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The use of embryos of the zebrafish Danio rerio as an in vivo tumor model for studying non-targeted
effects of ionizing radiation was reviewed. The zebrafish embryo is an animal model, which enables con-
venient studies on non-targeted effects of both high-linear-energy-transfer (LET) and low-LET radiation
by making use of both broad-beam and microbeam radiation. Zebrafish is also a convenient embryo
model for studying radiobiological effects of ionizing radiation on tumors. The embryonic origin of
tumors has been gaining ground in the past decades, and efforts to fight cancer from the perspective
of developmental biology are underway. Evidence for the involvement of radiation-induced genomic
instability (RIGI) and the radiation-induced bystander effect (RIBE) in zebrafish embryos were subse-
quently given. The results of RIGI were obtained for the irradiation of all two-cell stage cells, as well
as 1.5 hpf zebrafish embryos by microbeam protons and broad-beam alpha particles, respectively. In con-
trast, the RIBE was observed through the radioadaptive response (RAR), which was developed against a
subsequent challenging dose that was applied at 10 hpf when <0.2% and <0.3% of the cells of 5 hpf zebra-
fish embryos were exposed to a priming dose, which was provided by microbeam protons and broad-
beam alpha particles, respectively. Finally, a perspective on the field, the need for future studies and
the significance of such studies were discussed.

� 2013 Elsevier Ireland Ltd. All rights reserved.
1. Introduction to non-targeted effects of ionizing radiation

In the conventional paradigm, the effects of ionizing radiation on
cells occurred only because of direct energy deposition in the criti-
cal targets, i.e., the nuclear DNA in the irradiated cells themselves.
Following the damage to DNA molecules, the affected cells might
undergo repair, programmed cell death through apoptosis, cell cy-
cle checkpoints and other outcomes. With the risk of misrepairing
the damaged DNA molecules, ionizing radiation could ultimately
lead to genomic mutation. However, studies in the past decades
have demonstrated that damage from ionizing radiation does not
necessarily occur only in the targeted cells. All the effects of
ionizing radiation, which do not arise from direct energy deposition
in the DNA of the irradiated cells, are classified as ‘‘non-targeted’’
effects. Such effects do not necessarily only occur on the level of
cells but also on the levels of tissues or organisms. The radiation-
induced bystander effect (RIBE) and radiation-induced genomic
instability (RIGI), which were demonstrated in vitro and in vivo,
are categorized as non-targeted effects of ionizing radiation.
1.1. Definition and history of the RIBE

Different definitions for the RIBE exist in the literature, which
have been reviewed by Blyth and Sykes [1], wherein they described
the bystander effects as ‘‘any effect induced in a cell as a result of an-
other cell(s) being exposed to radiation’’.

Mothersill and Seymour [2] suggested another broad definition:
‘‘The bystander effect in this context refers to the detection of re-
sponses in unirradiated cells that can reasonably be assumed to have
occurred as a result of exposure of other cells to radiation.’’ The RIBE
describes the response in unirradiated cells that have not been ex-
posed to ionizing radiation and is regarded as a non-targeted radi-
ation effect. The unirradiated cells are commonly named as
bystander cells. There has been no consensus on the spatial distri-
bution of the classic RIBE, the location of unirradiated cells from
irradiated cells or whether protective or adverse responses are in-
duced in the unirradiated cells by the irradiated cells. In fact, this
observation is because different effects may occur in different cells.
Moreover, the magnitude of the effect may differ in the same cells
under different conditions, e.g., at different levels of oxidative
stress.

Although the mechanisms underlying the RIBE are not fully
understood, gap-junction intercellular communication [3,4] and
the secretion of soluble factors from irradiated cells to the
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bystander cells were found to play important roles [5,6]. Reactive
oxygen species (ROS), which were generated from irradiated cells,
were among the reported bystander signals, which could lead to
oxidative stress and DNA damage in nearby unirradiated cells. In
contrast, the ROS production in irradiated cells upon radiation
exposure could also activate the synthesis of antioxidants [7],
and an increase in the antioxidant level could stimulate a defense
mechanism, and it is established that the defense mechanism plays
a role in the radioadaptive response (RAR) [8]. The RAR could pro-
tect cells from a subsequent challenging radiation. Nevertheless,
in vitro studies suggested that RAR might not necessarily share a
mechanism with the toxic bystander effect [9]. Although the rela-
tion between the toxic bystander effect and the RAR remains under
debate, the dual nature of the RIBE could be a result of differences
in genetic and epigenetic factors [10].

The production of bystander factors is also known to be genet-
ically dependent [11]. In particular, radiosensitive cell lines with
small or no shoulders in their cell survival curves will generate lar-
ger bystander effects when compared with radioresistant cell lines
with large shoulders in their survival curves.

Results from different studies on the dose dependence of the
RIBE have also been equivocal. Although some studies reported
that more than 10% of cells within a population should be irradi-
ated to enable a full induction of the RIBE [12,13], there was an-
other study that showed that the irradiation of less than 3% of
cells within a population was enough to induce a saturated RIBE
[14]. The RIBE was induced by both high and low LET radiation.
Nonetheless, there were relatively few studies on the relation be-
tween the quality of radiation and the RIBE [15–21]. For a charged
particle with a specific energy, the LET is defined for a medium as
the quotient dEL by dl, where dEL is the average energy that is lo-
cally imparted to the medium by the charged particle while tra-
versing a distance dl. A high-LET radiation produces a denser
track of ionization and excitation along the particle trajectory
when compared with a low-LET radiation. As such, a larger LET
indicates that the radiation can increase the complexity of the in-
duced DNA damage and, therefore, increase the amounts of unre-
paired or misrepaired DNA damage. However, the results
regarding the dependence of the RIBE on LET are equivocal. For
example, bystander-induced chromosome aberrations and cell cy-
cle-related bystander response were found to be independent of
the LET of the radiation [17,18]. In contrast, considering the induc-
tion of p53 protein expression in rat epithelial cells, X-ray exposure
led to a less pronounced RIBE than alpha-particle exposure [22].
Significant LET dependence was also reported in the study of by-
stander-mediated micronucleation and cell proliferation, with
high-LET radiation being more effective in inducing the RIBE than
low-LET radiation [16]. From the above equivocal results, it is dif-
ficult to draw conclusions on the dependence of the RIBE on the
radiation dose and on the quality of radiation [23].

When referring to the long-distance bystander effect, the term
‘abscopal effect’ was used, which was first introduced by Mole in
1953 [24]. The abscopal effect describes the response of the unirra-
diated tissue, which is located outside the volume of the irradiated
region and that of the scattered radiation [25,26]. Some literature
also described the long-distance bystander effect within the indi-
vidual as the ‘‘out of field’’ bystander effect [27].

Before the first demonstration of an in vitro RIBE by Nagasawa
and Little in 1992 [14], there was already evidence indicating that
animals or humans that are exposed to ionizing radiation could
produce soluble factors in the blood plasma, which, when trans-
ferred to the cell cultures from non-irradiated individuals, could
cause chromosome damage in the latter. This type of indirect dam-
age to the non-irradiated cells, which was inflicted by the plasma
that was harvested from irradiated animals or humans, was re-
ported in the late 1950s. Parsons et al. [28] observed that the
reatment of chronic granulocytic leukemia led to cell damage in
the bone marrow of patients who received radiation to the spleen;
however, the methodology to ensure the non-irradiation of the
bone marrow during the irradiation of the spleen was not
described.

The presence of clastogenic factors in the plasma from the irra-
diated individual was supported by the finding of Souto [29], who
showed that mammary tumors were significantly induced in rats
by the injection of plasma from irradiated animals. Subsequently,
Hollowell and Littlefield studied chromosomal damage in normal
unirradiated lymphocytes, which was inflicted by plasma that
was harvested from X-ray irradiated patients [30] and from high-
dose radiotherapy patients [30,31]. Their results confirmed that
both chromosome and chromatid breakages were induced by the
plasma that was harvested from an irradiated individual. This type
of plasma clastogenic activity was also shown in alpha-particle
irradiated animals. Poncy et al. [32] observed an increase in sister
chromatid exchanges in rats that were previously exposed to al-
pha-particle emitting radon and suggested that clastogenic factors
might have been translocated from the lungs to the bone marrow
of rats that were exposed to alpha-particles. Although the plasma
clastogenic factor (CF) has been extensively studied [33–36], its
nature is not fully understood. The CF has a low molecular mass
and its stability is changed by changes in temperature; however,
the clastogenic activity can be conserved over a year under frozen
conditions. Considering these properties, the CF has been sug-
gested to contain several chromosome-damaging components in-
stead of a single factor. In particular, superoxide dismutase (SOD)
inhibited the formation of the CF, which indicated the involvement
of superoxide radicals in the CF. In contrast, the cytotoxic cytokine
tumor necrosis factor-a (TNF-a) and the formation of lipid perox-
idation products, as well as the production of free radicals were
proposed to be related to the clastogenic activity [37]. Notably, free
radical scavengers have been reported to successfully reduce the
clastogenic activity in many studies. As reviewed by Goldberg
and Lehnert [38], the lipid peroxidation in fatty acids that were
contained in blood or other extracellular fluids was initiated by
the generation of free radicals, which would then form DNA-dam-
aging lipid peroxidation products. As such, extracellular free radi-
cals might play an important role in mediating the clastogenic
effect between distant organs, e.g., from the lungs to bone marrow.
Remarkably, there is currently a consensus that the soluble CF can
reach different tissues within an organism through the circulation
of blood cells from the area that is exposed to radiation [39,40].

In fact, studies that were performed on the Japanese atomic
bomb survivors [41], and later on the people involved in the Cher-
nobyl nuclear accident [42–44] as well as radiotherapy patients
[45–48], also supported the presence of the RIBE. Studies on plas-
ma clastogenic effect were later reviewed by Mothersill and Sey-
mour [2], Goldberg and Lehnert [38], Morgan [49] and Lindholm
et al. [37]. It would also be interesting and beneficial to study
whether the CF can be transmitted at the inter-organismic level.
Recently, there has been massive evidence of the RIBE occurring
at the inter-organismic level, e.g., between mice [50,51], zebrafish
[52] and medaka [53].

An in vitro RIBE was first successfully demonstrated by Nagasa-
wa and Little [14] by irradiating Chinese hamster ovary cells with
low-dose alpha particles (as low as 0.32 mGy). Nagasawa and Little
observed a significant change in the induction of sister chromatid
exchanges (SCE) in the unirradiated cells when the alpha particles
traversed less than 1% of the cell nuclei directly using their exper-
imental setup. Their results gave the first evidence of the induction
of genetic damages on the non-targeted cells. The RIBE was subse-
quently demonstrated through a wide range of biological end-
points, including the induction of apoptosis [54–56], gene
mutation [57,58], the production of reactive oxygen species [59],
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micronucleus formation [60,61] and neoplastic transformation
[62,63]. The RIBE has been extensively studied and reviewed
[1,23,49,64–80].

The RIBE was more prominent in the low-dose radiation region
[81]. There was a consensus that an increase in the dose to the irra-
diated cells did not further intensify the effect on the bystander
cells [82]. For alpha-particle or heavy-ion traversals, the magnitude
of the bystander effect did not depend on the dose [1]. For low-LET
radiation, such as X-rays, an increase in the probability of induc-
tion of the bystander effect at doses as low as 50 mGy was reported
by Schettino et al. [83]; however, the magnitude of the bystander
effect did not depend on the applied dose. In contrast, a dose-
dependent bystander effect was observed in a medium-transfer
experiment using a low-LET radiation [84]. In fact, it would be nec-
essary to discuss the dose dependence of the RIBE for different
radiation types. For high-LET radiation, such as alpha particles,
even the traversal of a single particle can deposit a substantial dose
in the targeted cell and cause profound biological effects, such as
clustered-type DNA damage, in contrast to the deposition of a
small dose in the instance of low-LET radiation, such as X-rays.
For example, the dose in the core of the track of HZE particles
can reach the order of hundreds of Gy. As such, when discussing
the dose dependence of the RIBE for radiation with different LET
values, it is relevant to report the data as a function of the mean
absorbed dose or as simply in fluence. The occurrence of the RIBE
followed an on or off mechanism with the probability of an in-
creased effect with the radiation dose to the target cell
[67,83,85]. Not all cell types could produce or respond to bystander
signals [63,86]. However, the RIBE could be transmitted to the
progeny of the bystander cells [63,86,87]. A non-detrimental RIBE
was also reported, including an increase in cell proliferation
[88,89] or in the induction of the RAR [90,91]. In regards to the
implications on radiotherapy, more tumor cells could be killed
through the RIBE by the anti-tumor abscopal effect [92]. The pres-
ent review will focus on the in vivo non-targeted effects of ionizing
radiation, and the readers who are interested in more details
regarding the in vitro studies on the RIBE are referred to the many
excellent reviews [1,23,49,64–80].

1.2. Definition and history of RIGI

RIGI refers to the delayed lethal mutations or reproductive cell
death in the progeny of irradiated cells that persist for many gen-
erations, and elevations in the rate of the de novo appearance of
chromosomal aberrations and gene mutations, which appear in
the progeny of irradiated cells. RIGI can be observed in progeny,
which are many generations after the initial irradiated cells,
whereas RIGI had not been detected in the irradiated cells them-
selves or their immediate progeny, which are unstable and muta-
tion-prone but appear to be healthy [10,49,64,86,93–95]. RIGI in
in vitro experiments has been extensively studied and reviewed
[64,76,79,96–99]. Various biological endpoints were employed
for RIGI studies, including chromosomal aberrations [94,95,100–
105], micronucleus formation [106,107], gene mutation [108–
112], reproductive cell death [84,113,114] and apoptosis [115–
117].

When cells were irradiated in vitro and cultured, non-clonal
cells with chromosomal aberrations could be found in the progeny
many generations after the irradiated cells. RIGI, with respect to
chromosomal aberration, was first described by Wright and col-
leagues in 1992, who found a high non-clonal frequency of chro-
mosomal aberration in the progeny of hemopoietic stem cells
that were irradiated in vitro with alpha particles [94]. Subse-
quently, extensive in vitro studies demonstrated the occurrence
of RIGI in a variety of cell types [101,102,105,111,118–120]. In fact,
RIGI was reported for both high- and low-LET radiation [121].
Some studies showed that radiation quality could cause differences
in the yield of chromosome versus chromatid aberrations and that
high-LET radiation was found to be more effective in inducing
chromatid-type aberrations [121]. Furthermore, RIGI depended
on the radiation dose. Interestingly, RIGI was apparent at low doses
and, in some instances, was reduced at high doses of radiation [79].
The present review will focus on the in vivo non-targeted effects of
ionizing radiation, and the readers who are interested in more de-
tails regarding the in vitro studies on RIGI are referred to the many
excellent reviews [64,76,79,96–99].

The RIBE effectively enlarges the target for radiation effects
through ‘‘horizontal transmission’’ to enlarge the affected popula-
tion size, whereas RIGI enlarges the target for radiation effects
through ‘‘vertical transmission’’ to draft the progeny into the af-
fected population [10]. Both the RIBE and RIGI lead to damage in
the affected population, which is similar to radiation damage. In
fact, the RIBE and RIGI were linked to each other [98,122]. The
inflammatory-type response to radiation-induced stress, which
was observed in both the RIBE and RIGI, might suggest a common
mechanism for the two non-targeted effects [123]. As anticipated,
these non-targeted effects have far reaching implications, e.g., on
cancer-risk assessment in the low-dose region [124] and on the
induction of secondary cancer [77,80], etc.

As expected, the majority of research studies on the non-tar-
geted effects of ionizing radiation have focused on in vitro studies.
Whereas in vitro experiments are more convenient to perform, the
extrapolation of the results back to the biology of the whole living
organism might not always be straightforward. As such, in vivo
studies are valuable to help better estimate the health risks of
exposure to ionizing radiation, particularly following exposure to
low doses/low fluences.

The present paper will present embryos of the zebrafish Danio
rerio as the in vivo model for non-targeted effects of ionizing radi-
ation on an organism or a tumor, which will be presented in Sec-
tion 3. First, an introduction to the general use of embryos of
zebrafish (D. rerio) as an in vivo model will be given in Section 2.
Section 4 will give the conclusions. Table 1 summarizes the niche
areas that are provided by the zebrafish embryo model for study-
ing RIBE/RIGI and a summary of the current progress in these
studies.
2. Popularity of embryos of zebrafish (D. rerio) as an in vivo
model

Zebrafish (D. rerio) has emerged as a popular vertebrate model
in many fields of research studies, such as developmental biology,
physiology, toxicology, and environmental research as well as can-
cer research [125]. Such popularity has apparently stemmed from
the many advantages behind its use as an in vivo model. In partic-
ular, the human and zebrafish genomes share considerable homol-
ogy, including the conservation of most DNA repair-related genes
[126,127]. Whole zebrafish genome sequencing, which was re-
cently conducted, has further facilitated the comparison of the hu-
man genome with that of zebrafish genome. This comparison
showed that approximately 70% of the human genes had at least
one obvious zebrafish ortholog [127]. It is remarked that among
different fish species, zebrafish has the most complete database
on genomics, molecular genetics and embryology, which is avail-
able on the website of the Zebrafish Information Network (http://
www.zfin.org/ZFIN). The high conservation of the human and zeb-
rafish genomes, as well as the availability of genomic data, consti-
tute the most important reasons for the zebrafish to be employed
as a powerful animal model. The fact that zebrafish has vascular,
hematopoietic, immune, and central nervous systems as well as or-
gans, such as the heart, liver, and kidney, with some phenotypic
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Table 1
Advantages of the zebrafish embryo model, and a summary of RIBE/RIGI studies using zebrafish embryo model. The numbers of sections for the corresponding discussion are
indicated to help the reader navigate through the paper.

Advantages of the
zebrafish embryo
model

Studies prior to the zebrafish
embryo model

Examples of potential usefulness RIBE/RIGI studies using zebrafish embryo model

Allow studies on high-
LET radiation (in
addition to low-LET
radiation)

Most in vivo studies on RIBE
and RIGI made use of low-
LET photons (Sections 3.1
and 3.2)

Useful for assessing non-targeted effects from
exposures to environmental radon progeny, hadron
therapy, targeted atomic nanogenerators or
targeted alpha therapy (Section 4.1)

(1) Non-targeted effects of alpha particles, together
with design of experimental setup and procedures
(Section 5.1)

(2) Dose response of zebrafish embryos irradiated
with alpha particles at 1.5 hpf, incorporating RIGI,
was revealed at 24 hpf (Section 5.2)
(3) RIBE was demonstrated in zebrafish embryos
through successful induction of radioadaptive
response (RAR) when only <0.3% of the embryo cells
on 5 hpf zebrafish embryos were hit by alpha
particles during the priming exposure (Section 5.3)

Allow studies on
microbeam
radiation (in
addition to broad-
beam radiation)

Most in vivo studies on RIBE
and RIGI made use of broad-
beam photons (Sections 3.1
and 3.2)

Useful for assessing non-targeted effects from
exposures to modulated radiation fields commonly
used nowadays in radiotherapy (Section 4.2)

(1) Non-targeted effects of microbeam protons,
together with the design of special experimental
setup and procedures (Section 5.1)

(2) Dose response of zebrafish embryos irradiated
with microbeam protons at the 2-cell stage,
incorporating RIGI, was revealed at 24 hpf
(Section 5.2)
(3) RIBE was demonstrated in zebrafish embryos
through successful induction of radioadaptive
response (RAR) when only <0.2% to <1% of the
embryo cells on 5 hpf zebrafish embryos were hit by
microbeam protons during the priming exposure,
depending on the distribution of hit cells
(Section 5.3)

Allow studies on
embryo models

Restricted to bystander
induction of cancers and
studies on RIBE in tumors
(Section 4.1)

Useful for attempts to fight cancer from the
perspective of developmental biology (Section 4.3)

All the RIBE/RIGI studies using zebrafish embryo
model described above can also be viewed as
progress in this category (Sections 5.1 to 5.3)
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features resembling those features in humans, has made zebrafish
an animal model with a great potential for research studies on the
molecular mechanisms of diverse human diseases [128].

In vitro mechanistic studies of non-targeted effects of ionizing
radiation revealed the important role played by the DNA repair
pathways [79,80]. Nonetheless, in vivo mechanistic studies of
non-targeted effects of ionizing radiation were limited [87,129].
If in vitro mechanisms also apply to in vivo situations, then DNA re-
pair mechanisms should also play important roles in in vivo situa-
tions. As such, there is an increasing demand for choosing an
appropriate animal model for effective studies of DNA repair
mechanisms. Pei and Strauss [130] remarked that the zebrafish
genomic DNA contained orthologs of genes that are involved in
all DNA repair pathways in higher eukaryotes, which include
non-homologous end joining (NHEJ), and that the role of specific
DNA damage response genes in each repair pathway could be stud-
ied by simple morpholino-based or shRNA knockdown experi-
ments. As such, Pei and Strauss concluded that zebrafish formed
an ideal model for studies on DNA damage and repair pathways.

There are also many practical advantages for using zebrafish
embryos as a model for studying radiation-induced non-targeted
effects: (1) zebrafish embryos are optically transparent, which en-
ables the microscopic inspection of embryogenesis development;
(2) zebrafish embryos develop rapidly, which leads to shorter
experiments. The developmental stages of zebrafish embryos were
described in detail by Kimmel et al. [131]: major organ systems
were evident within 24 h post-fertilization (hpf), and the entire
development was completed in approximately five days post-
fertilization (dpf); (3) zebrafish embryos can be produced in great
number daily due to the high fecundity of zebrafish, which facili-
tates a high throughput of experiments; (4) zebrafish embryos
can take up drugs directly from the medium, which is much more
convenient for therapeutic studies when compared with the need
for drug injections into experimental models, such as mice. As
such, the zebrafish embryo model has become increasingly popular
in studies of toxicology [132], developmental biology [125] and
carcinogenesis [133].

3. In vivo studies on non-targeted effects of ionizing radiation

3.1. In vivo studies on RIBE using animal models

In the present review, in vivo studies only refer to those studies
using whole organism models and do not include those studies
involving tissue models, which have also been regarded by some
researchers as in vivo models. Ureter models [55,134], as well as
commercially available skin reconstruct models containing both
epidermis and dermis or the epidermal layer alone [135–137],
are classified as tissue models here. Although tissue models can
provide some valuable information regarding the non-targeted ef-
fects of ionizing radiation in the multicellular tissue environment,
it remains necessary to extrapolate such results back to the biology
of the whole living organism; thus, there remains a marked advan-
tage to perform the relevant studies in whole organism models
[138,139]. As remarked by Bertucci et al. [139], studies using whole
organisms, which target specific cells, cell groups or organs, would
be needed to realistically elucidate the mechanisms underlying the
RIBE. We will hereafter focus on whole organism models when dis-
cussing in vivo models.

Most in vivo studies on the RIBE and RIGI made use of broad-
beam low-LET photons. The rodent model has been commonly em-
ployed for in vivo studies on the RIBE within an organism. Khan



V.W.Y. Choi, K.N. Yu / Cancer Letters 356 (2015) 91–104 95
et al. [5] observed an increase in micronucleus formation in the
unirradiated area of the rat lung and proved that the bystander ef-
fect propagated from the irradiated lung area to the non-irradiated
lung area with the involvement of reactive oxygen species (ROS)
and nitric oxide (NO) [6]. The sequel study by Khan et al. also con-
firmed the involvement of cytokines in the RIBE [140]. A series of
cranial exposure experiments using a mouse model were per-
formed by Koturbash et al. [141–143]. In their experiments, one
group of mice received X-ray exposure to the skull only, whereas
the rest of the animal’s body was protected by a lead shield. Molec-
ular changes in the distant shielded bystander tissues and organs
were examined, and the results from cranial exposure were com-
pared with those results that were obtained from whole body
exposure. The RIBE induced in mice with cranial exposures was
found to be sex specific [39,143] and tissue specific [40]. Addition-
ally, the RIBE could persist for a long period, which was up to seven
months post-irradiation [142]. Mancuso et al. [3,4] studied the role
of gap junctional intercellular communication (GJIC) in the RIBE in
mice with partial-body X-ray irradiation. Long-range radiation
damage to the mouse brain was reduced when the expression of
connexin 43 was inhibited. An in vivo RIBE was also reported in
other model organisms, such as the plant Arabidopsis thaliana
[144–148], the instar silkworm Bombyx mori larvae [149] and the
nematode Caenorhabditis elegans [139,150]. In the studies above-
mentioned, the mechanisms that were responsible for the in vivo
RIBE were found to be largely consistent with those mechanisms
that were responsible for the in vitro RIBE, in that communication
between bystander cells and irradiated cells could be achieved
through either gap junctions [3,4] or the transmission of soluble
factors [5,6]. Lipid peroxidation products, such as hydroperoxides
and aldehydes, TNF-a, TGF-b, IL1b, NO and ROS, were potential sol-
uble factors that were involved in the bystander intercellular sig-
naling [6]. In contrast, the sex-specific bystander effect that was
reported by Koturbash et al. [39,143] was observed together with
DNA methylation changes, which is an important epigenetic phe-
nomenon that is involved in the regulation of gene expression
and genome stability. In fact, evidence indicated that epigenetic
changes were involved in both direct and indirect radiation effects
[151]. Until now, few studies on epigenetic changes that were in-
volved in the in vivo bystander effect have been performed. More
extensive epigenetic studies should be able to greater enlighten
us regarding the mechanisms underlying in vivo RIBE.

Studies on the RIBE in animal models were also performed in
relation to radiotherapeutic considerations. The RIBE in normal tis-
sue and in tumors in mice was reported by Camphausen et al.
[152]. These authors studied the radiation abscopal effect by mon-
itoring the growth of a tumor, which was implanted at a distance
from the irradiated normal leg of a mouse, and demonstrated that
the RIBE induction in normal tissues and tumors was dependent on
the function of p53. Mancuso et al. [3] revealed the relation be-
tween the bystander effect and cancer risk. Partial-body irradiation
with a medium to high dose (3, 8.3 Gy) of X-rays on a Patched-1
(Ptch1) heterozygous mouse model with shielded brains gave rise
to a drastic increase in medulloblastoma, which was the first dem-
onstration of a bystander induction of cancer [3]. Xue et al. [153]
investigated the damaging effect from radiolabeled tumor cells to
unlabeled tumor cells in nude mice and concluded that unlabeled
tumor cells were killed because of the bystander effect, which was
created by in vivo bystander factor(s) that were present within
and/or released from the radiolabeled tumor cells. The results of
Xue et al. had important implications on the assessment of thera-
peutic responses to radionuclide therapy, as well as on the assess-
ment of environmental radiation risks, such as the risks due to the
inhalation of radon progeny. Dilmanian et al. [154] transaxially
irradiated spinal cords of rats with a single microplanar beam with
a thickness of 270 lm and a dose of 750 Gy, and found a loss of oli-
godendrocytes, astrocytes and myelin in 2 weeks. However, repop-
ulation and remyelination were nearly complete by 3 months. The
authors suggested that beneficial bystander effects were involved
in the repair processes leading to tissue restoration. In particular,
angiogenesis could have been promoted to replace damaged capil-
lary blood vessels, whereas the proliferation, migration and differ-
entiation of progenitor glial cells were promoted to produce new,
mature and functional glial cells [154]. Recently, through bystan-
der clonogenic reporter assays, Fernandez-Palomo et al. [155]
demonstrated the presence of the RIBE in healthy and tumor-bear-
ing Wistar rats, which had been exposed to a high dose of radiation
(17.5, 35, 70 or 350 Gy) from synchrotron microbeam radiation
therapy (MRT) and homogenous synchrotron radiation (HSR). The
production of bystander signals was found to be higher in tumor-
bearing tissues than in tumor-free tissues, which suggested that
tumor and normal tissues might induce the RIBE through different
mechanisms. As such, it is pertinent to explore the different mech-
anisms in the production and transmission of bystander signals in
tumors and normal tissues. With such knowledge, one can sepa-
rately control the RIBE in tumors and in normal tissues, and there
is a possibility of optimizing radiotherapy through maximizing the
RIBE on tumors while minimizing the RIBE on normal tissues.

3.2. In vivo studies on RIGI using animal models

In vivo RIGI was also primarily demonstrated in the rodent
model (see the review by Morgan [49]). Wright and colleagues
examined whether chromosomal instability that was induced
in vitro could be transmitted in vivo by the transplantation of
hemopoietic stem cells that were exposed to either high or low
LET radiation [100,156]. The transplantation of in vitro alpha-parti-
cle irradiated bone marrow stem cells, which were obtained from
male mice, to the female CBA/H mouse recipients induced the
long-term persistence of chromosomal instability [156]. A similar
study was later performed by Watson et al. [100], wherein the
chromosomal instability in the hemopoietic system was induced
by X-rays and neutrons. However, significant inter-animal varia-
tions in the expressions of both stable and unstable aberrations
were reported. In contrast, a study regarding RIGI through the
in vivo irradiation of mice, followed by in vitro analyses, was per-
formed by Weissenborn and Streffer [157]. The neutron irradiation
of one-cell mouse embryos was found to increase the aberration
frequency in the third post-irradiation mitoses. Chromosomal
aberration that lasted several cell generations was also reported
by Ullrich and colleagues [158], who demonstrated cytogenetic
instability in mammary epithelial cells in vitro after irradiation
in vivo. On a different note, the in vivo irradiation of the rodent
model followed by measuring the instability in vivo revealed large
variability in the RIGI results, which depended on the mouse strain
[156,159–161]. In vivo RIGI was also observed among the offspring
of the irradiated parents. The persistently increased rate of muta-
tion in the non-exposed offspring of the irradiated parents was
called transgenerational genomic instability [162]. An increase in
the mutation rate of the first- and second-generation offspring of
irradiated male mice was reported in many studies [163–165]. In
particular, Barber et al. [164] suggested that a genome-wide desta-
bilization after fertilization was involved in the transgenerational
RIGI. Whereas transgenerational RIGI was primarily researched
using the rodent model, Huumonen et al. [166] recently provided
the first evidence of transgenerational RIGI in C. elegans, where
the progeny of irradiated C. elegans showed an increase in the fre-
quency of delayed mutations.

Only a few studies have been performed using microbeam irra-
diation on whole organisms, including rats [154], the plant A. tha-
liana [144,146,147], the instar silkworm B. mori [149], and the
nematode C. elegans [139,150].
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4. Bridging the gaps in studies on non-targeted effects of
ionizing radiation on an organism or a tumor

4.1. Studies on high-LET-radiation induced non-targeted effects

Broad-beam low-LET photons have been commonly used in
most in vivo studies on the RIBE. Most studies on the RIBE within
organisms in vivo adopted the ‘‘partial shielding’’ approach, where
the partial-body irradiation of the whole organism was made pos-
sible using a shield. Regarding RIGI, except for those effects that
were induced in vitro and that were transmitted in vivo by trans-
plantation of irradiated cells, broad-beam low-LET photons also
seemed to be most practical for RIGI experiments. It would be
ideal to establish an animal model for convenient studies on
non-targeted effects of both high-LET and low-LET radiations,
and by making use of both broad-beam and microbeam radia-
tions. Although the rodent model has been employed for studies
regarding the non-targeted effect for many years, relatively few
investigations have been conducted using high-LET radiation.
The difficulties in deploying the rodent model for experiments
with some high-LET radiations such as alpha particles were due
to the short ranges.

From in vitro studies, it has been well established that the RIBE
can be induced by both low-LET and high-LET radiation; thus,
in vivo studies regarding the RIBE of high-LET radiation are inter-
esting and pertinent. In fact, humans and other living organisms
are inevitably exposed to naturally occurring alpha particles. For
example, alpha particles, which have high LET values, are continu-
ously emitted by members of the natural 238U decay series, e.g.,
238U and 226Ra, which are present in geological materials, including
rocks and soils. Within this 238U decay series, there is a member,
222Rn, which is a natural radioactive gas called radon, which poses
health hazard to living organisms. The risk arises when the short-
lived progeny of 222Rn, i.e., 218Po, 214Pb, 214Bi and 214Po, are inhaled
and when the sensitive cells in the bronchial and bronchiolar re-
gions of the lung are irradiated by the alpha particles that are emit-
ted by 218Po and 214Po [167]. It has been estimated that about half
of the total effective dose that is received by humans from environ-
mental radiation is attributed to the short-lived radon progeny.
Epidemiological studies have also provided reasonably firm esti-
mates of the risk of radon-induced lung cancers. Brenner and Sachs
[168] proposed the radon risk to be dominated by RIBE in the in-
stance of domestic radon exposures.

In regards to medical applications, the number of hadron-ther-
apy facilities has grown in recent years, along with the advancing
beam-delivery and accelerator technologies. Hadron therapy in-
cludes the use of protons and heavy ion particles (mainly carbon
ions). Additionally, hadron therapy makes use of the properties
of the Bragg peaks to deliver extremely localized radiation doses
to precise volumes. However, there were few studies on the role
of the RIBE in the clinical setting [169]. Another advancement in
the medical application is called targeted atomic nanogenerators
[170] or targeted alpha therapy (TAT) [171]. This technique in-
volves targeting molecular-sized generators of alpha-particle emit-
ting radionuclides into cancer cells, by coupling carefully chosen
parent radionuclides to internalize monoclonal antibodies to form
the bioconjugates. The short ranges and the high LET values of al-
pha particles ensures maximum cytotoxicity to cancer cells and
simultaneously ensures minimal damages to the surrounding
non-targeted normal tissues, which cannot be achieved by low-
LET ionizing radiation, such as beta particles. Other advantages of
using high-LET alpha particles for the targeted therapy over the
low-LET ionizing radiations include the independence of alpha-
particle biological effectiveness on hypoxia or cell cycle consider-
ations [172,173] and the relatively low gamma-ray components
of most alpha-particle emitting radionuclides, which allow for out-
patient treatments and impart lower radiation doses to the in-
volved nuclear medicine staff [174]. Notably, radium-223
chloride was granted the Fast Track designation by the U.S. Food
and Drug Administration for the treatment of hormone-refractory
prostate cancer in patients with bone metastases [175]. Despite
all these advantages, the RIBE in the non-targeted normal tissues
surrounding the targeted cancer cells is not fully understood. In
particular, if the alpha-particle emitting daughter radionuclides
in the decay chain of the nanogenerators are not sequestered at
the target site, then these daughter radionuclides can migrate
and deliver a potentially toxic dose to non-targeted tissues as well
[171]. The volume of normal tissues that are affected by RIBE from
these runaway radionuclides will become even larger.

In fact, effects from high-LET and low-LET radiations can be ex-
tremely different. For example, Chauhan et al. [176] detected the
expression of Fas and TNF-a in human monocytic THP-1 cells after
the cells were irradiated with alpha particles and X-rays with mean
absorbed doses from 0 to 1.5 Gy; however, the expression levels of
TNF-a were significantly higher for a-particle irradiation. TNF-a
could activate the NF-jB/COX-2 signal pathway to induce inflam-
mation-type effect in bystander cells, whereas cyclooxygense-2
(COX-2) was identified as a ‘‘central component’’ of RIBE [74] To
cite another example, Anzenberg et al. [177] found LET-dependent
differences in the signal that was released from DU-145 human
prostate carcinoma cells by irradiating these cells with alpha par-
ticles or 250 kVp X-rays. The authors showed that the X-rayed tu-
mor cells succeeded, whereas alpha-particle-irradiated tumor cells
failed to cause medium-mediated bystander effects in co-cultured
unirradiated AG01522 human fibroblasts. As such, a model that en-
ables comparisons between the effects that are induced by high-
LET and low-LET radiation will be particularly useful.

4.2. Studies on non-targeted effects using microbeam radiations

Microbeams, including charged-particle and X-ray microbeams,
are unique tools for studying the RIBE. As succinctly summarized
by Prise et al. [138], the advantages included:

(1) the capability of delivering a predetermined precise dose to
individual cells, particularly for charged-particle micro-
beams, which facilitates studies on the biological effects of
individual radiation tracks;

(2) the possibility of irradiating a chosen site with a cell or a tis-
sue, thereby elucidating the radiosensitive sites within cells
and tissues; and

(3) the capacity to localize the exposure of cells or tissues to
radiation to determine the roles and patterns of intracellular
and intercellular signaling.

With such advantages, microbeam facilities have been widely
used for studies on the RIBE, which have already enlightened us
regarding different aspects of the RIBE, including the underlying
mechanisms. In regards to medical applications, microbeam stud-
ies using animal models can help us understand the effects of spa-
tially modulated radiation fields where non-uniform doses within
the treatment fields are delivered, which cannot be achieved using
simple broad-beam facilities. Modulated radiation fields are com-
monly used at present in radiotherapy to maximize the radiation
dose to the tumor while minimizing the radiation dose to the nor-
mal tissues, e.g., in stereotactic radiotherapy and radiosurgery.
Techniques, such as GRID therapy [178], microbeam radiotherapy
[179] and X-ray microplanar beams [154,180], were also proposed
and practiced with a view to exploit the enhanced cellular toler-
ance due to the dose modulation within the treatment fields.
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Moreover, the detection of more active regions within tumors
enabled by functional imaging, such as PET scanning, may also
advocate for non-uniform delivered radiation doses. However,
the biological effects of spatially modulated doses are not yet clear.
Several studies revealed the significant differences in cell survival
[181–185] and DNA damage responses [183] because of modulated
field exposures. In particular, Mackonis et al. compared the sur-
vival of cells that were irradiated uniformly and those cells that
were irradiated with spatially modulated doses using a radiother-
apy beam that was modulated by a clinical multileaf collimator
and discovered that cell survival was actually affected by the fate
of neighboring cells through three distinct types of RIBEs [186].
More recently, Asur et al. examined the high-dose bystander effect
in GRID irradiated regions and found expression in DNA damage
and cellular stress response signaling genes in bystander cells
[187]. As such, it is indeed interesting and pertinent to establish
an in vivo animal model for studying the RIBE from microbeam
radiation in addition to broad-beam radiation.
4.3. Embryogenesis and tumorigenesis

Whereas studies have provided valuable information on the
RIBE within tumors, as well as on abscopal effects on tumors
[3,153–155], we might be able to gain extra insight into non-tar-
geted effects by studying radiobiological effects of ionizing radia-
tion on tumors through developing an embryo model. The
embryonic origin of tumors has been gaining ground in the past
few decades (e.g., see review by Ma et al. [188]), and attempts have
begun to fight cancer from the perspective of developmental biol-
ogy [189,190]. In fact, tumorigenesis and embryonic development
were found to be related to each other [191–195]. Significant sim-
ilarities have been identified between early embryonic develop-
ment and tumorigenesis in terms of biological behaviors and
molecular basis, including migration and invasion [196], gene
expression and protein profiles [197], signaling pathways
[190,198–202], mechanisms of immune escape [203–206], activi-
ties of specific enzymes and their isozymes in the cells, cell metab-
olism, proliferation and differentiation [207,208]. In particular,
both tumor cells and embryonic cells have high rate of prolifera-
tion [208]. The recognition of the embryonic origin of tumors has
facilitated a two-way exchange of knowledge between the re-
search fields of embryogenesis and tumorigenesis. On one hand,
we hope to be able to apply the abundant cancer research theories
and models to help us understand embryogenesis. On the other
hand, we aspire to fight cancer from the perspective of develop-
mental biology and to develop new diagnostic and therapeutic tar-
gets for cancers [189,190].

As such, it will indeed be advantageous to establish an in vivo
animal embryo model for studying the RIBE and RIGI from both
high-LET and low-LET radiation, as well as from both broad-beam
and microbeam radiation. Such a model can also facilitate studies
on the effects of non-uniform radiation doses that are delivered
to the tumors, e.g., because of techniques, such as GRID therapy
[178], microbeam radiotherapy [179] and X-ray microplanar
beams [154,180], as described in the previous section.
5. Embryos of zebrafish (D. rerio) as an in vivo model for studies
on non-targeted effects of ionizing radiation on an organism or
a tumor

The benefits of using embryos of the zebrafish (D. rerio) for
experiments can also be exploited in in vivo studies on targeted
and non-targeted radiobiological effects. In fact, zebrafish embryos
have been employed as an animal model for radiological research
in recent years [209–212]. Moreover, zebrafish embryos can also
bridge the gaps for more versatile studies on non-targeted effects
of ionizing radiation on an organism or on a tumor.

5.1. Pioneer works on studies of the effect of high-LET ionizing
radiation

Studies on non-targeted effects of high-LET ionizing radiation
using zebrafish embryos as the in vivo model began with studies
on the effects of alpha particles, together with the design of a spe-
cial experimental setup and procedures [213–215]. The biggest
challenge in these experiments was posed by the short ranges of
alpha particles. The excessive or variable absorption of the energy
of the alpha particles before these particles reach embryonic cells
can be due to (1) the substrate holding the embryos, (2) the med-
ium holding the embryos, and (3) the chorion and the fluid en-
closed by the chorions of the embryos. To solve the first problem,
it was important to employ a thin substrate. At the beginning, a
polyallyldiglycol carbonate (PADC) polymer film [216] was chosen
as the support substrate for the alpha-particle irradiation of
dechorionated embryos. To solve the second problem, Yum et al.
[214,215] designed the irradiation in such a way that alpha parti-
cles came from the bottom and passed through the substrate hold-
ing the embryos. To solve the third problem, Yum et al. [214,215]
performed dechorionation by using a pair of sharp forceps to re-
move the chorions of the embryos before alpha-particle irradia-
tion. Manual dechorionation could avoid the stress response that
is induced during the enzymatic digestion of the chorions. Alpha-
particle irradiation of the dechorionated embryos was performed
using a planar 241Am source (with an alpha-particle energy of
5.49 MeV under vacuum and an activity of 0.1151 lCi). This setup
was adopted throughout later investigations by Yum et al. on non-
targeted effects that are induced by alpha particles. The effects of
alpha particles were assessed through the number of apoptotic sig-
nals on the entire zebrafish embryo at 24 hpf.

In contrast, studies on non-targeted effects of microbeam radi-
ations using zebrafish embryos as the in vivo model began with
studies on the effects of microbeam protons, together with the de-
sign of a special experimental setup and procedures [217,218].
Similar to the irradiation by alpha particles that was described in
the last paragraph, the protons came from the bottom and passed
through a thin mylar film substrate. The mylar film was used in-
stead of a PADC film because the mylar film was also biocompati-
ble and because the locations of proton traversals were predefined
instead of having to be revealed through the alpha-particle tracks
that were developed on the chemically etched SSNTD. The embryos
were manually dechorionated as described above to expose the
cells. Such a setup permitted the irradiation of chosen cells on
the embryos and enabled the delivery of predetermined doses to
individual cells. The effects of microbeam protons were also as-
sessed through the number of apoptotic signals on the entire zeb-
rafish embryo at 24 hpf.

5.2. RIGI in zebrafish embryos

One of the advantages for using zebrafish embryos as a model
for studying radiation-induced non-targeted effects is that zebra-
fish embryos develop rapidly. For example, major organ systems
are evident within 24 hpf and the entire development is completed
in approximately 5 dpf [131]. In particular, this high cell prolifera-
tion rate is shared by embryonic cells and tumor cells [208], as de-
scribed above in the discussion of the embryonic origin of tumors.
Zebrafish embryos, with such a high cell proliferation rate, might
provide valuable information on RIGI. It is understood that tumor
cells often exhibit genomic instability, which contributes to the
activation of oncogenes and/or the inactivation of tumor suppres-
sor genes [219]. Given a sufficient lag time, the radiation dose
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response of zebrafish embryos should be an integrated one reflect-
ing both the RIBE and RIGI. As such, zebrafish embryos can be a
good model for studying RIGI and the RIBE.

When all the cells of a zebrafish embryo are irradiated, the RIBE
will be minimal, and the overall effect will effectively represent the
ultimate outcome of RIGI. Yum et al. [220] irradiated 1.5 hpf zebra-
fish embryos (16-cell stage, with 4 � 4 array of cells) with alpha
particles, which have a maximum incident energy of 3.49 MeV
for 1, 2, 4 and 8 min, using a planar 241Am source with an activity
of 0.1151 lCi. The alpha-particle hit rate on the embryo for the
irradiation set up could be estimated from the results that were ob-
tained by Choi et al. [221] by assuming similar cross-sectional
areas of zebrafish embryos at 1.5 and 5 hpf. By making use of a
PADC film as the support substrate for zebrafish embryos during
alpha-particle irradiation and through counting the number of al-
pha-particle tracks that were revealed on the PADC film upon sub-
sequent chemical etching, Choi et al. [221] found that the number
of alpha-particle hits on the embryos was �60 for a maximum
exposure time of 60 s by using the same 241Am source. As such,
the alpha-particle hit rate on an embryo was �1 per s. With this
alpha-particle hit rate, the Poisson probability of a cell on a
1.5 hpf zebrafish embryo receiving no alpha-particle hit for irradi-
ation at 1, 2, 4 and 8 min was approximately 0.02, 6 � 10�4,
3 � 10–7 and 9 � 10–14, which were effectively zero. The overall ef-
fects were assessed through the number of apoptotic signals on the
entire zebrafish embryo at 24 hpf. Incidentally, the occurrence of
extra apoptotic signals at 24 hpf potentially hinted at the presence
of RIGI because apparently some of the irradiated cells and their
earlier progeny, which were unstable and mutation prone, had ap-
peared to be healthy and were able to survive many generations
before the apoptosis pathways were initiated. Interestingly, the re-
sults of Yum et al. [220] revealed a biphasic dose response, which
was a characteristic for radiation hormesis. Hormetic responses are
characterized as biphasic dose–response relations exhibiting low-
dose stimulation and high-dose inhibition [222].

Along a similar line, Choi et al. [223] studied the 2-cell stage
zebrafish embryos and irradiated both cells with the same number
(between 10 and 2000) of microbeam protons, which each have an
energy of 3.37 MeV and an LET of 11 keV/lm. This experiment en-
sured that precisely the same number of protons irradiated on each
cell and avoided the need to consider the Poisson distribution of
the number of proton hits on the cells. The overall effects were also
assessed through the number of apoptotic signals on the entire
zebrafish embryo at 24 hpf. Significantly, a triphasic dose response
was revealed with three different zones, namely, (1) the subhor-
metic zone, with an increase in apoptotic signals for <200 protons;
(2) the hormetic zone, with a reduction in apoptotic signals below
the spontaneous number for 200–400 protons; and (3) the toxic
zone, with an increase in apoptotic signals again for >600 protons.

5.3. RIBE in zebrafish embryos

The RIBE has been clearly demonstrated in zebrafish embryos
by inducing the radioadaptive response (RAR) through a low-dose
particulate radiation during the priming exposure. The adaptive re-
sponse (AR) or radioadaptive response (RAR) occurs when a small
preceding priming dose decreases the biological effectiveness of a
subsequent large challenging dose. When only a minute proportion
of the embryo cells are hit by the particulate radiation during the
priming exposure, the RAR can only be successfully induced if
the unhit cells acquire the adaptation against the subsequent chal-
lenging exposure through the RIBE.

Choi et al. [224] successfully induced the RAR against a subse-
quent challenging radiation dose by exposing 5 hpf zebrafish em-
bryos to a priming dose, which was provided by alpha particles
from a planar 241Am source with an activity of 0.1151 lCi for
24 s. The alpha particle source was not rotating, and the absence
of hot spots was confirmed by visually inspecting the nuclear
tracks that formed on SSNTDs by the irradiation with the alpha
particle source and the subsequent chemical etching. The alpha-
particle hit rate on the embryo was estimated as �1 per s; thus,
approximately 24 cells were hit by alpha particles during the prim-
ing dose exposure. The 5 hpf zebrafish embryos were close to the
50%-epiboly stage (5.25 hpf), and many deep cells were in late cy-
cle 14 [131]; thus, the total number of cells was roughly estimated
as �8 � 103. As such, <3 of 1000 cells were hit by alpha particles
under the priming exposure. The successful RAR induction strongly
supported the action of the RIBE. Interestingly, in a related investi-
gation, Yu et al. [225] successfully induced the AR against a subse-
quent challenging exposure to the heavy metal cadmium also by
exposing 5 hpf zebrafish embryos to a priming dose from a planar
241Am source with an activity of 0.1151 lCi for 24 s, which typified
an antagonistic multiple stressor effect, that was provided from al-
pha particles having a maximum incident energy of 5.09 MeV after
passing through the support substrate. In reality, living organisms
are exposed to a mixture of environmental stressors, e.g., ionizing
radiations, heavy metals, etc., and the resultant effects due to such
exposures are called multiple stressor effects. The evidence
showed that toxicity could be modified by simultaneous or
sequential exposures to multiple environmental agents [225–227].

In a separate study, Choi et al. [217] reported the induction of
the RAR in zebrafish embryos using microbeam protons for the
priming exposure at 5 hpf and X-radiation for the challenging
exposure at 10 hpf. The RAR was successfully induced when 5 pro-
tons were delivered to each of 10 separate irradiation positions on
the zebrafish embryos, i.e., 50 protons were irradiated onto the
embryos [217]. When the number of irradiation positions on the
embryos was reduced to one, at least 200 protons were required
as the priming exposure for a successful induction of the RAR
[218]. The results intriguingly demonstrated that successful induc-
tion of the RAR depended on the distribution of hit cells, and thus,
the distribution of cells that were affected by the RIBE, on the tar-
get organism. Incidentally, these results also showed cross adapta-
tion between two different types of ionizing radiations with
different LET values. Table 2 summarizes the above key findings
of the non-targeted effects of ionizing radiation that were obtained
using embryos of the zebrafish D. rerio.
6. Conclusions and discussion

A brief review on the two non-targeted effects of ionizing radi-
ation, namely, the radiation induced bystander effect (RIBE) and
radiation induced genomic instability (RIGI), was first given in
the Introduction, including the history and background informa-
tion. The general use of zebrafish (D. rerio) embryos as an in vivo
model was then described. D. rerio has emerged as a popular ver-
tebrate model in many fields of research studies, such as develop-
mental biology, physiology, toxicology, and environmental
research, as well as cancer research. In particular, the human and
zebrafish genomes share considerable homology, including the
conservation of most DNA repair-related genes. The practical
advantages for using zebrafish embryos as a model for studying
radiation-induced non-targeted effects were assessed.

Then, the use of zebrafish embryos as the in vivo model for non-
targeted effects of ionizing radiation on an organism or on a tumor
was described. An introduction to previous studies using other
models was given, which primarily involved the rodent model. This
introduction was followed by a summary of key points and advan-
tages of using zebrafish embryos as an in vivo model for studying
non-targeted effects of ionizing radiation. In particular, it is an ani-
mal model that enables convenient studies on non-targeted effects



Table 2
Key findings of non-targeted effects of ionizing radiation obtained using embryos of the zebrafish Danio rerio. In all these experiments, the overall effects were assessed through
the number of apoptotic signals observed on the entire zebrafish embryos at 24 hpf.

Non-
targeted
effect

Irradiation conditions Radiation
used

Observations References

RIGI Irradiation of all 16 cells of 1.5 hpf
zebrafish embryos

Broad-beam
alpha
particles

A biphasic dose response: low-dose stimulation and a high-dose inhibition Yum et al.
[220]

RIGI Irradiation of all 2 cells of 2-cell stage
zebrafish embryos

Microbeam
protons

A triphasic dose response with three different zones, namely, (1) subhormetic zone
at ultra low dose, (2) hormetic zone at low dose, and (3) toxic zone at high dose

Choi et al.
[223]

RIBE Exposing < 0.3% of the cells of 5 hpf
zebrafish embryos to a priming dose

Broad-beam
alpha
particles

RAR against a subsequent challenging dose applied at 10 hpf Choi et al.
[224]

RIBE Exposing < 0.2% of the cells of 5 hpf
zebrafish embryos to a priming dose

Microbeam
protons

RAR against a subsequent challenging dose applied at 10 hpf Choi et al.
[217]
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of both high-LET and low-LET radiation and that makes use of both
broad-beam and microbeam radiation. One major difficulty in
deploying other animal models for experiments with some high-
LET radiations such as alpha particles was due to the short ranges.
Investigations on high-LET radiation-induced non-targeted effects
will deepen our understanding on various medical applications,
including hadron-therapy, targeted atomic nanogenerators or tar-
geted alpha therapy. In contrast, investigations on microbeam
(low- and high-LET) radiation-induced non-targeted effects can
also further our understanding of medical applications employing
spatially modulated radiation fields, such as stereotactic radiother-
apy and radiosurgery, GRID therapy, microbeam radiotherapy and
X-ray microplanar beam radiotherapy. Furthermore, the zebrafish
embryo model is a convenient embryo model for studying radiobi-
ological effects of ionizing radiation on tumors. The embryonic ori-
gin of tumors has been gaining ground in the past few decades, and
attempts have begun to fight cancer from the perspective of devel-
opmental biology. In fact, tumorigenesis and embryonic develop-
ment were found to be related to each other. Significant
similarities have been identified between early embryo develop-
ment and tumorigenesis in terms of biological behaviors and their
molecular basis.

Evidence of the involvement of RIGI and the RIBE in zebrafish
embryos were then given. The results of RIGI were obtained for
(1) the irradiation of all 16 cells of 1.5 hpf zebrafish embryos by
broad-beam alpha particles, which led to a biphasic dose response,
namely, a low-dose stimulation and a high-dose inhibition [220],
and (2) the irradiation of all 2 cells of 2-cell stage zebrafish em-
bryos by microbeam protons, which led to a triphasic dose re-
sponse with three different zones. These zones were as follows:
(1) the subhormetic zone at an ultra-low dose, (2) the hormetic
zone at a low dose, and (3) the toxic zone at a high dose [223].
In contrast, the RIBE was observed through the RAR, which was
developed against a subsequent challenging dose that was applied
at 10 hpf, when (1) <0.3% of the cells of 5 hpf zebrafish embryos
were exposed to a priming dose that was provided by broad-beam
alpha particles [224] and when (2) <0.2% of the cells of 5 hpf zebra-
fish embryos were exposed to a priming dose that was provided by
microbeam protons [217].

With the development and establishment of zebrafish embryos
as an in vivo model for studying non-targeted effects of ionizing
radiation, we are now in a better position to perform more exten-
sive studies on the molecular mechanisms underlying the RIBE and
RIGI in vivo. As previously explained, in vivo experiments provide
directly applicable results and avoid the extra step required by
in vitro experiments to extrapolate the results back to the biology
of the whole living organism. Furthermore, as previously ex-
plained, tumorigenesis and embryonic development were found
to be related to each other. As such, we aspire to fight cancer from
the perspective of developmental biology and to develop new diag-
nostic and therapeutic targets for cancers with the help of the zeb-
rafish embryo model.

One particularly important and interesting area of research on
non-targeted effects of ionizing radiation is the role of epigenetics.
Epigenetic mechanisms, including DNA methylation, histone mod-
ifications and small RNA-mediated silencing, can contribute to
non-targeted effects. As explained in the text, the sex-specific by-
stander effect that was reported by Koturbash et al. [39,143] was
observed together with DNA methylation changes. Studies have
also shown that epigenetic changes were involved in both direct
and indirect radiation effects [151]. Ilnytskyy and Kovalchuk
[228] recently reviewed the role of DNA methylation and small
RNAs in directly irradiated and bystander tissues and in radia-
tion-induced transgenerational effects. Ilnytskyy and Kovalchuk
gave evidence that epigenetic mechanisms could lead to radia-
tion-mediated effects. Until now, few studies on epigenetic
changes that were involved in the in vivo non-targeted effect have
been performed. The zebrafish embryo model is a convenient mod-
el to study epigenetic mechanisms, particularly those mechanisms
that are involved in radiation-induced transgenerational effects
because of the rapid development of zebrafish embryos and thus
shorter experimental turnaround times.

Another interesting area that can be studied using the zebrafish
embryo model is the interactions between multiple tumors in the
body. Multiple tumors can arise from multiple independent pri-
mary cancers or because of metastases from one primary tumor.
It is currently well-established that the RIBE not only exists
through communication within an individual but also is found
through signal communication outside individuals at the inter-
organismic level. Yum et al. [215] reported the communication of
alpha-particle-induced bystander signals between 1.5 hpf zebra-
fish embryos. Choi et al. [229,230] further demonstrated that the
RIBE communication between zebrafish embryos in vivo could
actually induce the RAR against a challenging dose and induce a
hormetic effect, respectively, in partnered unirradiated zebrafish
embryos sharing the same medium with irradiated embryos.
Moreover, unirradiated bystander zebrafish embryos were found
to release a feedback signal back to the irradiated zebrafish em-
bryos, which lead to a mitigation of the effects of radiation in the
irradiated embryos [231]. The chemical messengers that are
responsible for communicating the RIBE between irradiated and
bystander naïve embryos were not yet fully elucidated. Choi
et al. [232] investigated the effect of carbon monoxide (CO) on
the induction of the RIBE. More recently, the roles of NO and CO
on the induction of the RIBE by high-dose X-ray irradiation in zeb-
rafish embryos were also reported by Choi et al. [52]. Considering
the zebrafish embryo model as a good tumor model, the above
results might be able to provide valuable information for
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understanding the interactions of multiple tumors in the body and
for more effective treatments.
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