City University of Hong Kong Course Syllabus

offered by Department of Physics with effect from Semester A 2022/23

Part I Course Overviev	v
Course Title:	Energy Materials: Physics and Applications
Course Code:	PHY6526
Course Duration:	1 semester
Credit Units:	3
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors : (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	Nil
Exclusive Courses: (Course Code and Title)	PHY8526 Energy Materials: Physics and Applications

Part II Course Details

1. Abstract

(A 150-word description about the course)

Nowadays, economic development relies heavily on energy resources and energy technologies. Considerable efforts have been devoted to the design of novel materials for energy-related applications, especially the generation and storage of renewable energies such as solar energy and batteries. This course aims to provide students an introduction to the physics and applications of energy materials including battery materials, photovoltaic materials as well as the materials for fuel cell and hydrogen technology. Emphasis will be put on the discussions of underlying physical mechanism, general performance, current limitations and challenges.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting*	Discov	ery-eni	riched
		(if	curricu	lum rel	ated
		applicable)	learnin	g outco	mes
			(please	tick	where
			approp	riate)	
			Al	A2	A3
1.	Describe the physical concepts and principles of energy	30%			
	materials				
2.	Relate the materials' properties with their applications	20%			
3.	Describe the intrinsic and practical limitations of various	10%			
	energy materials				
4.	Identify challenges in current development of energy	20%			
	materials and technologies				
5.	Develop possible solutions and designs for the generation	20%			
	and storage of renewable energies				
* If we	eighting is assigned to CILOs, they should add up to 100%.	100%		•	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CIL	CILO No.			Hours/week (if		
		1	2	3	4	5		applicable)
1	Lectures		\checkmark		$\sqrt{}$			26 hrs/13 wks
2	Tutorials	V		$\sqrt{}$				6 hrs/ 6 wks
3	Individual project and				$\sqrt{}$	V		6 hrs/ 6 wks
	presentation							

4. Assessment Tasks/Activities (ATs) (ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.						Weighting*	Remarks
	1	2	3	4	5			
Continuous Assessment: 100%								
Quizzes							20	
Presentation	\checkmark						40	Individual project
Final Report	√						40	Individual project
* The weightings should add up to 100%.					100%			

^{*} The weightings should add up to 100%.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Quizzes	Understanding the physical concepts related to common energy materials and their design principles	High	Significant	Basic	Not reaching marginal level
2. Presentation	Understanding the physical mechanisms, applications, and limitations of selected energy material; Identify challenges and develop possible solutions	High	Significant	Basic	Not reaching marginal level
3. Final Report	Having an in-depth understanding of the selected energy materials, including its properties, development and limitations	High	Significant	Basic	Not reaching marginal level

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure	
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)	
1. Quizzes	Understanding the physical concepts related to common energy materials and their design principles	High	Significant	Moderate	Basic	Not marginal level	reaching
2. Presentation	Understanding the physical mechanisms, applications, and limitations of selected energy material; Identify challenges and develop possible solutions	High	Significant	Moderate	Basic	Not marginal level	reaching
3. Final Report	Having an in-depth understanding of the selected	High	Significant	Moderate	Basic	Not marginal	reaching

energy materials, including its			level
properties, development and			
limitations			

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- Battery materials
- ^o Electrochemical fundamentals, electrochemical cell, charging and discharging, phase transition, order-disorder transition, electrode processes at equilibrium, energy efficiency, cycle life
- Materials for electrode (e.g., LiCoO₂, LiFePO₄, graphite)
- Materials for non-rechargeable batteries (e.g., alkaline battery)
- ° Materials for rechargeable batteries (e.g., aluminium-ion battery, lithium-ion battery)
- Photovoltaic (PV) materials
- Electrodynamic basics, electromagnetic waves, optics of flat interfaces, light absorption
- $^{\circ}$ Solar radiation, solar spectra, solar energy concentration, solar cell parameters, losses and efficiency limits
- ° Crystalline silicon solar cells, thin-film solar cells, and other types
- PV modules and systems (components, design, and fabrication)
- PV system economics and ecology
- Fuel cell applications
- Overview of fuel cell types, charge transfer and mass transport in fuel cells
- ° Thermodynamics and reaction kinetics in Fuel cell
- Proton exchange membrane and solid oxide fuel cell materials
- Fuel cell system design and characterization
- Materials for hydrogen technology
- ^o Hydrogen production (e.g., electrolytic production, thermal decomposition of water, chemical extraction), hydrogen from the decomposition of materials containing hydride anions
- Hydrogen storage in solids: metal hydrides, ammonia and related materials, reversible organic liquids

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Fuel Cell Fundamentals, O'Hayre, Cha, Colella, and Prinz, Wiley, any Edition
2.	"Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and
	Systems", A. Smets, K. Jäger, O. Isabella, R. V. Swaaij, M. Zeman, UIT Cambridge, 2016.
3.	"Thermoelectrics: Basic Principles and New Materials Developments", G.S. Nolas, J. Sharp, J.
	Goldsmid, Springer, 2001.
4.	"Energy Storage: Fundamentals, Materials and Applications", Robert Huggins, Springer, 2 nd ed.,
	2016.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	"Energy Materials", D. W. Bruce, D. O'Hare, R. I. Walton, Wiley, 2011.
2.	"Thermoelectricity: An Introduction to the Principles", D. K. C. MacDonald, Dover
	Publications, 2006.
3.	"First-principles investigation of phase stability in Li _x CoO ₂ ", A. Van der Ven, M. K. Aydinol,
	and G. Ceder, Physical Review B 58, 2975-2987 (1998).
4.	"Electrochemical and in situ X-ray diffraction studies of lithium intercalation in Li _x CoO ₂ ", Jan
	N. Reimers and J. R. Dahn, Journal of The Electrochemical Society 139, 2091-2097 (1992).