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Laser oscillation 
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In lecture  4 :  
Quantitative treatment of the laser 

behaviour:  
steady state (stationnary) solution  

A priori a very difficult problem: 
•  Field: obeys partial 

differential equations 
•  Laser medium: non linear 

Gain condition 
' "ω ω ω< <

Phase condition 

cav

2      

  integer number

p
cp
L

p

ω π=

Long. cavity modes 
Oscillating modes 
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Modes of a closed lossless cavity 

Totally reflecting boundary (perfect conductor) : expansion 

Complex field  (Analytic signal) 

   E(r,t) =E(+) (r,t)+E(−) (r,t)    with    E(−) = E(+) (r,t)"# $%
*

    
E(+) (r,t) = Apu p (r)e−iωpt

p
∑

p = {3 integer  numbers (3D) + 1  
      two-valued number (polarization)} 

   u p (r){ } =  orthogonal normalized basis     d 3r∫ u p
*(r)uq(r) =Vcavδpqmodes 

• Much simplified description of the field: discrete series Ap of 
complex numbers instead of a vector field 

• Very simple simple time evolution 
• Analogous to Schrödinger time depending solution: expansion on 

eigenstates of the Hamiltonian 

No approximation 
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Modes of a stable open lossless cavity 

Stable lossless cavity  
Ensemble of perfect mirrors 
leading to  stationary solutions 
of the propagation equation 
(modes) 
Condition on mirrors (position, 
orientation, curvature) 

R L 

Example of a plane-concave cavity 

 Stable if  R > L, mirrors aligned 

      
E(+) (r,t) = Ap u p(r)

p
∑ exp(−iω pt)

Expansion on the modes of the 
cavity 

Marginal case  R >> L  ⇒  quasi-cylindrical beam (quasi plane wave, 
diffraction is negligible): Fabry-Perot interferometer 

⇒ Homogeneous (top hat) model 
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Homogeneous (top hat) mode model 
Aligned plane mirrors 

⇒  Marginally stable cavity 
⇒  Mode = recycled plane wave 

      
E p

(+) (r,t) = Ap
α e p
α exp(ik p

α .r− iω pt)
α
∑ Lcav 

S 

⇒  no transversal structure  
   ( only one integer p = Lcav / λ )	
⇒  Constant amplitude: simplified calculations 

Not a fully realistic model (diffraction as well as mirror curvatures 
determine the transverse structure) but a convenient model: 

• Avoids tedious integrals over transverse profiles 
• Allows us to grasp the basic physics, and to obtain correct 

equations, within numerical prefactors 
• Easy to adapt to more realistic cases (Hermite-Gauss, 

Laguerre-Gauss, … normal expansions) 
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Homogeneous (top hat) mode model 
Aligned plane mirrors 

⇒  Marginally stable cavity 
⇒  Mode = recycled plane wave 

      
E p

(+) (r,t) = Ap
α e p
α exp(ik p

α .r− iω pt)
α
∑ Lcav 

S 

⇒  no transversal structure  
   ( only one integer p = Lcav / λ )	
⇒  Constant amplitude: simplified calculations 

7 

Finite transverse size:   S   ⇒ Vcav = S Lcav  

Energy in the  mode 

Poynting vector 
      
Π p = ε0cE(r,t)2 = 2ε0c Ap

2
=

U p

Vcav

c =
1
S

U p

Lcav / c

      U p = ε0E(r,t)2 Vcav = 2ε0 Ap

2
Vcav = N pω p

Top hat mode model: simplified calculations 

Round trip travel time 

Number of 
photons in 

cavity 
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Lossy cavity: generalized modes 

Lcav 

S Π	

R Π	

T Π	
Weak losses  ( T << 1 ): 
small over 1 turn (= Lcav / c ) 

  

dU p

dt
= −TΠ pS = −T

cU p

S Lcav

S

  

dU p

dt
= −γcavU p   with  γcav =T c

Lcav

Expansion over generalized modes 

      
E(+) (r,t) = Ap (t)u p(r)

p
∑ e−iωpt

    

dAp

dt

!

"
#

$

%
&

losses

= −
γcav

2
Ap   with  γcav ≪

c
Lcav

Damping due to output coupler (T) and 
losses (α for 1 turn): lossless  T = α = 0   

γcav = T +α( ) c
Lcav

cav

2p
cp
L

ω π=
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Number or photons in a cavity mode 
vs. output power 

Lcav 

Pint 

R Pint 

Pext = T Pint 

  
U = Pint

Lcav

c     
⇒   N =

U
ω

=
1
T

Pext

ω
Lcav

c

Example: He-Ne  laser (λ  =  0.633 µm) 

  Pext =10 mW ;  T =10−2 ; Lcav = 0.75 m

  N = 2×1010

useful 
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Cavity with laser amplifier: gain term 

Lcav 

S Π	

R Π	

T Π	Ampli Propagation in amplifying medium 

   
Eout

(+) =Ein
(+) exp

gLA

2
exp i !k LA{ }

Evolution of a mode 
amplitude Ap (t)  
•  Phase terms incorporated into cav géo A A( 1)L L n L= + −

•  Gain par pass 
    
δAp 

gLA

2
Ap

   

dAp

dt

!

"
#

$

%
&

gain

=
gLA

2
c

Lcav

Ap

Validity of this approach: atoms in a steady state (forced by the 
light field in the cavity)   γcav Γatoms

Expansion on generalized modes: 

      
E(+) (r,t) = Ap (t)u p(r)

p
∑ e−iωpt
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Gain saturation (reminder) 

General expression 
(steady state)    

g(ω) = g (0) (ω)
1+ s

Non 
saturated 
gain 

  with   g (0) (ω) =σ (ω) nb − na
$% &'

(0)

Mode p 

   

g = g (0)

1+ I
I

sat

=
g (0)

1+
2 A

2

I
sat

   

dAp

dt

!

"
#

$

%
&

gain

=
g (0)LA

2
c

Lcav

Ap

1+
2 A

p

2

I
sat

2

2

2

M

(0) (0)
M 4( )

1( ) ( )
1

g g
ω ω

ω ω

Γ

−
=

+

Lorentzian  
variation 

Non 
saturated 

population 
inversion 



13 

Evolution equation of a laser mode 
(amplifier in a steady state) 

   

dA
dt

=
dA
dt

!

"
#

$

%
&

losses

+
dA
dt

!

"
#

$

%
&

gain

= −
T +α

2
c

Lcav

+
g (0)LA

2
c

Lcav

1

1+
2 A

2

I
sat

)

*

+
+

,

+
+

-

.

+
+

/

+
+

A

cav / 2γ cav / 2rγ

  
r = g (0)LA

T +α
Non saturated gain (normalized by losses) 

   

dA
dt

=
γcav

2
−1+ r

1+2 A
2

/ Isat

#
$
%

&%

'
(
%

)%
A
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Evolution equation of the intensity 

   

dA
dt

=
γcav

2
−1+ r

1+2 A
2

/ Isat

#
$
%

&%

'
(
%

)%
A

Amplitude and phase:     A = Aeiφ

 no equation for the phase 
  

dA
dt
=
γcav

2
−1+ r

1+2A2 / Isat

#
$
%

&
'
(

A

Intensity 

  

dI
dt
= γcav −1+ r

1+ I / Isat

#
$
%

&
'
(

I
   I ∝ A

2
= A2



15 

Laser in stationnary state 
Continuous Wave (CW) laser 
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state 

Stationary solutions 
Intensity and gain 
Threshold and phase transition 
Spontaneous symmetry breaking 

D. Multimode laser: mode 
competition 

Homogeneous and 
inhomogeneous broadening 

Multimode emission; simple or 
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Steady state (stationnary) intensity 

  

dI
dt
= γcav −1+ r

1+ I / Isat

#
$
%

&
'
(

I = 0
  

!I = 0
!!I = (r −1)Isat

Non zero solution  only if  
  
r = g0LA

T +α
>1

Non saturated gain > losses 

If    r > 1 : There exists two solutions! 

Which of the two is selected by the laser? 
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Stability of the stationnary solutions 
Linearization of 

  

dI
dt
= γcav −1+ r

1+ I / Isat

#
$
%

&
'
(

I in the vicinity of solutions 

•  Stability of  sat( 1)I r Iʹ́ = − Noting  I I iʹ́= +
one expands at 1rst order in /i I ʹ́

•  Order 0 is automatically satisfied (stationnary solution) 

   

di
dt
 −γcav

r −1
r

#

$
%

&

'
(i•  Order 1:  

Case  r > 1 (I" ≠ 0), stable solution:  
  
I = !!I +δ I exp −γcav

r −1
r

%

&
'

(

)
*t

+
,
-

.
/
0

•  Stability of I’=0  §  stable if r < 1 
§  unstable r > 1 Stable stationnary solutions 

•   r < 1  :   I’ = 0 
•   r > 1   :  sat( 1)I r Iʹ́ = −

Above threshold, non zero solution! 
Starts on a spontaneous photon 
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Stationnary intensity and gain 

r 1 2 

I 

Isat 
  
r = g (0)LA

T +α
« Excitation » 
of amplifier 

Gain at threshold 
(non saturated)   

gthresh =
T +α

LA

r 1 2 

g 

gthresh   
g = g(0)

1+ I / Isat

Stationnary gain 

  !!I = (r −1)Isat

•   r < 1  :   I  = 0 
•   r > 1   :  I  = (r - 1)Isat 

Saturation prevents gain from exceeding losses, in order 
to fulfill the steady state condition  gain  =  losses 

Laser threshold 

Gain clamping 



Laser threshold and phase transition 

   
−1+ r

1+2 A
2

/ Isat

"

#

$
$

%

&

'
'
A = 0 has non zero solutions only if r > 1 

Analogy with a phase transition 
Ferromagnetic medium at Curie point: spontaneous magnetization 
appears at Curie temperature TC 

   c T −TC( )M+ gT M
2
M = 0 has non zero solutions only if T < TC 

CT T>

M = 0 

M 
CT T<

M = 0 is unstable 

   
M

2
=

c TC −T( )
gT

A complex field (order parameter) appears at  r = 0 

19 
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Spontaneous symetry breaking 

M 

CT T<
( )2 Cc T T
gT
−

=M

: appearing of a magnetization M (order parameter) 
does not determine the 
direction of M ! ?? 

Spontaneous symetry breaking 

   
A

2
= (r −1)

Isat

2
does not determine 
the phase of the field 

r > 1 : appearance of a complex laser field     A = Aeiφ

Spontaneous symetry breaking: a phase 
is chosen 
All emitters locked in the same phase 

  Im A{ }

  Re A{ }

φ 

: a direction is chosen 

All elementary dipoles take the same orientation 
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Violation of the Curie principle? 
Curie principle • Effects have the same symmetry as causes 

• Solutions of a problem have the same symetry as the 
physical situation (equations, boundary conditions) 

Magnetization : situation a priori invariant by rotation in space 
The solution picks up a direction ! 

Laser field: problem invariant in the Fresnel plane (phasor plane) 
The solution picks up a phase 

A catalogue of possible reactions to the conflict 
1.  Theoretical : Spontaneous symmetry breaking does exist (and it is a 

useful and fruitful  concept!) 
2.  Pragmatic: an initial residual field breaks the symetry 
3.  Formal: search a solution as a random variable respecting the 

symmetry 
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The complex amplitude of the laser 
mode as an classical random variable 

   A = A1 eiφ

We look for a solution of                                         as a classical  
complex random variable. 

=  random variable such as 

   

i A1 = (r −1)
Isat

2
i φ   uniformly distributed over 0,2π$% &'

•  is a solution 
•  does not break the symetry 

  Im A{ }

  Re A{ }

What happens for a specific situation? (a particular laser has been 
turned on). 

   A
2
= (r −1) Isat / 2
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Complex amplitude of the laser mode in a 
particular experiment: a realization (a 

sample) of the random variable 
   A = A1 eiφ

=  random variable such as 

   
i A1 = (r −1)

Isat

2
    i φ   uniform over 0,2π$% &'

Description in the spirit of full quantum optics formalism: quantum 
state without a specific phase; measurement determines the phase. 

A particular state of working: a particular 
realization of the random variable (a sample 
drawn from a statistical ensemble): one 
particular value of the phase is picked  

  Im A{ }

  Re A{ }

Powerfull method: ensemble averages allow one to obtain results on 
a specific situation! (cf. lectures 6 and 7) 
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Homogeneous and 
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Multimode emission; simple or 
bistable mode competition 

E.  Conclusion 
Generality of the behaviors 
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Saturation in a multimode laser? 
Monomode laser gain 

  

g(ω p ) =
g (0) (ω p )

1+
I p

Isat (ω p )

How to write the saturation 
term relative to mode p when 
several modes are active? 

   

I p

Isat

  or   
I

q
q

∑
Isat

 ?

Multimode laser 

Depends on the nature of the broadening of the laser line, of width  Γ2: 
•  Homogeneous broadening (same for all atoms) 
•  Inhomogeneous broadening (atoms with different properties) 

ω0ω1 ω2

T + A

ωMω1 ω2

T + A

ω0ω1 ω2

T + A

ωMω1 ω2

oscillation possible
T + A

Γ2

ω0ω1 ω2

T + A

ωMω1 ω2

T + A

ω0ω1 ω2

T + A

ωMω1 ω2

T + A

Γ2

ω0ω1 ω2

T + A

ωMω1 ω2

T + A

ω0ω1 ω2

T + A

ωMω1 ω2

oscillation possible
T + A

Γ2

ω0ω1 ω2

T + A

ωMω1 ω2

T + A

ω0ω1 ω2

T + A

ωMω1 ω2

T + A

Γ2

(0)
Ag L

  ′ω   ′′ω
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Inhomogeneous broadening 
The overall line width results from the 
addition of individual lines centered at 
different frequencies, associated with 
different microscopic amplifying systems 

σ (ω) 

ω	ωM 

Γ2	

Example: Doppler broadening in a gas 
laser (eg He-Ne) 

kL 

Doppler shift for an atom  at 
velocity V interacting with a light 
wave with wave vector kL 

     
δω= k.V = ωL

VkL

c

Doppler broadening: 

V

     
ΔωD = ωL

ΔVT

c
  individual broadening

    Γ2 ΔωD ≈ GHz ( ΔVT ≈ 103 m / s ) 
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Saturation in the inhomogeneous broadening case 

k1 
V

Waves with different frequencies ω1 , ω2 

k2 

Interact with different atoms 

σ (ω) 

ω	ωM 
No cross saturation: each mode behaves as an independant laser.  

ω0ω1 ω2

g0LA

T + A

ωMω1 ω2

g0LA

T + A

ω0ω1 ω2

g0LA

T + A

ωMω1 ω2

g0LA
oscillation possible

T + A

ω0ω1 ω2

g0LA

T + A

ωMω1 ω2

g0LA

T + A

ω0ω1 ω2

g0LA

T + A

ωMω1 ω2

g0LA

T + A

ω0ω1 ω2

g0LA

T + A

ωMω1 ω2

g0LA

T + A

ω0ω1 ω2

g0LA

T + A

ωMω1 ω2

g0LA
oscillation possible

T + A

ω0ω1 ω2

g0LA

T + A

ωMω1 ω2

g0LA

T + A

ω0ω1 ω2

g0LA

T + A

ωMω1 ω2

g0LA

T + A

( 0 )

A

1

g L

s+

2G

ω’ ω" 

Γ2	

Multimode behaviour 



28 

Saturation in the homogeneous   
  broadening case 

All atoms behave the same way. 
The total line is identical to each 
(broad) individual line. 

  
Iq

q
∑

Because of saturation, one 
mode only can be active  

Mode competition: 1 mode only 
survives; monomode behaviour 

Examples : Nd:YAG; high pressure CO2; semi conductor lasers 

ωω ωωω ωωω ωωω ω

oscillation possible

Γ
2

ωω ωωω ωωω ωωω ω

Γ
2

ωω ωωω ωωω ωωω ω

oscillation possible

Γ
2

ωω ωωω ωωω ωωΜω ωωω ωωω ωωω ωωω ω

oscillation possible

Γ
2

ωω ωωω ωωω ωωω ω

Γ
2

ωω ωωω ωωω ωωω ω

oscillation possible

Γ
2

ωω ωωω ωωω ωωΜω1 ω2

( 0 )

Ag L

T A+

(0)
A

1

g L
s+

ω" ω’ 

Each atom is saturated 
by the total intensity 

All modes saturated similarly 
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Mixed situation 
Most often, intermediate situation: some degree of cross saturation 

  

g(ω p ) =
g (0) (ω p )

1+
β pq Iq

Isatq
∑

•  Pure homogeneous case:     βpq = δpq 

•   Pure inhomogeneous case: βpq = 1 

Evolution of each mode 

gain - losses Self saturation Cross saturation 

  

dI p

dt
= γcav −1+ r

1+
β pq Iq

Isatq
∑

%

&

'
'
'

(

)

*
*
*

I p

   

dI p

dt
! γcav (r −1)I p −γcavr

β pp

Isat

I p
2 −γcavr

β pq

Isatq≠p
∑ Iq I p

Moderated saturation regime 
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Example of two modes partially coupled 

  

dI1

dt
=α1I1 −β1I1

2 −θ12I1I2

dI2

dt
=α2I2 −β2I2

2 −θ21I1I2

gain - losses 

Self saturation 

Cross  
saturation  

Stationnary solutions 

  
dI1

dt
= 0 ⇒

  

I1 = 0
α1 −β1I1 −θ12I2 = 0

  
dI2

dt
= 0 ⇒

  

I2 = 0
α2 −β2I2 −θ21I1 = 0

(1) 

(2) 

We look for solutions 
common to (1) and (2) 
Graphic method 
⇒ several cases to be 

distinguished 

ω0ω1 ω2

modes longit . cavité

oscillation possible
T + A

T + AT + A

ω1 ω2

( 0)

Ag L

  γcav (r −1)
  −γcavrβ22 / Isat

  γcavrβ21 / Isat
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Two active modes  

  

I1 = 0
α1 −β1I1 −θ12I2 = 0

  

I2 = 0
α2 −β2I2 −θ21I1 = 0

(1) 

(2) 

  

α2

θ21

  

α2

β2

  

α1

β1

  

α1

θ12

O 

A 

C 
B 

Solutions belonging to  (1) and (2): blue-green intersections 

Stability study: symbols indicate 

the result 

   θ21θ12 <β1β2

Self saturation 
dominates 

I1 

I2 

 O, A, B are unstables 
 C is stable:   
two mode behaviour 

   I1≠ 0 ; I2 ≠ 0

ω0ω1 ω2

modes longit . cavité

oscillation possible
T + A

T + AT + A

ω1 ω2

( 0)

Ag L

Inhomogeneous broadening case 
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Mode competition (simple) 

1

1 1 1 12 2

0
0

I
I Iα β θ

=

− − =

2

2 2 2 21 1

0
0

I
I Iα β θ

=

− − =

(1) 

(2) 

  

α2

θ21

  

α2

β2

  

α1

β1

  

α1

θ12

O 
A 

B 

Solutions belonging to  (1) and (2) : blue-green intersections O, A, B  

Stability studies (see notes)  
• O, B are unstable 
• A is stable: only mode ω1 is 

active 

Mode 1 dominates: 
large gain (α1 « big »)  
and cross saturates 
mode  2  (θ21 « big » ) 

I1 

I2 

The more favored mode ‘kills’ the less 
favored mode: simple mode competition ω0ω1 ω

g0LA
modes longit . cavité

oscillation possible
T + A

g0LA

T + A

ω1 ω2ω0ω1 ω

modes longit . cavité

oscillation possible
T + A

T + A

ω0ω1 ω

modes longit . cavité

oscillation possible
T + A

T + AT + A

ω1 ω2

( 0)

Ag L

ω0ω1 ω

g0LA
modes longit . cavité

oscillation possible
T + A

g0LA

T + A

ω1 ω2ω0ω1 ω

modes longit . cavité

oscillation possible
T + A

T + A

ω0ω1 ω

modes longit . cavité

oscillation possible
T + A

T + AT + A

ω1 ω2

( 0)

Ag L

Homogeneous case with dominating mode 



33 

Mode competition: bistable behaviour 
1

1 1 1 12 2

0
0

I
I Iα β θ

=

− − =

2

2 2 2 21 1

0
0

I
I Iα β θ

=

− − =

(1) 

(2) 

  

α2

θ21

  

α2

β2

  

α1

β1

  

α1

θ12

O 
A 

C 

B 

Stability study (cf notes) : 
2 stable points! Two distinct 
solutions Are possible. 

I1 

I2 

What is the choice of the system? 
Depends on previous situation: 
system with a memory. 

Applications: memory to store information 

Two modes well above 
thresshold  (α large) 
Stron cross saturation 
   ( θ  > β ) 

ω0ω1 ω2

modes longit . cavité

oscillation possible
T + A

T + AT + A

ω1 ω2

( 0)

Ag L

Homogeneous case with dominant mode 
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Mode competition: simple vs. bistable 

g(0)LA 
T + A 

ω	

g(0)LA 
T + A 

ω	

g(0)LA 
T + A 

ω	

n-1 n 

n n+1 

n n+1 

g(0)LA 
T + A 

ω	

g(0)LA 
T + A 

ω	

g(0)LA 
T + A 

ω	

n-1 n 

n n+1 

n n+1 

Compétition simple 

The most 
favoured 
mode 
always 
wins 

Compétition bistable 
The already 
estabished 
mode is still 
dominant 
even when it 
becomes less 
favoured 
(provided 
gain  larger 
than losses:  
hystérésis 

n+2 

Scenario with mode comb drifting to the left  (cavity expansion) 

Robust: 
applications  
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Laser in stationnary state 
Continuous Wave (CW) laser 

A. Mode of the “cold” cavity 
Closed lossless cavity 
Open lossless cavity 
Top hat mode model 
Lossy cavity 
Number of photons 

B.  Evolution of a mode 
amplitude 

Gain; saturation 
Evolution equation 

• Amplitude 
• Intensity 

C.  Single mode laser: stationary 
state 

Stationary solutions 
Intensity and gain 
Threshold and phase transition 
Spontaneous symmetry breaking 

D. Multimode laser: mode 
competition 

Homogeneous and 
inhomogeneous broadening 

Multimode emission; simple or 
bistable mode competition 

E.  Conclusion 
Generality of the behaviors 



36 

Conclusion 
In that lecture 

• Mode expansion: remarkable simplification 
• Mode evolution with saturation term 
• Stationary state (single mode): threshold, gain 

saturation, spontaneous symmetry breaking  
• Two modes: mode competition, bistability 

Non trivial behavior due to non-linear terms 
• Saturation; threshold; clamping; spontaneous symmetry breaking 
• Cross terms: competition; bistability, hysteresis 
• Rich dynamics (transition to chaos, beyond that lecture) 

General and generic phenomena 
• Analogous behaviors (Volterra equations) in mechanics, biology, 

chemistry, economy…   
• Laser physics: a remarkable play ground to study non-linear 

phenomena (phase transitions, transition to chaos, rogue waves…). 


