., Zhu, X., Henders, A., Byrne, E., Wray, N. R., et al. Hypermethylation in the ZBTB20 gene is associated with major depressive disorder. Genome Biol. 15, (2014).
  14. Mostafavi, S., Battle, A., Zhu, X., Urban, A. E., Levinson, D., Montgomery, S. B. & Koller, D. Normalizing RNA-Sequencing Data by Modeling Hidden Covariates with Prior Knowledge. PLoS One (2013) doi:10.1371/journal.pone.0068141.
  15. Mok, J., Zhu, X. & Snyder, M. Dissecting phosphorylation networks: Lessons learned from yeast. Expert Review of Proteomics (2011) doi:10.1586/epr.11.64.
  16. Zhu, X., Gerstein, M. & Snyder, M. Getting connected: Analysis and principles of biological networks. Genes and Development (2007) doi:10.1101/gad.1528707.
  17. Royce, T. E., Rozowsky, J. S., Luscombe, N. M., Emanuelsson, O., Yu, H., Zhu, X., Snyder, M. & Gerstein, M. B. [15] Extrapolating Traditional DNA Microarray Statistics to Tiling and Protein Microarray Technologies. Methods in Enzymology (2006) doi:10.1016/S0076-6879(06)11015-0.
  18. Zhu, X., Gerstein, M. & Snyder, M. ProCAT: a data analysis approach for protein microarrays. Genome Biol. 7, (2006).
  19. Zhu, H.*, Hu, S.*, Jona, G.*, Zhu, X.*, Kreiswirth, N., Willey, B. M., Mazzulli, T., Liu, G., Song, Q., Chen, P., Cameron, M., Tyler, A., Wang, J., Wen, J., Chen, W., Compton, S. & Snyder, M. Severe acute respiratory syndrome diagnostics using a coronavirus protein microarray. Proc. Natl. Acad. Sci. U. S. A. 103, 4011–4016 (2006). * co-first author
  20. Smith, M. G., Jona, G., Ptacek, J., Devgan, G., Zhu, H., Zhu, X. & Snyder, M. Global analysis of protein function using protein microarrays. in Mechanisms of Ageing and Development (2005). doi:10.1016/j.mad.2004.09.019.
  21. Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X., Fasolo, J., Guo, H., Jona, G., Breitkreutz, A., Sopko, R., McCartney, R. R., Schmidt, M. C., Rachidi, N., Lee, S. J., Mah, A. S., Meng, L., Stark, M. J. R., Stern, D. F., De Virgilio, C., et al. Global analysis of protein phosphorylation in yeast. Nature 438, 679–684 (2005).
  22. Bertone, P., Stolc, V., Royce, T. E., Rozowsky, J. S., Urban, A. E., Zhu, X., Rinn, J. L., Tongprasit, W., Samanta, M., Weissman, S., Gerstein, M. & Snyder, M. Global identification of human transcribed sequences with genome tiling arrays. Science 306, 2242–2246 (2004).
  23. Hall, D. A., Zhu, H., Zhu, X., Royce, T., Gerstein, M. & Snyder, M. Regulation of gene expression by a metabolic enzyme. Science 306, 482–484 (2004).
  24. Yu, H., Greenbaum, D., Lu, H. X., Zhu, X. & Gerstein, M. Genomic analysis of essentiality within protein networks. Trends in Genetics (2004) doi:10.1016/j.tig.2004.04.008.
  25. Yu, H., Luscombe, N. M., Lu, H. X., Zhu, X., Xia, Y., Han, J. D. J., Bertin, N., Chung, S., Vidal, M. & Gerstein, M. Annotation transfer between genomes: Protein-protein interrologs and protein-DNA regulogs. Genome Res. 14, 1107–1118 (2004).
  26. Yu, H., Zhu, X., Greenbaum, D., Karro, J. & Gerstein, M. TopNet: A tool for comparing biological sub-networks, correlating protein properties with topological statistics. Nucleic Acids Res. 32, 328–337 (2004).

24 September 2023

More Faculty
欧博娱乐| 大佬百家乐官网现金网| 凌海市| 网上百家乐官网内幕| 马德里百家乐官网的玩法技巧和规则 | 百家乐官网筹码14克| 威尼斯人娱乐城博彩网站| 百家乐官网最全打法| 百家乐游戏百家乐| 现金网信誉排行| 网上百家乐官网是现场吗| 百家乐技巧辅助软件| 鸿利国际| 百家乐官网套装| 百家乐国际娱乐网| 天天乐娱乐城| 盛大百家乐的玩法技巧和规则| 镇安县| 真钱百家乐注册送| OG百家乐官网大转轮| 金百家乐的玩法技巧和规则| 百家乐官网游戏机子| 大发888娱乐城 17| 大发百家乐官网的玩法技巧和规则| 大发888亚洲游戏 网页| 百家乐官网网盛世三国| 大发888亚洲游戏| 百家乐官网注册送彩金平台| 百家乐免费下| 顶级赌场官网下载| 百家乐园qq群| 淘宝博百家乐的玩法技巧和规则 | 钱大发888扑克| 黄金百家乐官网的玩法技巧和规则 | 蓝盾百家乐官网的玩法技巧和规则 | 美高梅百家乐娱乐城| 金赞百家乐官网娱乐城| 网络百家乐赚| 24山先天分房| 老牌百家乐官网娱乐城| 凯斯娱乐|