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In this paper we study the consistency of an empirical minimum error entropy 
(MEE) algorithm in a regression setting. We introduce two types of consistency. 
The error entropy consistency, which requires the error entropy of the learned 
function to approximate the minimum error entropy, is shown to be always true if the 
bandwidth parameter tends to 0 at an appropriate rate. The regression consistency, 
which requires the learned function to approximate the regression function, however, 
is a complicated issue. We prove that the error entropy consistency implies the 
regression consistency for homoskedastic models where the noise is independent of 
the input variable. But for heteroskedastic models, a counterexample is used to show 
that the two types of consistency do not coincide. A surprising result is that the 
regression consistency is always true, provided that the bandwidth parameter tends 
to infinity at an appropriate rate. Regression consistency of two classes of special 
models is shown to hold with fixed bandwidth parameter, which further illustrates 
the complexity of regression consistency of MEE. Fourier transform plays crucial 
roles in our analysis.

Published by Elsevier Inc.

1. Introduction

Information theoretical learning (ITL) is an important research area in signal processing and machine 
learning. It uses concepts of entropies and divergences from information theory to substitute the conventional 
statistical descriptors of variances and covariances. The idea dates back at least to [12] while its blossom 
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was inspired by a series of works of Principe and his collaborators. In [4] the minimum error entropy (MEE) 
principle was introduced to regression problems. Later on its computational properties were studied and 
its applications in feature extraction, clustering, and blind source separation were developed [5,7,3,6]. More 
recently the MEE principle was applied to classification problems [16,17]. For a comprehensive survey and 
more recent advances on ITL and the MEE principle, see [15] and the references therein.

The main purpose of this paper is rigorous consistency analysis of an empirical MEE algorithm for 
regression. Note that the ultimate goal of regression problems is the prediction on unobserved data or 
forecasting the future. Consistency analysis in terms of predictive powers is deemed to be important to 
interpret the effectiveness of a regression algorithm. The empirical MEE has been developed and successfully 
applied in various fields for more than a decade and there are some theoretical studies in the literature which 
provide good understanding of computational complexity of the empirical MEE and its parameter choice 
strategy. However, the consistency of the MEE algorithm, especially from a prediction perspective, is lacking. 
In our earlier work [8], we proved the consistency of the MEE algorithm in a special situation, where we 
require the algorithm to utilize a large bandwidth parameter. The motivation of the MEE algorithm (to be 
describe below) is to minimize the error entropy which requires a small bandwidth parameter. The result 
in [8] is somewhat contradictory to this motivation. An interesting question is whether the MEE algorithm 
is consistent in terms of predictive powers if a small bandwidth parameter is chosen as implied by its 
motivation. Unfortunately, this is not a simple ‘yes’ or ‘no’ question. Instead, the consistency of the MEE 
algorithm is a very complicated issue. In this paper we will try to depict a full picture on it – establishing 
the relationship between the error entropy and an L2 metric measuring the predictive powers, and providing 
conditions for the MEE algorithm to be predictively consistent.

In statistics a regression problem is usually modeled as the estimation of a target function f∗ from a 
metric space X to the another metric space Y ⊂ R for which a set of observations (xi, yi), i = 1, . . . , n, are 
obtained from a model

Y = f∗(X) + ε, E(ε|X) = 0. (1.1)

In the statistical learning context [18], the regression setting is usually described as the learning of the 
regression function which is defined as conditional mean E(Y |X) of the output variable Y for given input 
variable X under the assumption that there is an unknown joint probability measure ρ on the product space 
X × Y. These two settings are equivalent by noticing that

f∗(x) = E(Y |X = x).

A learning algorithm for regression produces a function fz from the observations z = {(xi, yi)}ni=1 as an 
approximation of f∗. The goodness of this approximation can be measured by certain distance between fz
and f∗, for instance, ‖fz − f∗‖L2

ρX
, the L2 distance with respect to the marginal distribution ρX of ρ on X .

MEE algorithms for regression are motivated by minimizing some entropies of the error random variable 
E = E(f) = Y − f(X), where f : X → R is a hypothesis function. In this paper we focus on the Rényi’s 
entropy of order 2 defined as

R(f) = − log
(
E[p

E
]
)

= − log
(∫

R

(
p

E
(e)

)2
de

)
. (1.2)

Here and in the sequel, p
E

is the probability density function of E. Since ρ is unknown, we need an empirical 
estimate of p

E
. Denote ei = yi − f(xi). Then p

E
can be estimated from the sample z by a kernel density 

estimator by using a Gaussian kernel Gh(t) = 1√ exp(− t2
2 ) with bandwidth parameter h:
2πh 2h
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p
E,z

(e) = 1
n

n∑
j=1

Gh(e− ej) = 1
n

n∑
j=1

1√
2πh

exp
(
− (e− ej)2

2h2

)
.

The MEE algorithm produces an appropriate fz from a set H of continuous functions on X called the 
hypothesis space by minimizing the empirical version of the Rényi’s entropy

Rz(f) = − log
(

1
n

n∑
i=1

p
E,z

(ei)
)

= − log
(

1
n2

n∑
i=1

n∑
j=1

Gh(ei − ej)
)
.

That is, fz = arg minf∈H Rz(f). It is obvious that minimizers of R and Rz are not unique because R(f) =
R(f + b) and Rz(f) = Rz(f + b) for any constant b. Taking this into account, fz should be adjusted by a 
constant when it is used as an approximation of the regression function f∗.

The empirical entropy Rz(f) involves an empirical mean 1
n

∑n
i=1 pE ,z(ei) which makes it look like an 

M-estimator. However, the density estimator pE,z itself is data dependent, making the MEE algorithm 
different from standard M-estimations, with two summation indices involved. This can be seen from our 
earlier work [8] where we used U-statistics for the error analysis in the case of large parameter h.

To study the asymptotic behavior of the MEE algorithm we define two types of consistency as follows:

Definition 1.1. The MEE algorithm is consistent with respect to the Rényi’s error entropy if R(fz) converges 
to R∗ = inff :X→R R(f) in probability as n → ∞, i.e.,

lim
n→∞

P
(
R(fz) − R∗ > ε

)
= 0, ∀ε > 0.

The MEE algorithm is consistent with respect to the regression function if fz plus a suitable constant 
adjustment converges to f∗ in probability with the convergence measured in the L2

ρX
sense, i.e., there is a 

constant bz such that fz + bz converges to f∗ in probability, i.e.,

lim
n→∞

P
(
‖fz + bz − f∗‖2

L2
ρX

> ε
)

= 0, ∀ε > 0.

Note that the error entropy consistency ensures the learnability of the minimum error entropy, as is 
expected from the motivation of empirical MEE algorithms. However, the error entropy itself is not a metric 
that directly measures the predictive powers of the algorithm. (We assume that a metric d measuring the 
predictive powers should be monotone in the sense that |E(f1)| ≤ |E(f2)| implies d(f1) ≤ d(f2). Error 
entropy is clearly not such a metric.)

To measure the predictive consistency, one may choose different metrics. In the definition of regression 
function consistency we have adopted the L2 distance to the true regression function f∗, the target function 
of the regression problem. The regression consistency guarantees good approximations of the regression 
target function f∗ and thus serves as a good measure for predictive powers.

Our main results, stated in several theorems in Section 2 below, involve two main contributions. (i) We 
characterize the relationship between the error entropy consistency and regression consistency. We prove 
that the error entropy consistency implies the regression function consistency only for very special cases, 
for instance, the homoskedastic models, while in general this is not true. For heteroskedastic models, a 
counterexample is used to show that the error entropy consistency and regression consistency is not necessary 
to coincide. (ii) We prove a variety of consistency results for the MEE algorithm. Firstly we prove that 
the error entropy consistency is always true by choosing the bandwidth parameter h to tend to 0 slowly 
enough. As a result, the regression function consistency holds for the homoskedastic models. Secondly, for 
heteroskedastic models, regression consistency is shown to be incorrect if the bandwidth parameter is chosen 
to be small. But we restate the result from [8] which shows that the empirical MEE is always consistent with 
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respect to the regression function if the bandwidth parameter is allowed to be chosen large enough. Lastly, 
we consider two classes of special regression models for which the regression consistency can be true with 
fixed choices of the bandwidth parameter h. These results indicate that the consistency of the empirical 
MEE is a very complicated issue.

2. Main results

We state our main results in this section while giving their proofs later. We need to make some as-
sumptions for analysis purposes. Two main assumptions, on the regression model and the hypothesis class 
respectively, will be used throughout the paper.

For the regression model, we assume some natural regularity conditions.

Definition 2.1. The regression model (1.1) is MEE admissible if

(i) the density function pε|X of the noise variable ε for given X = x ∈ X exists and is uniformly bounded 
by a constant Mp;

(ii) the regression function f∗ is bounded by a constant M > 0;
(iii) the minimum of R(f) is achieved by a measurable function f∗

R.

Note that we do not require the boundedness or exponential decay of the noise term as in the usual 
setting of learning theory. It is in fact an advantage of MEE to allow heavy tailed noises. Also, it is easy to 
see that if f∗

R is a minimizer, then for any constant b, f∗
R + b is also a minimizer. So we cannot assume the 

uniqueness of f∗
R. Also, no obvious relationship between f∗ and f∗

R exists. Figuring out such a non-trivial 
relationship is one of our tasks below. We also remark that some results below may hold under relaxed 
conditions, but for simplifying our statements, we will not discuss them in detail.

Our second assumption is on the hypothesis space which is required to be a learnable class and have 
good approximation ability with respect to the target function.

Definition 2.2. We say the hypothesis space H is MEE admissible if

(i) H is uniformly bounded, i.e., there is a constant M such that |f(x)| ≤ M for all f ∈ H and all x ∈ X ;
(ii) the �2-norm empirical cover number N2(H, ε) (see Appendix A or [2,19] for its definition) satisfies 

logN2(H, ε) ≤ cε−s for some constant c > 0 and some index 0 < s < 2;
(iii) a minimizer f∗

R of R(f) and the regression function f∗ are in H.

The first condition in Definition 2.2 is common in the literature and is natural since we do not expect to 
learn unbounded functions. The second condition ensures H is a learnable class so that overfitting will not 
happen. This is often imposed in learning theory. It is also easily fulfilled by many commonly used function 
classes. The third condition guarantees the target function can be well approximated by H for otherwise 
no algorithm is able to learn the target function well from H. Although this condition can be relaxed to 
that the target function can be approximated by function sequences in H, we will not adopt this relaxed 
situation for simplicity.

Throughout the paper, we assume that both the regression model (1.1) and the hypothesis space H are 
MEE admissible. Our first main result is to verify the error entropy consistency.

Theorem 2.3. If the bandwidth parameter h = h(n) is chosen to satisfy

lim h(n) = 0, lim h2√n = +∞, (2.1)

n→∞ n→∞
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then R(fz) converges to R∗ in probability.
If, in addition, the derivative of pε|X exists and is uniformly bounded by a constant M ′ independent of 

X, then by choosing h(n) ∼ n− 1
6 , for any 0 < δ < 1, with probability at least 1 − δ, we have

R(fz) − R∗ = O
(√

log(2/δ)n− 1
6
)
.

In the literature of practical implementations of MEE, the optimal choice of h is suggested to be h(n) ∼
n− 1

5 (see e.g. [15]). We see this choice satisfies our condition for the error entropy consistency. Deriving the 
optimal rate for MEE is certainly of critical importance but out of the scope of this paper.

The error entropy consistency in Theorem 2.3 states the minimum error entropy can be approximated with 
a suitable choice of the bandwidth parameter. This is a somewhat expected result because empirical MEE 
algorithms are motivated by minimizing the sample version of the error entropy risk functional. However, 
later we will show that this does not necessarily imply the consistency with respect to the regression function. 
Instead, the regression consistency is a complicated problem. Let us discuss it in two different situations.

Definition 2.4. The regression mode (1.1) is homoskedastic if the noise ε is independent of X. Otherwise it 
is said to be heteroskedastic.

Our second main result states the regression consistency for homoskedastic models.

Theorem 2.5. If the regression model is homoskedastic, then the following holds.

(i) R∗ = R(f∗). As a result, for any constant b, f∗
R = f∗ + b is a minimizer of R(f);

(ii) there is a constant C depending on ρ, H and M such that, for any f ∈ H,

∥∥f + Ex

[
f∗(x) − f(x)

]
− f∗∥∥2

L2
ρX

≤ C
(
R(f) − R∗);

(iii) if (2.1) is true, then fz + Ex[f∗(x) − fz(x)] converges to f∗ in probability;
(iv) if, in addition, the derivative of pε|X exists and is uniformly bounded by a constant M ′ independent of 

X, then, for any 0 < δ < 1, by choosing h ∼ n− 1
6 we have, with confidence 1 − δ, that

∥∥fz + Ex

[
f∗(x) − fz(x)

]
− f∗∥∥2

L2
ρX

= O
(√

log(2/δ)n− 1
6
)
.

Theorem 2.5 (iii) shows the regression consistency for homoskedastic models. It is a corollary of error 
entropy consistency stated in Theorem 2.3 and the relationship between the L2

ρX
distance and the excess 

error entropy stated in Theorem 2.5 (ii). Thus the homoskedastic model is a special case for which the error 
entropy consistency and regression consistency coincide with each other.

Things are much more complicated for heteroskedastic models. Our third main result illustrates the 
incoincidence of the minimizer f∗

R and the regression function f∗ by Example 5.1 in Section 5.

Proposition 2.6. There exists a heteroskedastic model such that the regression function f∗ is not a minimizer 
of R(f) and the regression consistency fails even if the error entropy consistency is true.

This result shows that, in general, the error entropy consistency does not imply the regression consistency. 
Therefore, these two types of consistency do not coincide for heteroskedastic models.

However, this observation does not mean the empirical MEE algorithm cannot be consistent with respect 
to the regression function. In fact, in [8] we proved the regression consistency for large bandwidth parameter 
h and derived learning rate when h is of the form h = nθ for some θ > 0.
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Our fourth main result in this paper is to verify the regression consistency for a more general choice of 
large bandwidth parameter h.

Theorem 2.7. Choosing the bandwidth parameter h = h(n) such that

lim
n→∞

h(n) = +∞, lim
n→∞

h2
√
n

= 0, (2.2)

we have fz+Ex[f∗(x) −fz(x)] converges to f∗ in probability. A convergence rate of order O(
√

log(2/δ)n− 1
4 )

can be obtained with confidence 1 − δ for ‖fz + Ex[f∗(x) − fz(x)] − f∗‖2
L2

ρX

by taking h ∼ n
1
8 .

Such a result looks surprising. Note that the empirical MEE algorithm is motivated by minimizing an 
empirical version of the error entropy. This empirical error entropy approximates the true one when h tends 
to zero. But the regression consistency is in general true as h tends to infinity, a condition under which 
the error entropy consistency may not be true. From this point of view, the regression consistency of the 
empirical MEE algorithm does not justify its motivation.

Observe that the regression consistency in Theorem 2.5 and Theorem 2.7 suggests the constant adjustment 
to be b = Ex[f∗(x) − fz(x)]. In practice the constant adjustment is usually taken as 1

n

∑n
i=1(yi − fz(xi))

which is exactly the sample mean of b.
The last two main results of this paper are about the regression consistency of two special classes of 

regression models. We show that the bandwidth parameter h can be chosen as a fixed positive constant 
to make MEE consistent in these situations. Moreover the convergence rate is of order O(n−1/2), much 
higher than previous general cases. Throughout this paper, we use i to denote the imaginary unit and a the 
conjugate of a complex number a. The Fourier transform f̂ is defined for an integrable function f on R as 
f̂(ξ) =

∫
R
f(x)e−ixξdx. Recall the inverse Fourier transform is given by f(x) = 1

2π
∫
R
f̂(ξ)eixξdξ when f is 

square integrable. Fourier transform plays crucial roles in our analysis.

Definition 2.8. A univariate function f is unimodal if for some t ∈ R, the function is monotonically increasing 
on (−∞, t] and monotonically decreasing on [t, ∞).

Definition 2.9. We define P1 to be the set of probability measures ρ on X × Y satisfying the following 
conditions:

(i) pε|X=x is symmetric (i.e. even) and unimodal for every x ∈ X ;
(ii) the Fourier transform p̂ε|X=x is nonnegative on R for every x ∈ X ;
(iii) there exist two constants c0 > 0 and C0 > 0 such that p̂ε|X=x(ξ) ≥ C0 for ξ ∈ [−c0, c0] and every 

x ∈ X .

We define P2 to be the set of probability measures ρ on X × Y such that pε|X=x is symmetric for every 

x ∈ X and there exists some constant M̃ > 0 such that pε|X=x is supported on [−M̃, M̃ ] for every x ∈ X .

The boundedness assumption on the noise for the family P2 is very natural in regression setting. For the 
family P1, the conditions look complicated, but the following two examples tell that they are also common 
in statistical modeling.

Example 2.10 (Symmetric α-stable Lévy distributions). A distribution is said to be symmetric α-stable Lévy 
distributions [14] if it is symmetric and its Fourier transform is represented in the form e−γα|ξ|α , with γ > 0
and 0 < α ≤ 2. Obviously, Gaussian distribution with mean zero is a special case with α = 2. Cauchy 
distribution with median zero is another special case with α = 1. Every distribution in this set is unimodal 
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[11]. If we choose a subset of these distributions with γ ≤ C (C is a constant), then the Fourier transform 
is positive and ∃c0 = 1/C and C0 = e−1 such that ∀ξ ∈ [−c0, c0], p̂ε|X(ξ) ≥ C0.

Example 2.11 (Linnik distributions). A Linnik distribution is also referred to as a symmetric geometric 
stable distribution [10]. A distribution is said to be Linnik distribution if it is symmetric and its Fourier 
transform is represented in the form 1

1+λα|ξ|α , with λ > 0 and 0 < α ≤ 2. Obviously, Laplace distribution 
with mean zero is a special case with α = 2. Every distribution in this set is unimodal [11]. If we choose 
a subset of these distributions with λ ≤ C (C is a constant), then the Fourier transform is positive and 
∃c0 = 1/C and C0 = 1

2 such that ∀ξ ∈ [−c0, c0], p̂ε|X(ξ) ≥ C0.

Corresponding to the definition of the empirical Rényi’s entropy Rz(f), after removing the logarithm, 
we define information error of a measurable function f : X → R as

Eh(f) = −
∫
R

∫
R

Gh

(
e− e′

)
pE(e)pE

(
e′
)
dede′

= −
∫
Z

∫
Z

Gh

((
y − f(x)

)
−
(
y′ − f

(
x′)))dρ(x, y)dρ(x′, y′

)
.

Theorem 2.12. If ρ belongs to P1, then f∗ + b is a minimizer of Eh(f) for any constant b and any fixed 
h > 0. Moreover, we have fz + Ex[f∗(x) − fz(x)] converges to f∗ in probability. Convergence rate of order 
O(

√
log(2/δ)n− 1

2 ) can be obtained with confidence 1 − δ for ‖fz + Ex[f∗(x) − fz(x)] − f∗‖2
L2

ρX

.

Theorem 2.13. If ρ belongs to P2, then there exists some hρ,H > 0 such that f∗+b is a minimizer of Eh(f) for 
any fixed h > hρ,H and constant b. Also fz + Ex[f∗(x) − fz(x)] converges to f∗ in probability. Convergence 
rate of order O(

√
log(2/δ)n− 1

2 ) can be obtained with confidence 1 − δ for ‖fz +Ex[f∗(x) − fz(x)] − f∗‖2
L2

ρX

.

3. Error entropy consistency

In this section we will prove that R(fz) converges to R∗ in probability when h = h(n) tends to zero 
slowly satisfying (2.1). Several useful lemmas are needed to prove our first main result (Theorem 2.3).

Lemma 3.1. For any measurable function f on X , the probability density function for the error variable 
E = Y − f(X) is given as

p
E
(e) =

∫
X

pε|X
(
e + f(x) − f∗(x)|x

)
dρ

X
(x). (3.1)

As a result, we have |p
E
(e)| ≤ M for every e ∈ R.

Proof. Eq. (3.1) follows from the fact that

ε = Y − f∗(X) = E + f(X) − f∗(X).

The inequality |p
E
(e)| ≤ M follows from the assumption |pε|X(t)| ≤ M . �

Denote by BL and BU the lower bound and upper bound of E[p
E
] over H, i.e.,

BL = inf
f∈H

∫
R

(
p

E
(e)

)2
de and BU = sup

f∈H

∫
R

(
p

E
(e)

)2
de.
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Lemma 3.2. We have 0 < BL and BU ≤ Mp.

Proof. Since 
∫
X
∫∞
−∞ pε|X(t|x)dtdρX(x) = 1, there is some constant 0 < A < +∞ such that

a =
∫
X

A∫
−A

pε|X(t|x)dtdρ
X

(x) > 1
2 .

For any f ∈ H, by the fact |f | ≤ M and |f∗| ≤ M , it is easy to check from (3.1) that

A+2M∫
−(A+2M)

p
E
(e)de =

∫
X

A+2M∫
−(A+2M)

pε|X
(
e + f(x) − f∗(x)|x

)
dedρ

X
(x)

=
∫
X

A+2M+f(x)−f∗(x)∫
−(A+2M)+f(x)−f∗(x)

pε|X(t|x)dtdρ
X

(x)

≥
∫
X

A∫
−A

pε|X(t|x)dtdρ
X

(x) = a.

Then by the Schwartz inequality we have

a ≤
A+2M∫

−(A+2M)

p
E
(e)de ≤

( A+2M∫
−(A+2M)

(
p

E
(e)

)2
de

) 1
2
( A+2M∫
−(A+2M)

de

) 1
2

≤
√

2A + 4M
(∫

R

(
p

E
(e)

)2
de

) 1
2

.

This gives ∫
R

(
p

E
(e)

)2
de ≥ a2

2A + 4M ≥ 1
8A + 16M

for any f ∈ H. Hence BL ≥ 1
8A+16M > 0.

The second inequality follows from the fact that p
E

is a density function and uniformly bounded by Mp. 
This proves Lemma 3.2. �

It helps our analysis to remove the logarithm from the Rényi’s entropy (1.2) and define

V (f) = −E[p
E
] = −

∫ (
p

E
(e)

)2
de. (3.2)

Then R(f) = − log(−V (f)). Since − log(−t) is strictly increasing for t ≤ 0, minimizing R(f) is equivalent 
to minimizing V (f). As a result, their minimizers are the same. Denote V ∗ = inff :X→R V (f). Then V ∗(f) =
− log(−R∗), and we have the following lemma.

Lemma 3.3. For any f ∈ H we have

1
BU

(
V (f) − V ∗) ≤ R(f) − R∗ ≤ 1

BL

(
V (f) − V ∗).
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Proof. Since the derivative of the function − log(−t) is −1
t , by the mean value theorem we get

R(f) − R∗ = R(f) − R
(
f∗

R

)
= − log

(
−V (f)

)
−
[
− log

(
−V

(
f∗

R

))]
= −1

ξ

(
V (f) − V

(
f∗

R

))
for some ξ ∈ [V (f∗

R), V (f)] ⊂ [−BU , −BL]. This leads to the conclusion. �
From Lemma 3.3 we see that, to prove Theorem 2.3, it is equivalent to prove the convergence of V (fz)

to V ∗. To this end we define an empirical version of the generalization error Eh,z(f) as

Eh,z(f) = − 1
n2

n∑
i,j=1

Gh(ei − ej) = − 1
n2

n∑
i,j=1

Gh

(
(yi − f(xi)) − (yj − f(xj))

)
.

Again we see the equivalence between minimizing Rz(f) and minimizing Eh,z(f). So fz is also a minimizer 
of Eh,z over the hypothesis class H. We then can bound V (fz) − V ∗ by an error decomposition as

V (fz) − V ∗ =
(
V (fz) − Eh,z(fz)

)
+
(
Eh,z(fz) − Eh,z

(
f∗

R

))
+
(
Eh,z

(
f∗

R

)
− V

(
f∗

R

))
≤ 2 sup

f∈H

∣∣Eh,z(f) − V (f)
∣∣ ≤ 2Sz + 2Ah.

where Sz is called the sample error defined by Sz = supf∈H |Eh,z(f) −Eh(f)| and Ah is called approximation 
error defined by supf∈H |Eh(f) − V (f)|.

The sample error Sz depends on the sample, and can be estimated by the following proposition.

Proposition 3.4. There is a constant B > 0 depending on M, c and s (in Definition 2.2) such that for every 
ε1 > 0,

P
(
Sz > ε1 + B

h2√n

)
≤ exp

(
−2nh2ε2

1
)
.

This proposition implies that Sz is bounded by O( 1
h2√n

+ 1
h
√
n
) with large probability. The proof of this 

proposition is long and complicated. But it is rather standard in the context of learning theory. So we leave 
it in Appendix A where the constant B will be given explicitly.

The approximation error is small when h tends to zero, as shown in next proposition.

Proposition 3.5. We have limh→0 Ah = 0. If the derivative of pε|X is uniformly bounded by a constant M ′, 
then Ah ≤ M ′h.

Proof. Since Gh(t) = 1
hG1( t

h), by changing the variable e′ to τ = e−e′

h , we have

Ah = sup
f∈H

∣∣∣∣∫
R

∫
R

1
h
G1

(
e− e′

h

)
p

E
(e)p

E

(
e′
)
dede′ −

∫
R

(
p

E
(e)

)2
de

∣∣∣∣
= sup

f∈H

∣∣∣∣∫
R

∫
R

G1(τ)p
E
(e− τh)dτp

E
(e)de−

∫
R

(
p

E
(e)

)2
de

∣∣∣∣
But 

∫
G1(τ)dτ = 1, we see from (3.1) that
R
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Ah = sup
f∈H

∣∣∣∣∫
R

p
E
(e)

∫
R

G1(τ)
(
p

E
(e− τh) − p

E
(e)

)
dτde

∣∣∣∣
≤ sup

f∈H

∫
R

p
E
(e)

∫
R

G1(τ)
∫
X

∣∣pε|X(
e− τh + f(x) − f∗(x)|x

)
− pε|X

(
e + f(x) − f∗(x)|x

)∣∣dρ
X

(x)dτde. (3.3)

It follows form Lebesgue’s Dominated Convergence Theorem that limh→0 Ah = 0.
If |p′ε|X | ≤ M ′ uniformly for an M ′, we have

∣∣pε|X(
e− τh + f(x) − f∗(x)|x

)
− pε|X

(
e + f(x) − f∗(x)|x

)∣∣ ≤ M ′|τ |h.

Then from (3.3), we find

Ah ≤ sup
f∈H

∫
R

p
E
(e)de

∫
R

G1(τ)|τ |dτM ′h = 2M ′
√

2π
h ≤ M ′h.

This proves Proposition 3.5. �
We are in a position to prove our first main result Theorem 2.3.

Proof of Theorem 2.3. Let 0 < δ < 1. By take ε1 > 0 such that exp(−2nh2ε2
1) = δ, i.e., ε1 =

√
log(1/δ)

2nh2 , 
we know from Proposition 3.4 that with probability at least 1 − δ,

Sz ≤ ε1 + B

h2√n
= 1

h2√n

(
B +

√
log(1/δ)h

)
.

To prove the first statement, we apply assumption (2.1). For any ε > 0, there exists some N1 ∈ N such that 
(B + 1) 1

h2√n
< ε

2 and 
√

log(1/δ)h ≤ 1 whenever n ≥ N1. It follows that with probability at least 1 − δ, 
Sz < ε

2 . By Proposition 3.5 and limn→∞ h(n) = 0, there exists some N2 ∈ N such that Ah ≤ ε
2 whenever 

n ≥ N2. Combining the above two parts for n ≥ max{N1, N2}, we have with probability at least 1 − δ,

V (fz) − V ∗ ≤ 2Sz + 2Ah ≤ 2ε,

which implies by Lemma 3.3,

R(fz) − R∗ ≤ 2
BL

ε.

Hence the probability of the event R(fz) − R∗ ≥ 2
BL

ε is at most δ. This proves the first statement of 
Theorem 2.3.

To prove the second statement, we apply the second part of Proposition 3.5. Then with probability at 
least 1 − δ, we have

R(fz) − R∗ ≤ 1
BL

(
V (fz) − V ∗) ≤ 2

BL

(
1

h2√n

(
B +

√
log(1/δ)h

)
+ M ′h

)
.

Thus, if C ′
1n

− 1
6 ≤ h(n) ≤ C ′

2n
− 1

6 for some constants 0 < C ′
1 ≤ C ′

2, we have with probability at least
1 − δ,
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R(fz) − R∗ ≤ 1
BL

(
V (fz) − V ∗) ≤ 2

BL

(
1

(C ′
1)2

(
B + C ′

2
√

log(1/δ)
)

+ M ′C ′
2

)
n− 1

6 .

Then the desired convergence rate is obtained. The proof of Theorem 2.3 is complete. �
4. Regression consistency for homoskedastic models

In this section we prove the regression consistency for homoskedastic models stated in Theorem 2.5. 
Under the homoskedasticity assumption, the noise ε is independent of x, so throughout this section we will 
simply use pε to denote the density function for the noise. Also, we use the notations E = E(f) = Y −f(X)
and E∗ = Y − f∗(X).

The probability density function of the random variable E = Y − f(X) is given by

p
E
(e) =

∫
X

pε
(
e + f(x) − f∗(x)

)
dρX(x).

Then ∫
R

(
p

E
(e)

)2
de =

∫
X

∫
X

∫
R

pε
(
e + f(x) − f∗(x)

)
pε
(
e + f(u) − f∗(u)

)
dedρX(x)dρX(u).

We apply the Planchel formula and find∫
R

pε
(
e + f(x) − f∗(x)

)
pε
(
e + f(u) − f∗(u)

)
de = 1

2π

∫
R

p̂ε(ξ)eiξ(f(x)−f∗(x))p̂ε(ξ)eiξ(f(u)−f∗(u))dξ.

It follows that∫
R

(
p

E
(e)

)2
de = 1

2π

∫
X

∫
X

∫
R

|p̂ε(ξ)|2eiξ(f(x)−f∗(x)−f(u)+f∗(u))dξdρX(x)dρX(u).

This is obviously maximized when f = f∗ since |eiξt| ≤ 1. This proves that f∗ is a minimizer of V (f) and 
R(f). Since V (f) and R(f) are invariant with respect to constant translates, we have proved part (i) of 
Theorem 2.5.

To prove part (ii), we study the excess quantity V (f) − V (f∗) and express it as

V (f) − V
(
f∗) =

∫
R

(
p

E∗ (e)
)2
de−

∫
R

(
p

E
(e)

)2
de

= 1
2π

∫
X

∫
X

∫
R

∣∣p̂ε(ξ)∣∣2(1 − eiξ(f(x)−f∗(x)−f(u)+f∗(u)))dξdρX(x)dρX(u)

= 1
2π

∫
X

∫
X

∫
R

∣∣p̂ε(ξ)∣∣22 sin2 ξ(f(x) − f∗(x) − f(u) + f∗(u))
2 dξdρX(x)dρX(u)

where the last equality follows from the fact that V (f) − V (f∗) is real and hence equals to its real part.
As both f and f∗ take values on [−M, M ], we know that |f(x) − f∗(x) − f(u) + f∗(u)| ≤ 4M for any 

x, u ∈ X . So when |ξ| ≤ π , we have
4M
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∣∣∣∣ξ(f(x) − f∗(x) − f(u) + f∗(u))

2

∣∣∣∣ ≤ π

2

and ∣∣∣∣sin ξ(f(x) − f∗(x) − f(u) + f∗(u))
2

∣∣∣∣ ≥ 2
π

∣∣∣∣ξ(f(x) − f∗(x) − f(u) + f∗(u))
2

∣∣∣∣.
Observe that the integrand in the expression of V (f) − V (f∗) is nonnegative and∫

R

|p̂ε(ξ)|22 sin2 ξ(f(x) − f∗(x) − f(u) + f∗(u))
2 dξ

≥
∫

|ξ|≤ π
4M

∣∣p̂ε(ξ)∣∣22 sin2 ξ(f(x) − f∗(x) − f(u) + f∗(u))
2 dξ

≥
∫

|ξ|≤ π
4M

∣∣p̂ε(ξ)∣∣2 2
π2 ξ

2(f(x) − f∗(x) − f(u) + f∗(u)
)2
dξ.

Therefore,

V (f) − V
(
f∗) ≥ 1

π3

∫
|ξ|≤ π

4M

ξ2∣∣p̂ε(ξ)∣∣2dξ ∫
X

∫
X

(
f(x) − f∗(x) − f(u) + f∗(u)

)2
dρX(x)dρX(u).

It was shown in [8] that∫
X

∫
X

(
f(x) − f∗(x) − f(u) + f∗(u)

)2
dρX(x)dρX(u) = 2

∥∥f − f∗ + Ex

[
f∗(x) − f(x)

]∥∥2
L2

ρX

. (4.1)

So we have

V (f) − V
(
f∗) ≥ (

2
π3

∫
|ξ|≤ π

4M

ξ2∣∣p̂ε(ξ)∣∣2dξ)∥∥f − f∗ + Ex

[
f∗(x) − f(x)

]∥∥2
L2

ρX

.

Since the probability density function pε is integrable, its Fourier transform p̂ε is continuous. This together 
with p̂ε(0) = 1 ensures that p̂ε(ξ) is nonzero over a small interval around 0. As a result ξ2|p̂ε(ξ)|2 is not 
identically zero on [− π

4M , π
4M ]. Hence the constant

c =
∫

|ξ|≤ π
4M

ξ2∣∣p̂ε(ξ)∣∣2dξ
is positive and the conclusion in (ii) is proved by taking C = π3BU

2c and applying Lemma 3.3.
Parts (iii) and (iv) are easy corollaries of part (ii) and Theorem 2.3. This finishes the proof of Theorem 2.5.

5. Incoincidence between error entropy consistency and regression consistency

In the previous section we proved that for homoskedastic models the error entropy consistency implies 
the regression consistency. But for heteroskedastic models, this is not necessarily true. Here we present a 
counter-example to show this incoincidence between the two types of consistency.
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Let 1(·) denote the indicator function on a set specified by the subscript.

Example 5.1. Let X = X1∪X2 = [0, 12 ]∪ [1, 32 ] and ρX be uniform on X (so that dρX = dx). The conditional 
distribution of ε|X is uniform on [−1

2 , 
1
2 ] if x ∈ [0, 12 ] and uniform on [−3

2 , −
1
2 ] ∪ [ 12 , 

3
2 ] if x ∈ [1, 32 ]. Then

(i) a function f∗
R : X → R is a minimizer of R(f) if and only if there are two constants f1, f2 with 

|f1 − f2| = 1 such that f∗
R = f11X1 + f21X2 ;

(ii) R∗ = − log(5
8 ) and R(f∗) = − log(3

8). So the regression function f∗ is not a minimizer of the error 
entropy functional R(f);

(iii) let F∗
R denote the set of all minimizers. There is an a constant C ′ depending on H and M such that 

for any measurable function f bounded by M ,

min
f∗

R∈F∗
R

‖f − f∗
R‖2

L2
ρX

≤ C ′(R(f) − R∗);
(iv) if the error entropy consistency is true, then there holds

min
f∗

R∈F∗
R

‖fz − f∗
R‖L2

ρX
−→ 0 and min

b∈R

‖fz + b− f∗‖L2
ρX

−→ 1
2

in probability. As a result, the regression consistency cannot be true.

Proof. Without loss of generality we may assume M ≥ 1 in this example.
Denote p1(ε) = pε|X(ε|x) for x ∈ X1 and p2(ε) = pε|X(ε|x) for x ∈ X2. By Lemma 3.1, the probability 

density function of E = Y − f(X) is given by

p
E
(e) =

∫
X

pε|X
(
e + f(x) − f∗(x)|x

)
dρX(x) =

2∑
j=1

∫
Xj

pj
(
e + f(x) − f∗(x)

)
dx.

So we have∫
R

(
p

E
(e)

)2
de =

2∑
j,k=1

∫
Xj

∫
Xk

∫
R

pj
(
e + f(x) − f∗(x)

)
pk
(
e + f(u) − f∗(u)

)
dedρX(x)dρX(u).

By the Planchel formula,

∫
R

(
p

E
(e)

)2
de = 1

2π

2∑
j,k=1

∫
Xj

∫
Xk

∫
R

p̂j(ξ)p̂k(ξ)eiξ(f(x)−f∗(x)−f(u)+f∗(u))dξdρX(x)dρX(u).

Let p∗ = 1[− 1
2 ,

1
2 ] be the density function of the uniform distribution on [−1

2 , 
1
2 ]. Then we have p1 = p∗

and p2(e) = p∗(e+1)+p∗(e−1)
2 which yields

p̂2(ξ) = e−iξ + eiξ

2 p̂∗(ξ) = p̂∗(ξ) cos ξ.

These together with f∗ ≡ 0 allow us to write

V (f) = −
∫ (

p
E
(e)

)2
de = V11(f) + V22(f) + V12(f), (5.1)
R
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where

V11(f) = − 1
2π

∫
X1

∫
X1

∫
R

∣∣p̂∗(ξ)∣∣2eiξ(f(x)−f(u))dξdρX(x)dρX(u),

V22(f) = − 1
2π

∫
X2

∫
X2

∫
R

cos2 ξ
∣∣p̂∗(ξ)∣∣2eiξ(f(x)−f(u))dξdρX(x)dρX(u),

V12(f) = − 1
π

∫
X1

∫
X2

∫
R

∣∣p̂∗(ξ)∣∣2 cos ξ cos
(
ξ
(
f(x) − f(u)

))
dξdρX(x)dρX(u).

Recall the following identity from Fourier analysis (see e.g. [9])

∑
�∈Z

p̂∗(ξ + 2�π) ̂p∗(· − b)(ξ + 2�π) =
∑
�∈Z

〈
p∗(· − �), p∗(· − b)

〉
L2(R)e

i�ξ, ∀ξ, b ∈ R. (5.2)

In particular, with b = 0, since the integer translates of p∗ are orthogonal, there hold 
∑

�∈Z
|p̂∗(ξ+2�π)|2 ≡ 1

and

∫
R

∣∣p̂∗(ξ)∣∣2 cosj ξdξ =
∫

[−π,π)

∑
�∈Z

∣∣p̂∗(ξ + 2�π)
∣∣2 cosj ξdξ =

⎧⎨⎩
0, if j = 1,
2π, if j = 0,
π, if j = 2.

For V11(f), notice the real analyticity of the function p̂∗(ξ) = 2 sin(ξ/2)
ξ and the identity∫

R

∣∣p̂∗(ξ)∣∣2eiξ(f(x)−f(u))dξ =
∫
R

∣∣p̂∗(ξ)∣∣2 cos
(
ξ
(
f(x) − f(u)

))
dξ.

We see that V11(f) is minimized if and only if f(x) = f(u) for any x, u ∈ X1. In this case, f is a constant 
on X1, denoted as f1, and the minimum value of V11(f) equals

V ∗
11 := −

(
ρX(X1)

)2 = −1
4 .

Moreover, if a measurable function satisfies f(x) ∈ [−M, M ] for every x ∈ X1, we have

V11(f) − V ∗
11 = 1

2π

∫
X1

∫
X1

∫
R

∣∣p̂∗(ξ)∣∣2(1 − cos
(
ξ
(
f(x) − f(u)

)))
dξdρX(x)dρX(u)

= 1
2π

∫
X1

∫
X1

∫
R

∣∣p̂∗(ξ)∣∣22 sin2
(
ξ(f(x) − f(u)

2

)
dξdρX(x)dρX(u)

≥ 1
2π

∫
X1

∫
X1

∫
|ξ|≤ π

4M

∣∣p̂∗(ξ)∣∣22( 2
π

ξ(f(x) − f(u))
2

)2

dξdρX(x)dρX(u)

≥ 1
24π2M3

∫
X1

∫
X1

(
f(x) − f(u)

)2
dρX(x)dρX(u)

= 1
12π2M3 ‖f −mf,X1‖2

L2
ρX

(X1) (5.3)

where
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mf,Xj
=

E[f1Xj
]

ρX(Xj)
= 1

ρX(Xj)

∫
Xj

f(x)dρX(x)

denotes the mean of f on Xj .
Similarly, V22(f) is minimized if and only if f is constant on X2, which will be denoted as f2, and the 

corresponding minimum value equals

V ∗
22 := −1

2
(
ρX(X2)

)2 = −1
8 .

Again, if a measurable function satisfies f(x) ∈ [−M, M ] for every x ∈ X2, we have

V22(f) − V ∗
22 ≥ 1

24π2M3 ‖f −mf,X2‖2
L2

ρX
(X2). (5.4)

For V12(f), we express it as

V12(f) = − 1
4π

∫
X1

∫
X2

∫
R

∣∣p̂∗(ξ)∣∣2(eiξ + e−iξ)(eiξ(f(x)−f(u)) + e−iξ(f(x)−f(u)))dξdρX(x)dρX(u).

Write f(x) − f(u) as kf,x,u + bf,x,u with kf,x,u ∈ Z being the integer part of the real number of f(x) − f(u)
and bf,x,u ∈ [0, 1). We have∫

R

∣∣p̂∗(ξ)∣∣2(eiξ + e−iξ)eiξ(f(x)−f(u))dξ

=
∫
R

p̂∗(ξ)p̂∗(ξ)e−iξbf,x,u
(
eiξ(kf,x,u+1) + eiξ(kf,x,u−1))dξ

=
∫
R

p̂∗(ξ) ̂p∗(· − bf,x,u)(ξ)
(
eiξ(kf,x,u+1) + eiξ(kf,x,u−1))dξ

=
∫

[−π,π)

{∑
�∈Z

p̂∗(ξ + 2�π) ̂p∗(· − bf,x,u)(ξ + 2�π)
}(

eiξ(kf,x,u+1) + eiξ(kf,x,u−1))dξ
=

∫
[−π,π)

{∑
�∈Z

〈
p∗(· − �), p∗(· − bf,x,u)

〉
L2(R)e

i�ξ
}(

eiξ(kf,x,u+1) + eiξ(kf,x,u−1))dξ,
where we have used (5.2) in the last step. Since bf,x,u ∈ [0, 1), we see easily that

〈
p∗(· − �), p∗(· − bf,x,u)

〉
L2(R) =

⎧⎨⎩
1 − bf,x,u, if � = 0,
bf,x,u, if � = 1,
0, if � ∈ Z \ {0, 1}.

Hence ∫
R

∣∣p̂∗(ξ)∣∣2(eiξ + e−iξ)eiξ(f(x)−f(u))dξ

=
∫ (

1 − bf,x,u + bf,x,ueiξ)(eiξ(kf,x,u+1) + eiξ(kf,x,u−1))dξ

[−π,π)
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=

⎧⎨⎩
2π(1 − bf,x,u), if kf,x,u = 1,−1,
2πbf,x,u, if kf,x,u = 0,−2,
0, if kf,x,u ∈ Z \ {1, 0,−1,−2}.

Using the same procedure, we see that 
∫
R
|p̂∗(ξ)|2(eiξ + e−iξ)e−iξ(f(x)−f(u))dξ has exactly the same value. 

Thus

− 1
4π

∫
R

∣∣p̂∗(ξ)∣∣2(eiξ + e−iξ)(eiξ(f(x)−f(u)) + e−iξ(f(x)−f(u)))dξ
=

⎧⎨⎩
bf,x,u − 1, if kf,x,u = 1,−1,
−bf,x,u, if kf,x,u = 0,−2,
0, if kf,x,u ∈ Z \ {1, 0,−1,−2}.

Denote

Δ1 =
{
(x, u) ∈ X1 ×X2 : 1 ≤ f(x) − f(u) < 2

}
∪
{
(x, u) ∈ X1 ×X2 : −1 ≤ f(x) − f(u) < 0

}
,

Δ2 =
{
(x, u) ∈ X1 ×X2 : 0 ≤ f(x) − f(u) < 1

}
∪
{
(x, u) ∈ X1 ×X2 : −2 ≤ f(x) − f(u) < −1

}
,

Δ3 =
{
(x, u) ∈ X1 ×X2 : f(x) − f(u) < −2

}
∪
{
(x, u) ∈ X1 ×X2 : f(x) − f(u) ≥ 2

}
.

Note that kf,x,u is the integer part of f(x) − f(u). We have

V12(f) =
∫
X1

∫
X2

{
(bf,x,u − 1)1Δ1(x, u) − bf,x,u1Δ2(x, u)

}
dρX(x)dρX(u).

Since 0 ≤ bf,x,u < 1, we see that V12(f) is minimized if and only if bf,x,u = 0, Δ1 = X1 × X2 and Δ2 = ∅. 
These conditions are equivalent to f(x) − f(u) = kf,x,u = ±1 for almost all (x, u) ∈ X1 × X2. Therefore, 
V12(f) is minimized if and only if |f(x) − f(u)| = 1 for almost every (x, u) ∈ X1 × X2. In this case, the 
minimum value of V12(f) equals

V ∗
12 := −ρX(X1)ρX(X2) = −1

4 .

Moreover, for any measurable function f , we have

V12(f) − V ∗
12 =

∫
X1

∫
X2

bf,x,u1Δ1(x, u) + (1 − bf,x,u)1Δ2(x, u) + 1Δ3(x, u)dρX(x)dρX(u).

On Δ1, we have bf,x,u = ||f(x) −f(u)| −1| and as a number on [0, 1), it satisfies bf,x,u = ||f(x) −f(u)| −1| ≥
(|f(x) − f(u)| − 1)2. Similarly on Δ2 we have 1 − bf,x,u = ||f(x) − f(u)| − 1| ≥ (|f(x) − f(u)| − 1)2. On 
Δ3, since the function f takes values on [−M, M ], we have 2 ≤ |f(x) − f(u)| ≤ 2M . Therefore 1 ≥

1
4M2 (|f(x) − f(u)| − 1)2. Thus,

V12(f) − V ∗
12 ≥ 1

4M2

∫
X1

∫
X2

(∣∣f(x) − f(u)
∣∣− 1

)2
dρX(x)dρX(u)

≥ 1
48π2M3

∫
X1

∫
X2

(∣∣f(x) − f(u)
∣∣− 1

)2
dρX(x)dρX(u),

where we impose a lower bound in the last step in order to use (5.3) and (5.4) later.
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To bound V12(f) − V ∗
12 further, we need the following elementary inequality: for A, a ∈ R,

A2 = a2 + (A− a)2 + 2 a√
2
√

2(A− a) ≥ a2 + (A− a)2 − a2

2 − 2(A− a)2 = a2

2 − (A− a)2.

Applying it with A = |f(x) − f(u)| − 1 and a = |mf,X1 −mf,X2 | − 1 and using the fact

(∣∣f(x) − f(u)
∣∣− |mf,X1 −mf,X2 |

)2 ≤
((
f(x) −mf,X1

)
−
(
f(u) −mf,X2

))2
≤ 2

(
f(x) −mf,X1

)2 + 2
(
f(u) −mf,X2

)2
,

we obtain

(∣∣f(x) − f(u)
∣∣− 1

)2 ≥ 1
2
(
|mf,X1 −mf,X2 | − 1

)2 − 2
(
f(x) −mf,X1

)2 − 2
(
f(u) −mf,X2

)2
.

It follows to

V12(f) − V ∗
12 ≥ 1

48π2M3

{
1
8
(
|mf,X1 −mf,X2 | − 1

)2 − ‖f −mf,X1‖2
L2

ρX
(X1) − ‖f −mf,X2‖2

L2
ρX

(X2)

}
. (5.5)

Combining (5.3), (5.4), and (5.5), we have with c = 1
400π2M3 ,

V (f) − V ∗ ≥ c
{(

|mf,X1 −mf,X2 | − 1
)2 + ‖f −mf,X1‖2

L2
ρX

(X1) + ‖f −mf,X2‖2
L2

ρX
(X2)

}
. (5.6)

With above preparations we can now prove our conclusions. Firstly, combining the conditions for mini-
mizing V11, V22 and V12 we see easily the result in part (i).

By V ∗ = V ∗
11 + V ∗

22 + V ∗
12 = −5

8 we get R∗ = − log(5
8 ). For f∗, a direct computation gives pE =

1
41[− 3

2 ,− 1
2 ] + 1

21[− 1
2 ,

1
2 ] + 1

41[ 12 ,
3
2 ]. So R(f∗) = − log(3

8 ) and we prove part (ii).
For any measurable function f , we take a function f∗

R = f11X1 +f21X2 with f1 = mf,X1 and f2 = f1+f12, 
where f12 is a constant defined to be 1 if mf,X2 ≥ mf,X1 and −1 otherwise. Then f∗

R ∈ F∗
R is a minimizer 

of the error entropy function R(f). Moreover, it is easy to check that

‖f − f∗
R‖2

L2
ρX

= ‖f −mf,X1‖2
L2

ρX
(X1) + ‖f − f2‖2

L2
ρX

(X2).

Since 
∫
X2

(f −mf,X2)dρX = 0, we have

‖f − f2‖2
L2

ρX
(X2) =

∫
X2

(f −mf,X2)2dρX +
∫
X2

(mf,X2 − f2)2dρX .

Observe that mf,X2 − f2 = mf,X2 −mf,X1 − f12 and by the choice of the constant f12, we see that

|mf,X2 − f2| = ||mf,X2 −mf,X1 | − 1|.

Hence

‖f − f∗
R‖2

L2
ρX

= ‖f −mf,X1‖2
L2

ρX
(X1) + ‖f −mf,X2‖2

L2
ρX

(X2) + 1
2
(
|mf,X1 −mf,X2 | − 1

)2
.

This in combination with (5.6) leads to the conclusion in part (iii) with the constant C ′ = 400π2M3BU .
For part (iv), the first convergence is a direct consequence of the error entropy consistency. To see the 

second one, it is suffices to notice
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min
b∈R

‖fz + b− f∗‖L2
ρX

= min
b∈R

min
f∗

R∈F∗
R

‖fz − f∗
R + f∗

R + b‖L2
ρX

−→ min
b∈R

min
f∗

R∈F∗
R

‖f∗
R + b‖L2

ρX
,

which has the minimum value of 1
2 achieved at b = − f1+f2

2 . �
6. Regression consistency

In this section we prove that the regression consistency is true for both homoskedastic models and 
heteroskedastic models when the bandwidth parameter h is chosen to tend to infinity in a suitable rate. We 
need the following result proved in [8].

Proposition 6.1. There exists a constant C ′′ depending only on H, ρ and M such that

∥∥f + Ex

[
f∗(x) − f(x)

]
− f∗∥∥2

L2
ρX

≤ C ′′
(
h3(Eh(f) − E∗

h

)
+ 1

h2

)
, ∀f ∈ H, h > 0,

where E∗
h = minf∈H Eh(f).

Theorem 2.7 is an easy consequence of Propositions 6.1 and 3.4. To see this, it suffices to notice that 
Eh(fz) − E∗

h ≤ 2Sz.

7. Regression consistency for two special models

In previous sections we see the information error Eh(f) plays a very important role in analyzing the 
empirical MEE algorithm. Actually, it is of independent interest as a loss function to the regression problem. 
As we discussed, as h tends to 0, Eh(f) tends to V (f) which is the loss function used in the MEE algorithm. 
As h tends to ∞, it behaves like a least square ranking loss [8]. In this section we use it to study the 
regression consistency of MEE for the two classes of special models P1 and P2.

7.1. Symmetric unimodal noise model

In this subsection we prove the regression consistency for the symmetric unimodal noise case stated in 
Theorem 2.12. To this end, We need the following two lemmas of which the first is from [11]. Let f ∗ g

denote the convolution of two integrable functions f and g.

Lemma 7.1. The convolution of two symmetric unimodal distribution functions is symmetric unimodal.

Lemma 7.2. Let εx = y − f∗(x) be the noise random variable at x and denote gx,u as the probability density 
function of εx − εu for x, u ∈ X and ĝx,u as the Fourier transform of gx,u. If ρ belongs to P1, we have

(i) gx,u is symmetric and unimodal for x, u ∈ X ;
(ii) ĝx,u(ξ) is nonnegative for ξ ∈ R;
(iii) ĝx,u(ξ) ≥ C0 for ξ ∈ [−c0, c0], where c0, C0 are two positive constants.

Proof. Since both pε|X(·|x) and pε|X(·|u) are symmetric and unimodal, (i) is an easy consequence of 
Lemma 7.1. With the symmetry property, −εu has the same density function as εu, so we have gx,u =
pε|X(·|x) ∗ pε|X(·|u), which implies

ĝx,u(ξ) = p̂ε|X=x(ξ)p̂ε|X=u(ξ).
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Since ρ is in P1, we easily see that ĝx,u(ξ) is nonnegative for ξ ∈ R and that for some positive constants c0, 
C0, there holds ĝx,u(ξ) ≥ C0 for ξ ∈ [−c0, c0]. �

The following result gives some regression consistency analysis for the MEE algorithm where the band-
width parameter h is fixed. It immediately implies Theorem 2.12 stated in the second section.

Proposition 7.3. Assume ρ belongs to P1. Then for any fixed h

(i) f∗ + b is a minimizer of Eh(f) for any constant b;
(ii) there exists a constant Ch > 0 such that∥∥f + Ex

[
f∗(x) − f(x)

]
− f∗∥∥2

L2
ρX

≤ Ch

(
Eh(f) − Eh

(
f∗)), ∀f ∈ H; (7.1)

(iii) with probability at least 1 − δ, there holds

∥∥fz + Ex

[
f∗(x) − fz(x)

]
− f∗∥∥2

L2
ρX

≤ 2BCh

h2√n
+

√
2Ch

h
√
n

√
log(1/δ), (7.2)

where B is given explicitly in Appendix A.

Proof. Recall that εx = y − f∗(x), εu = v − f∗(u) and gx,u is the probability density function of εx − εu. 
We have for any measurable function f ,

Eh(f) = −
∫
Z

∫
Z

Gh

((
y − f(x)

)
−
(
v − f(u)

))
dρ(x, y)dρ(u, v)

= 1√
2πh

∫
X

∫
X

[
−

∞∫
−∞

exp
(
− (w − t)2

2h2

)
gx,u(w)dw

]
dρX(x)dρX(u)

where t = f(x) − f∗(x) − f(u) + f∗(u).
Now we apply the Planchel formula and find

Eh(f) − Eh
(
f∗)

= 1√
2πh

∫
X

∫
X

[∫
R

exp
(
− w2

2h2

)
gx,u(w)dw −

∫
R

exp
(
− w2

2h2

)
gx,u(w + t)dw

]
dρX(x)dρX(u)

= 1
2π

∫
X

∫
X

∫
R

exp
(
−h2ξ2

2

)
ĝx,u(ξ)

(
1 − eiξ(f(x)−f∗(x)−f(u)+f∗(u)))dξdρX(x)dρX(u)

= 1
2π

∫
X

∫
X

∫
R

exp
(
−h2ξ2

2

)
ĝx,u(ξ)2 sin2 ξ(f(x) − f∗(x) − f(u) + f∗(u))

2 dξdρX(x)dρX(u).

By Lemma 7.2, ĝx,u(ξ) ≥ 0 for ξ ∈ R. So Eh(f) − Eh(f∗) ≥ 0 for any measurable function f . This tells us 
that f∗ and f∗ + b for any b ∈ R are minimizers of Eh(f).

To prove (7.1) we notice that both f and f∗ take values on [−M, M ]. Hence |f(x) −f∗(x) −f(u) +f∗(u)| ≤
4M for any x, u ∈ X . So when |ξ| ≤ π

4M , we have∣∣∣∣ξ(f(x) − f∗(x) − f(u) + f∗(u))
∣∣∣∣ ≤ π

,
2 2
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and ∣∣∣∣sin ξ(f(x) − f∗(x) − f(u) + f∗(u))
2

∣∣∣∣ ≥ 2
π

∣∣∣∣ξ(f(x) − f∗(x) − f(u) + f∗(u))
2

∣∣∣∣.
Then we have∫

R

exp
(
−h2ξ2

2

)
ĝx,u(ξ)2 sin2 ξ(f(x) − f∗(x) − f(u) + f∗(u))

2 dξ

≥
∫

|ξ|≤ π
4M

exp
(
−h2ξ2

2

)
ĝx,u(ξ)2 sin2 ξ(f(x) − f∗(x) − f(u) + f∗(u))

2 dξ

≥
∫

|ξ|≤ π
4M

exp
(
−h2ξ2

2

)
ĝx,u(ξ) 2

π2 ξ
2(f(x) − f∗(x) − f(u) + f∗(u)

)2
dξ

≥
∫

|ξ|≤min{ π
4M ,c0}

exp
(
−h2ξ2

2

)
ĝx,u(ξ) 2

π2 ξ
2(f(x) − f∗(x) − f(u) + f∗(u)

)2
dξ

≥ 2C0

π2

∫
|ξ|≤min{ π

4M ,c0}

exp
(
−h2ξ2

2

)
ξ2(f(x) − f∗(x) − f(u) + f∗(u)

)2
dξ.

Therefore, using (4.1)

Eh(f) − Eh
(
f∗) ≥ (

2C0

π3

∫
|ξ|≤min{ π

4M ,c0}

ξ2 exp
(
−h2ξ2

2

)
dξ

)∥∥f + Ex

[
f∗(x) − f(x)

]
− f∗∥∥2

L2
ρX

.

Since ch =
∫
|ξ|≤min{ π

4M ,c0} ξ
2 exp(−h2ξ2

2 )dξ is positive, (7.1) follows by taking Ch = π3

2chC0
.

With (7.1) valid, (iii) is an easy consequence of Proposition 3.4. �
7.2. Symmetric bounded noise models

In this subsection we prove the regression consistency for the symmetric bounded noise models stated in 
Theorem 2.13.

Proposition 7.4. We assume ρ belongs to P2. Then there exists a constant hρ,H > 0 such that for any fixed 
h > hρ,H the following holds:

(i) f∗ + b is the minimizer of Eh(f) for any constant b;
(ii) there exists a constant C2 > 0 depending only on ρ, H, M̃ , M and h such that

∥∥f + Ex

[
f∗(x) − f(x)

]
− f∗∥∥2

L2
ρX

≤ C2
(
Eh(f) − Eh

(
f∗)), ∀f ∈ H; (7.3)

(iii) with probability at least 1 − δ, there holds

∥∥fz + Ex

[
f∗(x) − fz(x)

]
− f∗∥∥2

L2
ρX

≤ 2BC2

h2√n
+

√
2C2

h
√
n

√
log(1/δ). (7.4)
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Proof. Since ρ belongs to P2, we know that εx is supported on [−M̃, M̃ ] and gx,u on [−2M̃, 2M̃ ]. So for 
any measurable function f : X → R,

Eh(f) = 1√
2πh

∫
X

∫
X

Tx,u

(
f(x) − f∗(x) − f(u) + f∗(u)

)
dρX(x)dρX(u),

where Tx,u is a univariate function given by

Tx,u(t) = −
2M̃∫

−2M̃

exp
(
− (w − t)2

2h2

)
gx,u(w)dw.

Observe that

T ′
x,u(t) = −

2M̃∫
−2M̃

exp
(
− (w − t)2

2h2

)(
w − t

h2

)
gx,u(w)dw

= − 1
h2

2M̃∫
0

w exp
(
− w2

2h2

)[
gx,u(w + t) − gx,u(w − t)

]
dw,

and

T ′′
x,u(t) = − 1

h2

2M̃∫
−2M̃

exp
(
− (w − t)2

2h2

)[
(w − t)2

h2 − 1
]
gx,u(w)dw.

So T ′
x,u(0) = 0. Moreover, if we choose hρ,H := 4M + 2M̃ , then for h > hρ,H and |t| ≤ 4M ,

T ′′
x,u(t) ≥ 1

h2

(
1 − (4M + 2M̃)2

h2

)
exp

(
−2(2M + M̃)2

h2

) 2M̃∫
−2M̃

gx,u(w)dw

= 1
h2

(
1 − (4M + 2M̃)2

h2

)
exp

(
−2(2M + M̃)2

h2

)
> 0.

So Tx,u is convex on [−4M, 4M ] and t = 0 is its unique minimizer. By the fact t = f(x) − f∗(x) − f(u) +
f∗(u) ∈ [−4M, 4M ] for all x, u ∈ X , we conclude that, for any constant b, f∗ + b is the minimizer of Eh(f).

By Taylor expansion, we obtain

Tx,u(t) − Tx,u(0) = T ′
x,u(0)t +

T ′′
x,u(ξ)

2 t2 =
T ′′
x,u(ξ)

2 t2, t ∈ [−4M, 4M ],

where ξ is between 0 and t. So |ξ| ≤ |t| ≤ 4M . It follows that with the constant C2 = h2 exp(2(2M+M̃)2
h2 )/

(1 − (4M+2M̃)2
h2 ) independent of x and u we have

t2 ≤ 2C2
[
Tx,u(t) − Tx,u(0)

]
.

By virtue of the equality (4.1),
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∥∥f + Ex

[
f∗(x) − f(x)

]
− f∗∥∥2

L2
ρX

≤ C2
(
Eh(f) − Eh

(
f∗)).

Together with Proposition 3.4, (7.3) leads to (7.4). Theorem 2.13 has been proved by taking hρ,H =
4M + 2M̃ . �
Appendix A. Proof of Proposition 3.4

In this appendix we prove Proposition 3.4. Let us first give the definition of the empirical covering number 
which is used to characterize the capacity of the hypothesis space and prove the sample error bound.

The �2-norm empirical covering number is defined by means of the normalized �2-metric d2 on the 
Euclidean space Rn given by

d2(a,b) =
(

1
n

n∑
i=1

|ai − bi|2
)1/2

for a = (ai)ni=1, b = (bi)ni=1 ∈ Rn.

Definition A.1. For a subset S of a pseudo-metric space (M, d) and ε > 0, the covering number N (S, ε, d)
is defined to be the minimal number of balls of radius ε whose union covers S. For a set H of bounded 
functions on X and ε > 0, the �2-norm empirical covering number of H is given by

N2(H, ε) = sup
n∈N

sup
x∈Xn

N (H|x, ε, d2). (A.1)

where for n ∈ N and x = (xi)ni=1 ∈ Xn, we denote the covering number of the subset H|x = {(f(xi))ni=1 :
f ∈ H} of the metric space (Rn, d2) as N (H|x, ε, d2).

Definition A.2. Let ρ be a probability measure on a set X and suppose that X1, ..., Xn are independent 
samples selected according to ρ. Let H be a class of functions mapping from X to R. Define the random 
variable

R̂n(H) = Eσ

[
sup
f∈H

∣∣∣∣∣ 1n
n∑

i=1
σif(Xi)

∣∣∣∣∣∣∣∣X1, ..., Xn

]
, (A.2)

where σ1, ..., σn are independent uniform {±1}-valued random variables. Then the Rademacher average [2]
of H is Rn(H) = ER̂n(H).

The following lemma from [1] shows that these two complexity measures we just defined are closely 
related.

Lemma A.3. For a bounded function class H on X with bound M, and N2(H, ε) is �2-norm empirical covering 
number of H, then there exists a constant C1 such that for every positive integer n the following holds:

R̂n(H) ≤ C1

M∫
0

(
logN2(H, ε)

n

)1/2

dε. (A.3)

Moreover, we need the following lemma for Rademacher average.
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Lemma A.4. (1) For any uniformly bounded function f,

Rn(H + f) ≤ Rn(H) + ‖f‖∞/
√
n.

(2) Let {φi}ni=1 be functions with Lipschitz constants γi, then [13] gives

Eσ

{
sup
f∈H

n∑
i=1

σiφi

(
f(xi)

)}
≤ Eσ

{
sup
f∈H

n∑
i=1

σiγif(xi)
}
.

By applying McDiarmid’s inequality we have the following proposition.

Proposition A.5. For every ε1 > 0, we have

P{Sz − ESz > ε1} ≤ exp
(
−2nh2ε2

1
)
.

Proof. Recall

Sz = sup
f∈H

∣∣Eh,z(f) − Eh(f)
∣∣.

Let i ∈ {1, · · · , n} and z̃ = {z1, · · · , zi−1, ̃zi, zi+1, · · · , zn} be identical to z except the i-th sample. Then

|Sz − Sz̃| ≤ sup
(xi,yi)ni=1,(x̃i,ỹi)

∣∣∣sup
f∈H

∣∣Eh,z(f) − Eh(f)
∣∣− sup

f∈H

∣∣Eh,z̃(f) − Eh(f)
∣∣∣∣∣

≤ sup
(xi,yi)ni=1,(x̃i,ỹi)

sup
f∈H

∣∣Eh,z(f) − Eh,z̃(f)
∣∣

≤ 1
n2

n∑
j=1

sup
(xi,yi)ni=1,(x̃i,ỹi)

sup
f∈H

∣∣Gh(ei, ej) −Gh(ẽi, ej)
∣∣

≤ 1
nh

.

Then the proposition follows immediately from McDiarmid’s inequality. �
Now we need to bound ESz.

Proposition A.6.

ESz ≤ 2√
πh2

(
M√
n

+ Rn(H)
)

+ 2√
2πhn

.

Proof. Let η(x, y, u, v) = 1√
2π exp(− [(y−f(x))−(v−f(u))]2

2h2 ) for simplicity. Then

Eh,z(f) = − 1
n2h

n∑
i=1

n∑
j=1

η(xi, yi, xj , yj)

and

Eh(f) = − 1
h
E(x,y)E(u,v)η(x, y, u, v).

Then
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hSz = h sup
f∈H

∣∣Eh,z(f) − Eh(f)
∣∣

≤ sup
f∈H

∣∣∣∣∣E(x,y)E(u,v)η(x, y, u, v) −
1
n

n∑
j=1

E(x,y)η(x, y, xj , yj)

∣∣∣∣∣
+ sup

f∈H

∣∣∣∣∣ 1n
n∑

j=1
E(x,y)η(x, y, xj , yj) −

1
n2

n∑
i=1

n∑
j=1

η(xi, yi, xj , yj)

∣∣∣∣∣
≤ E(x,y) sup

f∈H

∣∣∣∣∣E(u,v)η(x, y, u, v) −
1
n

n∑
j=1

η(x, y, xj , yj)

∣∣∣∣∣
+ 1

n

n∑
j=1

sup
(u,v)∈z

sup
f∈H

∣∣∣∣∣E(x,y)η(x, y, u, v) −
1

n− 1

n∑
i=1
i�=j

η(xi, yi, u, v)

∣∣∣∣∣
+ 1

n

n∑
j=1

sup
f∈H

[
1
n
η(xj , yj , xj , yj) + 1

n(n− 1)

n∑
i=1
i�=j

η(xi, yi, xj , yj)
]

:= S1 + S2 + S3.

Noting that

∣∣exp
(
−
(
yi − f(xi)

)2)− exp
(
−
(
yi − g(xi)

)2)∣∣ ≤ ∣∣f(xi) − g(xi)
∣∣,

we have

ES1 = E(x,y)E sup
f∈H

∣∣∣∣∣E(u,v)η(x, y, u, v) −
1
n

n∑
j=1

η(x, y, xj , yj)

∣∣∣∣∣
≤ 2√

2π
sup

(x,y)∈z
EEσ sup

f∈H

∣∣∣∣∣ 1n
n∑

j=1
σj exp

(
− [(y − f(x)) − (yj − f(xj))]2

2h2

)∣∣∣∣∣
≤ 1

h
√
π

sup
x∈X

EEσ sup
f∈H

∣∣∣∣∣ 1n
n∑

j=1
σj

(
f(x) − f(xj)

)∣∣∣∣∣
≤ 1

h
√
π

[
sup
x∈X

Eσ sup
f∈H

∣∣∣∣∣ 1n
n∑

j=1
σjf(x)

∣∣∣∣∣ + EEσ sup
f∈H

∣∣∣∣∣ 1n
n∑

j=1
σjf(xj)

∣∣∣∣∣
]

≤ 1
h
√
π

(
M√
n

+ Rn(H)
)
,

where the second inequality is from Lemma A.4. Similarly,

ES2 = 1
n

n∑
j=1

sup
(u,v)∈z

E sup
f∈H

∣∣∣∣∣E(x,y)η(x, y, u, v) −
1

n− 1

n∑
i=1
i�=j

η(xi, yi, u, v)

∣∣∣∣∣
≤ 2

n
√

2π

n∑
j=1

sup
(u,v)∈z

EEσ sup
f∈H

∣∣∣∣∣ 1
n− 1

n∑
i=1

σi exp
(
− [(yi − f(xi)) − (v − f(u))]2

2h2

)∣∣∣∣∣

i�=j
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≤ 1
nh

√
π

n∑
j=1

sup
u∈X

EEσ sup
f∈H

∣∣∣∣∣ 1
n− 1

n∑
i=1
i�=j

σi

(
f(xi) − f(u)

)∣∣∣∣∣
≤ 1

nh
√
π

n∑
j=1

[
sup
u∈X

Eσ sup
f∈H

∣∣∣∣∣ 1
n− 1

n∑
i=1
i�=j

σif(u)

∣∣∣∣∣ + EEσ sup
f∈H

∣∣∣∣∣ 1
n− 1

n∑
i=1
i�=j

σif(xi)

∣∣∣∣∣
]

= 1
h
√
π

(
M√
n

+ Rn(H)
)
.

It’s easy to obtain ES3 ≤ 2
n
√

2π . Combining the estimates for S1, S2, S3 completes the proof. �
Now we can prove Proposition 3.4.
If H is MEE admissible, (A.3) leads to

Rn(H) = ER̂n(H) ≤ C1√
n

M∫
0

E
√

logN2(H, ε)dε

≤ C1√
n

M∫
0

√
E logN2(H, ε)dε

≤ C1
√
c√

n

M∫
0

ε−s/2dε

=
(

2C1
√
c

2 − s
M1−s/2

)
1√
n
.

Let B = 4C1
√
c

(2−s)
√
π
M1−s/2 + 2M+

√
2√

π
, combining Proposition A.5 and Proposition A.6 yields the desired

result.
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