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Abstract

Three-dimensional analytical determinations of track parameters are extended to cases where the tracks are in the rounded
and spherical phases of development. The equation for the track wall in three dimensions and the equation of contour line of
the opening were derived for all types of tracks. The expression for the surface area of the track opening has also been found.
The equations come up to the well-known expressions for minor and major axes for the special case of constant track etch rate.
c© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem of track development has attracted much
attention for a long time (e.g., Henke and Benton, 1971;
Paretzke et al., 1973; Somogyi and Szalay, 1973; Somogyi,
1980; Fromm et al., 1988; Hatzialekou et al., 1988; Ditlov,
1995; Meyer et al., 1995; Nikezic and Kostic, 1997). Re-
cently, a method for calculating the track parameters based
on analytical and three-dimensional consideration was pre-
sented (Nikezic, 2000). Consideration was restricted to
tracks in the =rst phase of development, where etching does
not reach the end point of the particle range and the track
is conical in shape. In the present paper, consideration is
extended to the tracks for which etching has passed the
end point of the particle track. These over-etched tracks are
rounded or spherical in shape.
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2. The equation of the track wall

The equation of the track wall can be derived in the fol-
lowing way. Referring to Fig. 1, point A on the track wall
with coordinates (x; y) was formed from the point x0 on the
particle track. From the point (0; 0), the etching travels with
the track etch rate Vt along the x-axis (which is the particle
trajectory) and reaches the point x0 at the time t0. From x0,
the etching progresses to point A with the bulk etch rate Vb.
The angle � = �(x0) is the angle between Vt and Vb at point
x0 as shown in Fig. 1, and can be found as

�(x0) = a sin
(

1
V (x0)

)
; (1)

where V = Vt(x0)=Vb.
From the geometrical consideration, it is clear that

y′(x) = −tan �(x0) = − 1√
V 2(x0) − 1

: (2)

This equation cannot be used as the track wall equation
because the expression on the right depends on x0 while the
expression on the left depends on x. Noting that x0 =x−Dx,
we have

Dx = y(x) tan�(x0) = −y(x)y′(x) (3)
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Fig. 1. Geometry of the track wall in two dimensions.

so we can obtain

x0 = x + y(x)y′(x) (4)

and

y′ = − 1√
V 2(x + yy′) − 1

: (5)

This is the equation of the track wall in the diGerential form
with both sides depending only on x. Unfortunately this
equation cannot be solved analytically. If the angle � is small
or if V (x) is a slowly varying function (which is usually the
case in many applications), yy′ in the denominator of Eq.
(5) can be neglected and the approximation equation of the
track wall becomes

y =
∫ L

x

dx√
V 2(x) − 1

: (6)

This approximation equation was previously used by
Nikezic (2000) for the analytical three-dimensional deter-
mination of track parameters.

The coordinates (x; y) of point A can be calculated in a
simpler way, i.e.,

y = B cos �(x0) (7a)

and

x = x0 + B sin �(x0); (7b)

where

B = Vb(T − t0) (7c)

and T is total etching time. By using Eqs. (7a)–(7c), the
coordinates of the points on the track wall can be generated.
A best =t will give

y ≈ F(x; L) (7d)

as the equation of the wall, where L is the distance pen-
etrated by the etching solution (see Fig. 1). However,
the information about Vt(x) is lost in this way. Another

possibility is to solve Eq. (5) numerically, but this can be
more complicated.

In the special case where Vt=Vb = V = constant, the track
wall is represent by a line in two dimensions, and Eq. (7)
becomes

ylinear = F(x; L) =
−x + L√
V 2 − 1

: (7e)

The equation of the track wall in the conical phase in three
dimensions for normal incidence can be written as√

x2 + y2 = F(z; L); (8)

where the z-axis is along the particle trajectory, and (x; y) are
coordinates of the points in the track wall. The track opening
is circular in shape when incidence is normal, but some
egg-like shape or droplet-like shape when the incidence is
oblique. The contour equation for the opening is given by√

x′′2 + y′′2 sin2 � = F(y′′ cos � + h=sin �; L); (9)

where (x′′; y′′) are coordinates on the contour of the track
opening, � is the incident angle with respect to the detector
surface and h is the total removed layer.

In the cases where V is not a constant, the track opening
is not an ellipse, but is instead egg-like, or has even more
complicated shapes depending on the functions F and ulti-
mately on the function V .

3. Over-etched tracks: normal incidence

In this section, over-etched tracks will be considered. The
schematic sketch of an over-etched track in two dimensions
is shown in Fig. 2. After a certain time of etching, the etchant
will reach the end point E of the particle range. At that time,
the wall of the track is formed and denoted by the num-
ber 1 in Fig. 2. Point A with coordinates (z; y) is contained
in the track wall. The angle between the tangent t on the
wall at point A and the z-axis is the local development an-
gle �. Although further etching will progress in all direc-
tions with the same rate Vb, including the surroundings of
point E, it can be characterized by two processes for easier
treatment, namely, the displacement for the distance d of
the wall from position 1 to position 2, and formation of a
sphere around point E with same diameter d. Point A moves
normally onto the tangent t for a distance d to point A′ with
coordinates (z′; y′). The track wall consists of two parts,
i.e., semi-conical and spherical. These two parts intersect
at points M1 and M2 (if the problem is considered in two
dimensions). In the three-dimensional representation, inter-
section occurs at a circle, which is schematically shown in
Fig. 2 as well as in Fig. 5.

From geometrical consideration, the relationships be-
tween the (z; y) and (z′; y′) coordinates are given by

z′ = z + d sin � and y′ = y + d cos �: (10)
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Fig. 2. An over-etched track. O and E are entrance and end points
of a particle; R = OE is the particle range. Line 1: wall position
at the moment when the etching solution reaches point E; d: the
removed layer during over-etching; Line 2: the new wall position;
M1 and M2: intersection points; t: tangent on the wall at point A
and � is the local development angle of points A and A′.

By using Eq. (7d) with L = R, and combining with
Eq. (10), one can obtain the equation for the semi-conical
part (in the over-etched phase) in two dimensions as

y′ = F(z; R) + d cos � (11)

or

y′ = F(z′ − d sin �; R) + d cos �: (12)

Now, we can formally replace y′ with y, and z′ with z, to
get the equation for the track wall in two dimensions as

y = F(z − d sin �; R) + d cos �: (13)

This is the equation of the track wall in two dimensions at
the moment when the etchant reaches the end point of the
particle trajectory.

The equation of the track wall in three dimensions is given
analogously to Eq. (8) as√

x2 + y2 = F(z − d sin �; R) + d cos �: (14)

The detector surface after etching is represented by the plane
� in Fig. 2. The plane � is normal to the z-axis which rep-
resents the particle trajectory. The thickness of the removed
layer is denoted by h (see Fig. 2). If z=h is substituted into
Eq. (14), the equation of a circle in the plane � is obtained as√

x2 + y2 = F(h − d sin �; R) + d cos � = D′; (15)

where D′ is radius of the circle and (x; y) are the coordinates
of points on the circle. The angle � in Eqs. (14) and(15) is
the local developing angle at point N (Fig. 2). All points
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Fig. 3. Determination of the intersection point when V = constant.

of the track-opening contour were developed from the same
point N on the particle path under the same developing angle
�. This remark can be generalized to all points with the same
z and same developing angle �. The diameter, D = 2D′, of
the circular track opening is found as

D = 2D′ = 2[F(h − d sin �; R)] + d cos �: (16)

3.1. Special case: V = constant and normal incidence

This case is depicted in Fig. 3, where the track wall in
two dimensions is a line. Line 1 in Fig. 3 represents the
track wall when the etchant reaches the end point E of the
particle trajectory. The equation of line 1 is given as

y1 = (R − z) tan �; (17)

where R is the particle range. Line 2 represents the track wall
in two dimensions after prolonged etching for the removed
layer d, with the equation given as

y2 = (R − z + d sin �) tan � + d cos �: (18)

Now, Eq. (13) is transformed in the linear case through
Eq. (7e) as F(z; R)=(R−z)=(V 2−1)1=2. Then F(h−d sin �;
R)=(R−h+d sin �)=(V 2−1)1=2 gives the same equation as
Eq. (18) with a substitution by h, i.e. z → h. If V =constant,
Eq. (16) can be transformed as

D
2

=
1√

V 2 − 1
(R − h + d sin �) + d cos �: (19)

By substituting sin � = 1=V and cos � = (V 2 − 1)1=2=V , one
can obtain

D
2

=
1√

V 2 − 1

(
R − h +

d
V

)
+

d
V

√
V 2 − 1

=
R − h + dV√

V 2 − 1
(20)



42 D. Nikezic, K.N. Yu / Radiation Measurements 37 (2003) 39–45

or

D = 2
Vtt1−Vb(t1+t2)+Vbt2 Vt

Vb√
V 2

t −V 2
b

Vb

= 2VbT
√

Vt−Vb√
Vt+Vb

(21)

which is the same equation for the track diameter as given by
Durrani and Bull (1987, p. 54). In the previous equation, t1
is the time when etching reaches point E; t2 is over-etching
time and T=t1+t2 is the total etching time. Eqs. (8) and (14)
give good results for the simplest case (normal incidence
and constant V ).

3.2. Intersection points M1 and M2

The z coordinates of intersection points can be determined
in two dimensions because the problem is axially symmetric.
The equation for the circle with center at point E(0; R) and
radius d (see Fig. 2) is

(z − R)2 + y2 = d2: (22)

The intersection points belong to both semi-conical and
spherical parts of the track wall. Therefore, the coordi-
nates (ym; zm) of the intersection points should satisfy both
Eqs. (13) and (22). The coordinates of the intersection points
M1 and M2 can be found by combining Eqs. (13) and (22)
and the following was found:√

d2 − (zm − R)2 = F(zm − d sin �; R) + d cos �: (23)

The last equation gives the coordinate zm of the intersection
points. The radius of the intersection circle in three dimen-
sions is given by ym = [d2 − (zm − R)2]1=2. An analytical
solution of Eq. (23) can be obtained for the simplest case
where V =constant. One should also be able to =nd the com-
mon points of line 2 and a circle around E with radius d.
From Fig. 3, the coordinates of the common point M are

zm = R + d sin � and ym = d cos �: (24)

In the case of a varying function V , Eq. (23) should be
used to determine the points where the semi-conical and
circular parts of the wall are joined. The unknown variable
z appeared on both sides of Eq. (23) and numerical iteration
is needed to solve the equation.

4. Oblique incidence

In this part, the case of oblique incidence is considered.
Apparently, this situation is more complicated than the pre-
vious one. However, if two transformations of the coordi-
nate system are applied, the problem will be simpli=ed sig-
ni=cantly.

4.1. Semi-elliptical opening

Semi-elliptical openings are found when the detector
surface after etching did not cross the part of the sphere
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Fig. 4. Track opening in the semi-elliptical phase.

formed around point E. In this section, such kind of tracks
will be considered. The geometry used for considering a
semi-elliptical track opening is presented in Fig. 4. The
nomenclature is the same as those in previous =gures. A
new parameter is the angle � which is the incident angle
with respect to the detector surface. Around the end point E
of the particle trajectory, a sphere with radius d is formed
which is joined with the semi-conical part of the track wall.
The plane �1 represents the detector surface after etching,
and h is the thickness of the removed layer. The track is
“cut” by the plane �1 under the angle � with respect to the
particle direction (z-axis). The =rst step is a translation of
the coordinate system (x; y; z) from point O to point O′

with coordinates O′(0; 0; z0) where z0 = h=sin �. The newly
obtained system (x′; y′; z′) is related to the original one
through the equations

x′ = x; y′ = y and z′ = z − z0 (25)

and

z = z′ + z0:

Eq. (14) for the track wall in the new coordinate system
becomes√

x′2 + y′2 = F(z′ + z0 − d sin �; R) + d cos �: (26)

The second step is a rotation of the (x′; y′; z′) coordinate
system through an angle (�=2 − �) around the x′-axis. The
newly formed coordinate system (x′′; y′′; z′′) system is re-
lated to the (x′; y′; z′) system through the equations

y′ = y′′ sin � − z′′ cos � and

z′ = y′′ cos � + z′′ sin �: (27)
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Eq. (26) for the track wall in the (x′′; y′′; z′′) system is now√
x′′2 + (y′′ sin � − z′′ cos �)2

=F(z′′ sin � + y′′ cos � + z0 − d sin �; R)

+d cos �: (28)

The surface of the detector after etching is given as z′′ = 0.
By substituting z′′=0 into Eq. (28), the intersection between
the track wall and the new detector surface described by
z′′ = 0 is given as√

x′′2 + y′′2 sin2 � 2

=F(y′′ cos � + z0 − d sin �; R) + d cos �: (29)

Here, x′′ and y′′ are the coordinate axes along the plane �1

(both belonging to the plane �1) and z′′ is normal to �1. In
this case, y′′ is extended along the major axis of the track and
x′′ is normal to it. This is the equation for the contour line
of the track opening in the semi-elliptical phase, where the
track is rounded but has not yet passed the spherical shape.
The angle �, which appears in the Eq. (29) implicitly and
varies along the contour line, makes calculations diMcult.
However, calculation of the contour line is facilitated by the
fact that all points with the same value of z have the same
developing angle � (as emphasized before).

4.1.1. Special case
The special case in which V = constant is considered

again. In this case, F(�; R) = (r − �)=(V 2 − 1)0:5. Here,
Eq. (29) for the contour line becomes√

x′′2 + y′′2sin2 � =
1√

V 2−1

(
R− h

sin �
−y cos �+

d
V

)

+
d
V

√
V 2 − 1; (30)

where the substitutions z0 =h=sin �; sin �=1=V and cos �=
(V 2−1)1=2=V have been carried out. Further transformations
have brought the following:√

x′′2 + y′′2sin2 �

=
1√

V 2 − 1

(
R − h

sin �
− y cos � + dV

)
: (31)

The term R + dV on the right side of this equation is R +
dV = Vtt1 + Vbt2Vt=Vb = Vt(t1 + t2) = VtT = Vth=Vb = Vh.
After some algebraic transformations, we obtain

x′′2

h2 V sin �−1
V sin �+1

+
(y′′ + h

tg �(V sin �+1) )
2

h2 V 2−1
V sin �−1

= 1: (32)

This equation is that of an ellipse from which we can de-
termine the major and minor axes as well as the shift of
the ellipse center along the y′′-axis. In the special case of
constant V , Eq. (29) comes up to the form of an ellipse

equation with well-known expressions for minor and major
axes (see Durrani and Bull, 1987, pp. 59 and 63).

4.2. Discussion of Eq. (29)

(a) Track length (major axis)
The track length can be found from Eq. (29) when x′′=0.

Here, the coordinates y1 and y2 where the contour line
crosses the y′′-axis are found as

y1;2 sin � = �F(y1;2 cos � + z0 − d sin �; R) + d cos ��: (33)

Note that unknown variables y1 and y2 are on both sides
of Eq. (33) and iterations are needed to solve the equation.
The length D of the track opening is then equal to

D = |y1| + |y2|: (34)

(b) Track width (minor axis)
The track width cannot be found by taking y′′=0 because

the center of the opening is shifted along the y′′-axis. In this
case the maximum of the function given in Eq. (29) should
be determined by locating(

dx′′

dy′′

)
ymax

= 0; (35)

where ymax is the value of y′′ when x′′ has a maximum. Then
ymax should be substituted into Eq. (29) to =nd the maximum
value xmax. The track width (minor axis of the track opening)
is given by d=2xmax. Such procedures are rather complicated
and impractical because the angle � also depends on the
coordinate y. A better approach is to perform calculations
of x′′ from Eq. (29) and to determine the maximal value of
x′′ by systematically changing values of y′′ from y1 to y2.

(c) Surface area of track opening
The surface area S of the track opening can also be found

from Eq. (29) by performing the integration

S=2
∫ y2

y1

√
F2(y cos �+z0−d sin �+d cos �)−y2 sin2 � dy;

(36)

where y1 and y2 are determined by Eq. (33). Numerical
integration is needed to determine S.

4.3. Track opening in transitional phase

The plane representing the detector surface after etching
intersects part of the sphere formed around point E. Con-
sequently, the track opening consists of two parts, namely,
semi-elliptical and circular. The geometry, although simi-
lar to the previous case, is presented separately in Fig. 5.
The two parts of the track wall, semi-conical and spherical,
are joined to the circle at the points M1 and M2. The plane
�2 corresponding to the detector surface will cut the track
after etching, so both the semi-conical and the spherical parts
will be crossed. As a result, the complicated curve, namely,
circle+semi-ellipse, is formed in the �2 plane, which is also
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Fig. 5. Track opening in the transitional phase.

presented in Fig. 5 in bold. The circle and the semi-ellipse are
also joined at the points denoted by A and A′ in Fig. 5. The
semi-elliptical part of the track opening (lower left direction
from the line AA′) is represented by the same Eq. (29) as
was derived above. The circular part is represented by the
equation of a circle, and the parameters to be determined
are only the radius of the circle and the coordinates of the
center in the �2 plane. The equation of the sphere in the
(x; y; z) system with the center at the point with coordinates
(0; 0; R) and radius d is

x2 + y2 + (z − R)2 = d2: (37)

Now, the procedures for translation of the coordinate system
to the point (0; 0; z0) and rotation through an angle (�=2−�)
around x′ should be repeated. After these transformations
(see Eqs. (25) and (27)), the equation of the sphere in the
(x′′; y′′; z′′) system becomes

x′′2 + (y′′ sin � − z′′ cos �)2

+(y′′ cos � + z′′ sin � + z0 − R)2 = d2: (38)

The intersection with the plane �2, which has the equation
z′′=0 in the (x′′; y′′; z′′) coordinate system, gives the equa-
tion of the circle as

x′′2 + [y′′ + cos �(z0 − R)]2 = d2 − (z0 − R)2 sin2 �: (39)

Therefore, the center and radius of the circle can be found
from this equation, viz., the center is at the point (0;−(z0 −
R) cos �) in the �2 plane. The radius r of the circle is equal
to

r =
√

d2 − (z0 − R)2 sin2 �: (40)

4.3.1. Intersection points of two curves
The two curves, i.e., the semi-ellipse and the circle, inter-

sect at the points A and A′ (see Fig. 5), which are determined

as follows. The points M1 and M2 are intersection points of
the semi-conical and the spherical parts of the track wall.
The z coordinate, zm, of points M1 and M2 can be found
from Eq. (23). In the (x; y; z) system, the equation z = zm
is a plane normal to the z-axis (i.e., parallel to xy plane).
The intersection between the planes �2 and z = zm is a line
containing the points A1 and A2.

The equation for the plane z= zm in the (x′; y′; z′) system
is z′ = zm − z0. After rotation into the (x′′; y′′; z′′) system
(see Eq. (27)), the equation of the plane becomes

z′ = y′′ cos � + z′′ sin � = zm − z0: (41)

Its intersection with the plane z′′ = 0 gives

y′′ cos � = zm − z0: (42)

Then the y′′ coordinate of points A and A′ is

y′′
AA′ =

zm − z0

cos �
: (43)

The x′′ coordinates of the points A and A′ can be found from
Eq. (39) for the circle given above.

4.3.2. Major and minor axes
The minor axis d is found through the largest value of the

x coordinate, xmax, of the contour line, regardless of whether
it belongs to the circular or the semi-elliptical part of the
opening:

d = 2xmax : (44)

For determination of the major axis, the three-dimensional
approach is not needed. The major axis is equal to the dis-
tance Q1Q2 (Fig. 5). The coordinates of Q2 are found from
Eq. (39) by taking x = 0 while Q1 is the same as y1 in
Eq. (33).

4.3.3. Surface area of track opening
The surface area is equal to the sum of those for the

circular and semi-elliptical parts.

4.4. Track opening in circular phase

As etching progresses, the circular part will constitute a
larger proportion of the track opening. Ultimately, the entire
opening will become circular and the track is completely
spherical. The major and minor axes of the track opening
are then equal to the diameter of the circle, which can also
be found from Eq. (40).

5. Conclusion

The results presented in this paper have enabled calcula-
tions of the contour line and detailed studies on this contour
line, if the equation of the track wall is known. By using
the developed computer program, it is possible to plot these
lines for various etching/incident conditions. Furthermore,
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calculations of the surface area of track openings are enabled
in all phases of track development.

The minor axis of the track opening is calculated as
d=(y1y2)1=2 by Somogyi and Szalay (1973), where y1 and
y2 are coordinates of the end points of the track openings
along the y (longest) axis (same as those in Eq. (33) in this
paper). This expression for the minor axis is derived based
on the characteristics of an ellipse. As observed from Eq.
(29), the opening is not elliptical (the term semi-elliptical
was employed because of no better alternatives). The devia-
tion from an ellipse is more serious if the angle � is smaller.
In this sense, the three-dimensional approach oGers a better
determination of the minor axis of the track opening.
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