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Additive models play an important role in semiparametric statistics. This paper gives
learning rates for regularized kernel-based methods for additive models. These learn-
ing rates compare favorably in particular in high dimensions to recent results on opti-
mal learning rates for purely nonparametric regularized kernel-based quantile regression
using the Gaussian radial basis function kernel, provided the assumption of an additive
model is valid. Additionally, a concrete example is presented to show that a Gaussian
function depending only on one variable lies in a reproducing kernel Hilbert space gen-
erated by an additive Gaussian kernel, but does not belong to the reproducing kernel
Hilbert space generated by the multivariate Gaussian kernel of the same variance.
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1. Introduction

Additive models [30, 9, 10] provide an important family of models for semiparamet-
ric regression or classification. Some reasons for the success of additive models are
their increased flexibility when compared to linear or generalized linear models and
their increased interpretability when compared to fully nonparametric models. It is
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well known that good estimators in additive models are in general less prone to the
curse of high dimensionality than good estimators in fully nonparametric models.
Many examples of such estimators belong to the large class of regularized kernel-
based methods over a reproducing kernel Hilbert space H , see e.g., [21, 38]. In
the last years many interesting results on learning rates of regularized kernel-based
models for additive models have been published when the focus is on sparsity and
when the classical least squares loss function is used, see e.g., [18, 1, 17, 19, 22, 33]
and the references therein. Of course, the least squares loss function is differen-
tiable and has many nice mathematical properties, but it is only locally Lipschitz
continuous and therefore regularized kernel-based methods based on this loss func-
tion typically suffer on bad statistical robustness properties, even if the kernel is
bounded. This is in sharp contrast to kernel methods based on a Lipschitz contin-
uous loss function and on a bounded loss function, where results on upper bounds
for the bias and on a bounded influence function are known, see e.g., [4] for the
general case and [3] for additive models.

Therefore, we will here consider the case of regularized kernel-based methods
based on a general convex and Lipschitz continuous loss function, on a general
kernel, and on the classical regularizing term λ‖·‖2

H for some λ > 0 which is a
smoothness penalty but not a sparsity penalty, see e.g., [35, 36, 23, 32, 6, 26, 11, 7].
Such regularized kernel-based methods are now often called support vector machines
(SVMs), although the notation was historically used for such methods based on the
special hinge loss function and for special kernels only, we refer to [37, 2, 5].

In this paper we address the open question, whether an SVM with an additive
kernel can provide a substantially better learning rate in high dimensions than an
SVM with a general kernel, say a classical Gaussian RBF kernel, if the assumption
of an additive model is satisfied. Our leading example covers learning rates for
quantile regression based on the Lipschitz continuous but nondifferentiable pinball
loss function, which is also called check function in the literature, see, e.g., [16,
15] for parametric quantile regression and [24, 34, 28] for kernel-based quantile
regression. We will not address the question how to check whether the assumption
of an additive model is satisfied because this would be a topic of a paper of its own.
Of course, a practical approach might be to fit both models and compare their risks
evaluated for test data. For the same reason we will also not cover sparsity.

Consistency of support vector machines generated by additive kernels for addi-
tive models was considered in [3]. In this paper we establish learning rates for these
algorithms. Let us recall the framework with a complete separable metric space X as
the input space and a closed subset Y of R as the output space. A Borel probability
measure P on Z := X × Y is used to model the learning problem and an indepen-
dent and identically distributed sample Dn = {(xi, yi)}n

i=1 is drawn according to P
for learning. A loss function L : X ×Y ×R → [0,∞) is used to measure the quality
of a prediction function f : X →R by the local error L(x, y, f(x)). Throughout the
paper we assume that L is measurable, L(x, y, y) = 0, convex with respect to the

A
na

l. 
A

pp
l. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
04

/0
8/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

March 3, 2015 15:24 WSPC/S0219-5305 176-AA 1550005

Learning rates for the risk of kernel-based quantile regression estimators 3

third variable, and uniformly Lipschitz continuous satisfying

sup
(x,y)∈Z

|L(x, y, t) − L(x, y, t′)| ≤ |L|1|t− t′| ∀ t, t′ ∈ R (1.1)

with a finite constant |L|1 ∈ (0,∞).
Support vector machines (SVMs) considered here are kernel-based regularization

schemes in a reproducing kernel Hilbert space (RKHS) H generated by a Mercer
kernel k : X×X → R. With a shifted loss function L∗ : X×Y×R → R introduced for
dealing even with heavy-tailed distributions as L∗(x, y, t) = L(x, y, t)−L(x, y, 0),
they take the form fL,Dn,λ where for a general Borel measure ρ on Z, the function
fL,ρ,λ is defined by

fL,ρ,λ = arg min
f∈H

{RL∗,ρ(f) + λ‖f‖2
H},

RL∗,ρ(f) =
∫
Z
L∗(x, y, f(x)) dρ(x, y), (1.2)

where λ > 0 is a regularization parameter. The idea to shift a loss function has
a long history, see e.g., [14] in the context of M-estimators. It was shown in [4]
that fL,ρ,λ is also a minimizer of the following optimization problem involving the
original loss function L if a minimizer exists:

min
f∈H

{∫
Z
L(x, y, f(x)) dρ(x, y) + λ‖f‖2

H

}
. (1.3)

The additive model we consider consists of the input space decomposition X =
X1 × · · · × Xs with each Xj a complete separable metric space and a hypothesis
space

F = {f1 + · · · + fs : fj ∈ Fj , j = 1, . . . , s}, (1.4)

where Fj is a set of functions fj : Xj → R each of which is also identified as a map
(x1, . . . , xs) �→ fj(xj) from X to R. Hence the functions from F take the additive
form f(x1, . . . , xs) = f1(x1)+ · · · +fs(xs). We mention, that there is strictly speak-
ing a notational problem here, because in the previous formula each quantity xj is
an element of the set Xj which is a subset of the full input space X , j = 1, . . . , s,
whereas in the definition of sampleDn = {(xi, yi)}n

i=1 each quantity xi is an element
of the full input space X , where i = 1, . . . , n. Because these notations will only be
used in different places and because we do not expect any misunderstandings, we
think this notation is easier and more intuitive than specifying these quantities with
different symbols.

The additive kernel k = k1 + · · · + ks is defined in terms of Mercer kernels kj

on Xj as

k((x1, . . . , xs), (x′1, . . . , x
′
s)) = k1(x1, x

′
1) + · · · + ks(xs, x

′
s).
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It generates an RKHS H which can be written in terms of the RKHS Hj generated
by kj on Xj corresponding to the form (1.4) as

H = {f1 + · · · + fs : fj ∈ Hj , j = 1, . . . , s}
with norm given by

‖f‖2
H = min

f=f1+···+fs

f1∈H1,...,fs∈Hs

‖f1‖2
H1

+ · · · + ‖fs‖2
Hs
.

The norm of f := f1 + · · · + fs satisfies

‖f1 + · · · + fs‖2
H ≤ ‖f1‖2

H1
+ · · · + ‖fs‖2

Hs
, f1 ∈ H1, . . . , fs ∈ Hs. (1.5)

To illustrate advantages of additive models, we provide two examples of com-
paring additive with product kernels. The first example deals with Gaussian RBF
kernels. All proofs will be given in Sec. 4.

Example 1.1. Let s = 2, X1 = X2 = [0, 1] and X = [0, 1]2. Let σ > 0 and

k1(u, v) = k2(u, v) = exp
(
−|u− v|2

σ2

)
, u, v ∈ [0, 1].

The additive kernel k((x1, x2), (x′1, x
′
2)) = k1(x1, x

′
1) + k2(x2, x

′
2) is given by

k((x1, x2), (x′1, x
′
2)) = exp

(
−|x1 − x′1|2

σ2

)
+ exp

(
−|x2 − x′2|2

σ2

)
. (1.6)

Furthermore, the product kernel kΠ((x1, x2), (x′1, x
′
2)) = k1(x1, x

′
1)·k2(x2, x

′
2) is the

standard Gaussian kernel given by

kΠ((x1, x2), (x′1, x
′
2)) = exp

(
−|x1 − x′1|2 + |x2 − x′2|2

σ2

)
(1.7)

= exp

(
−|(x1, x2) − (x′1, x′2)|2

σ2

)
. (1.8)

Define a Gaussian function f on X = [0, 1]2 depending only on one variable by

f(x1, x2) = exp
(
−|x1|2

σ2

)
. (1.9)

Then f ∈ H but

f �∈ HkΠ , (1.10)

where HkΠ denotes the RKHS generated by the standard Gaussian RBF kernel kΠ.

The second example is about Sobolev kernels.

Example 1.2. Let 2 ≤ s ∈ N, X1 = · · · = Xs = [0, 1] and X = [0, 1]s. Let

W 1[0, 1] := {u ∈ L2([0, 1]);Dαu ∈ L2([0, 1]) for all |α| ≤ 1}
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be the Sobolev space consisting of all square integrable univariate functions whose
derivative is also square integrable. It is an RKHS with a Mercer kernel k∗ defined
on [0, 1]2. If we take all the Mercer kernels k1, . . . , ks to be k∗, then Hj = W 1[0, 1]
for each j. The additive kernel k is also a Mercer kernel and defines an RKHS

H = H1 + · · · +Hs = {f1(x1) + · · · + fs(xs) : f1, . . . , fs ∈ W 1[0, 1]}.

However, the multivariate Sobolev space W 1([0, 1]s), consisting of all square inte-
grable functions whose partial derivatives are all square integrable, contains discon-
tinuous functions and is not an RKHS.

Denote the marginal distribution of P on Xj as PXj . Under the assumption that
Hj ⊂ Fj ⊂ L1(PXj ) for each j and that Hj is dense in Fj in the L1(PXj )-metric,
it was proved in [3] that

RL∗,P (fL,Dn,λ) → R∗
L∗,P,F := inf

f∈F
RL∗,P (f) (n→ ∞)

in probability as long as λ = λn satisfies limn→∞ λn = 0 and limn→∞ λ2
nn = ∞.

The rest of the paper has the following structure. Section 2 contains our main
results on learning rates for SVMs based on additive kernels. Learning rates for
quantile regression are treated as important special cases. Section 3 contains a
comparison of our results with other learning rates published recently. Section 4
contains all the proofs and some results which can be interesting in their own.

2. Main Results on Learning Rates

In this paper we provide some learning rates for the support vector machines gen-
erated by additive kernels for additive models which helps improve the quantitative
understanding presented in [3]. The rates are about asymptotic behaviors of the
excess risk RL∗,P (fL,Dn,λ)−R∗

L∗,P,F and take the form O(m−α) with α > 0. They
will be stated under three kinds of conditions involving the hypothesis space H ,
the measure P , the loss L, and the choice of the regularization parameter λ.

2.1. Approximation error in the additive model

The first condition is about the approximation ability of the hypothesis space H .
Since the output function fL,Dn,λ is from the hypothesis space, the learning rates of
the learning algorithm depend on the approximation ability of the hypothesis space
H with respect to the optimal risk R∗

L∗,P,F measured by the following approxima-
tion error.

Definition 2.1. The approximation error of the triple (H,P, λ) is defined as

D(λ) = inf
f∈H

{RL∗,P (f) −R∗
L∗,P,F + λ‖f‖2

H}, λ > 0. (2.1)
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To estimate the approximation error, we make an assumption about the mini-
mizer of the risk

f∗
F ,P = arg inf

f∈F
RL∗,P (f). (2.2)

For each j ∈ {1, . . . , s}, define the integral operator Lkj :L2(PXj )→L2(PXj )
associated with the kernel kj by

Lkj (f)(xj) =
∫
Xj

kj(xj , uj)f(uj)dPXj (uj), xj ∈ Xj , f ∈ L2(PXj ).

We mention that Lkj is a compact and positive operator on L2(PXj ). Hence we can
find its normalized eigenpairs ((λj,�, ψj,�))�∈N such that (ψj,�)�∈N is an orthonormal
basis of L2(PXj ) and λj,� → 0 as � → ∞. Fix r > 0. Then we can define the rth
power Lr

kj
of Lkj by

Lr
kj

(∑
�

cj,� ψj,�

)
=
∑

�

cj,�λ
r
j,� ψj,�, ∀ (cj,�)�∈N ∈ �2.

This is a positive and bounded operator and its range is well defined. The assump-
tion f∗

j = Lr
kj

(g∗j ) means f∗
j lies in this range.

Assumption 2.2. We assume f∗
F ,P ∈ L∞(PX ) and f∗

F ,P = f∗
1 + · · · + f∗

s where
for some 0 < r ≤ 1

2 and each j ∈ {1, . . . , s}, f∗
j : Xj → R is a function of the form

f∗
j = Lr

kj
(g∗j ) with some g∗j ∈ L2(PXj ).

The case r = 1
2 of Assumption 2.2 means each f∗

j lies in the RKHS Hj .
A standard condition in the literature (e.g., [25]) for achieving decays of the

form D(λ) = O(λr) for the approximation error (2.1) is f∗
F ,P = Lr

k(g∗) with some
g∗ ∈ L2(PX ). Here the operator Lk is defined by

Lk(f)(x1, . . . , xs) =
∫
X

 s∑
j=1

kj(xj , x
′
j)

 f(x′1, . . . , x
′
s)dPX (x′1, . . . , x

′
s). (2.3)

In general, this cannot be written in an additive form. However, the hypothesis
space (1.4) takes an additive form F = F1 + · · · + Fs. So it is natural for us to
impose an additive expression f∗

F ,P = f∗
1 + · · · + f∗

s for the target function f∗
F ,P

with the component functions f∗
j satisfying the power condition f∗

j = Lr
kj

(g∗j ).
The above natural assumption leads to a technical difficulty in estimating the

approximation error: the function f∗
j has no direct connection to the marginal

distribution PXj projected onto Xj , hence existing methods in the literature (e.g.,
[25]) cannot be applied directly. Note that on the product space Xj × Y, there is
no natural probability measure projected from P , and the risk on Xj × Y is not
defined.

Our idea to overcome the difficulty is to introduce an intermediate function fj,λ.
It may not minimize a risk (which is not even defined). However, it approximates the
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component function f∗
j well. When we add up such functions f1,λ + · · · + fs,λ ∈ H ,

we get a good approximation of the target function f∗
F ,P , and thereby a good

estimate of the approximation error. This is the first novelty of the paper.

Theorem 2.3. Under Assumption 2.2, we have

D(λ) ≤ Crλ
r ∀ 0 < λ ≤ 1, (2.4)

where Cr is the constant given by

Cr =
s∑

j=1

(|L|1‖g∗j ‖L2(PXj
) + ‖g∗j ‖2

L2(PXj
)).

2.2. Special bounds for covering numbers in the additive model

The second condition for our learning rates is about the capacity of the hypothesis
space measured by �2-empirical covering numbers.

Definition 2.4. Let G be a set of functions on Z and z = {z1, . . . , zm} ⊂ Z. For
every ε > 0, the covering number of G with respect to the empirical metric d2,z,
given by d2,z(f, g) = { 1

m

∑m
i=1(f(zi) − g(zi))2}1/2 is defined as

N2,z(G, ε) = inf

{
� ∈ N : ∃ {fi}�

i=1 ⊂ G such that G =
�⋃

i=1

{f ∈ G : d2,z(f, fi) ≤ ε}
}

and the �2-empirical covering number of G is defined as

N (G, ε) = sup
m∈N

sup
z∈Zm

N2,z(G, ε).

Assumption 2.5. We assume κ :=
∑s

j=1 supxj∈Xj

√
kj(xj , xj) < ∞ and that for

some ζ ∈ (0, 2), cζ > 0 and every j ∈ {1, . . . , s}, the �2-empirical covering number
of the unit ball of Hj satisfies

logN ({f ∈ Hj : ‖f‖Hj ≤ 1}, ε) ≤ cζ

(
1
ε

)ζ

, ∀ ε > 0. (2.5)

The second novelty of this paper is to observe that the additive nature of the
hypothesis space yields the following nice bound with a dimension-independent
power exponent for the covering numbers of the balls of the hypothesis space H , to
be proved in Sec. 4.4.

Theorem 2.6. Under Assumption 2.5, for any R ≥ 1 and ε > 0, we have

logN ({f ∈ H : ‖f‖H ≤ R}, ε) ≤ s1+ζcζ

(
R

ε

)ζ

, ∀ ε > 0. (2.6)

Remark 2.7. The bound for the covering numbers stated in Theorem 2.6 is special:
the power ζ is independent of the number s of the components in the additive
model. It is well known [8] in the literature of function spaces that the covering
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numbers of balls of the Sobolev space Wh on the cube [−1, 1]s of the Euclidean
space R

s with regularity index h > s/2 has the following asymptotic behavior with
0 < ch,s < Ch,s <∞:

ch,s

(
R

ε

)s/h

≤ logN ({f ∈Wh : ‖f‖W h ≤ R}, ε) ≤ Ch,s

(
R

ε

)s/h

.

Here the power s
h depends linearly on the dimension s. Similar dimension-dependent

bounds for the covering numbers of the RKHSs associated with Gaussian RBF-
kernels can be found in [43, 44]. The special bound in Theorem 2.6 demonstrates
an advantage of the additive model in terms of capacity of the additive hypothesis
space.

2.3. Learning rates for quantile regression

The third condition for our learning rates is about the noise level in the measure
P with respect to the hypothesis space. Before stating the general condition, we
consider a special case for quantile regression, to illustrate our general results. Let
0 < τ < 1 be a quantile parameter. The quantile regression function fP,τ is defined
by its value fP,τ (x) to be a τ -quantile of P (·|x), i.e. a value u ∈ Y = R satisfying

ρ({y ∈ Y : y ≤ u} |x) ≥ τ and ρ({y ∈ Y : y ≥ u} |x) ≥ 1 − τ. (2.7)

The regularization scheme for quantile regression considered here takes the form
(1.2) with the loss function L given by the pinball loss as

L(x, y, t) =

{
(1 − τ)(t − y) if t > y,

−τ(t− y) if t ≤ y.
(2.8)

A noise condition on P for quantile regression is defined in [27, 28] as follows.
To this end, let Q be a probability measure on R and τ ∈ (0, 1). Then a real number
qτ is called τ -quantile of Q, if and only if qτ belongs to the set

F ∗
τ (Q) := {t ∈ R, Q((−∞, t]) ≥ τ and Q([t,∞)) ≥ 1 − τ}.

It is well known that F ∗
τ (Q) is a compact interval.

Definition 2.8. Let τ ∈ (0, 1).

(1) A probability measure Q on R is said to have a τ-quantile of type 2, if there
exist a τ -quantile t∗ ∈ R and a constant bQ > 0 such that, for all s ∈ [0, 2], we
have

Q((t∗ − s, t∗)) ≥ bQs and Q((t∗, t∗ + s)) ≥ bQs. (2.9)

(2) Let p ∈ (0,∞]. We say that a probability measure ρ on X ×Y has a τ-quantile
of p-average type 2 if the conditional probability measure Qx := ρ(· |x) has
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ρX -almost surely a τ -quantile of type 2 and the function

γ : X → (0,∞), γ(x) := γρ(·|x) := bρ(·|x),

where bρ(·|x) > 0 is the constant defined in part (1), satisfies γ−1 ∈ Lp
ρX .

One can show that a distribution Q having a τ -quantile of type 2 has a unique
τ -quantile t∗. Moreover, if Q has a Lebesgue density hQ then Q has a τ -quantile
of type 2 if hQ is bounded away from zero on [t∗ − a, t∗ + a] since we can use
bQ := inf{hQ(t) : t ∈ [t∗ − a, t∗ + a]} in (2.9). This assumption is general enough to
cover many distributions used in parametric statistics such as Gaussian, Student’s t,
and logistic distributions (with Y = R), Gamma and log-normal distributions (with
Y = [0,∞)), and uniform and Beta distributions (with Y = [0, 1]).

The following theorem, to be proved in Sec. 4, gives a learning rate for the
regularization scheme (1.2) in the special case of quantile regression.

Theorem 2.9. Suppose that |y| ≤ |L|0 almost surely for some constant |L|0 > 0,
and that each kernel kj is C∞ with Xj ⊂ R

dj for some dj ∈ N. If Assumption 2.2
holds with r = 1

2 and P has a τ-quantile of p-average type 2 for some p ∈ (0,∞],

then by taking λ = n− 4(p+1)
3(p+2) , for any ε > 0 and 0 < δ < 1, with confidence at least

1 − δ we have

RL∗,P (fL,Dn,λ) −R∗
L∗,P,F ≤ C̃

(
log

2
δ

+ log
(

log
1
ε

+ 2
))2

nε−α(p), (2.10)

where C̃ is a constant independent of n and δ and

α(p) =
2(p+ 1)
3(p+ 2)

. (2.11)

Note that the exponent α(p) given by (2.11) for the learning rate in (2.10) is
independent of the quantile level τ , of the number s of additive components in
f∗

L∗,F ,P = f∗
1 + · · · + f∗

s , and of the dimensions d1, . . . , ds and

d =
s∑

j=1

dj .

Further note that α(p) ∈ [12 ,
2
3 ), if p ≥ 2, and α(p) → 2

3 if p→ ∞. Because ε > 0 can
be arbitrarily close to 0, the learning rate, which is independent of the dimension
d and given by Theorem 2.9, is close to n−2/3 for large values of p and is close to
n−1/2 or better, if p ≥ 2.

2.4. General learning rates

To state our general learning rates, we need an assumption on a variance-expectation
bound which is similar to Definition 2.8 in the special case of quantile regression.
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Assumption 2.10. We assume that there exist an exponent θ ∈ [0, 1] and a posi-
tive constant cθ such that∫

Z
{(L∗(x, y, f(x)) − L∗(x, y, f∗

F ,P (x))2}dP (x, y)

≤ cθ(1 + ‖f‖∞)2−θ{RL∗,P (f) −RL∗,P (f∗
F ,P )}θ, ∀ f ∈ F . (2.12)

Remark 2.11. Assumption 2.10 always holds true for θ = 0. If the triple (P,F , L)
satisfies some conditions, the exponent θ can be larger. For example, when L is the
pinball loss (2.8) and P has a τ -quantile of p-average type q for some p ∈ (0,∞]
and q ∈ (1,∞) as defined in [26], then θ = min{ 2

q ,
p

p+1}.

Theorem 2.12. Suppose that L(x, y, 0) is bounded by a constant |L|0 almost surely.
Under Assumptions 2.2, 2.5 and 2.10, if we take ε > 0 and λ = n−β for some β > 0,
then for any 0 < δ < 1, with confidence at least 1 − δ we have

RL∗,P (fL,Dn,λ) −R∗
L∗,P,F ≤ C̃

(
log

2
δ

+ log
(

log
1
ε

+ 2
))2

nε−α(r,β,θ,ζ), (2.13)

where α(r, β, θ, ζ) is given by

min
{
rβ,

1
2

+ β

(
θ(1 + r)

4
− 1 − r

2

)
,

4
4 − 2θ + ζθ

− β,

2
4 − 2θ + ζθ

− (1 − r)β
2

,
2

4 − 2θ + ζθ
− (1 − r)β

2
− β(1 + r)

(
1 − θ

2

)− 1
4

}
(2.14)

and C̃ is constant independent of n or δ (to be given explicitly in the proof ).

3. Comparison of Learning Rates

We now add some theoretical and numerical comparisons on the goodness of our
learning rates with those from the literature. As already mentioned in the intro-
duction, some reasons for the popularity of additive models are flexibility, increased
interpretability, and (often) a reduced proneness of the curse of high dimensions.
Hence it is important to check, whether the learning rate given in Theorem 2.12
under the assumption of an additive model favorably compares to (essentially) opti-
mal learning rates without this assumption. In other words, we need to demonstrate
that the main goal of this paper is achieved by Theorems 2.9 and 2.12, i.e. that an
SVM based on an additive kernel can provide a substantially better learning rate
in high dimensions than an SVM with a general kernel, say a classical Gaussian
RBF kernel, provided the assumption of an additive model is satisfied.

Remark 3.1. Our learning rate in Theorem 2.9 is new and optimal in the literature
of SVM for quantile regression. Most learning rates in the literature of SVM for
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quantile regression are given for projected output functions Π|L|0(fL,Dn,λ), while
it is well known that projections improve learning rates [40]. Here the projection
operator Π|L|0 is defined for any measurable function f : X → R by

Π|L|0(f)(x) =


f(x) if |f(x)| ≤ |L|0,
|L|0 if f(x) > |L|0,
−|L|0 if f(x) < −|L|0.

(3.1)

Sometimes this is called clipping. Such results are given in [28, 41]. For example,
under the assumptions that P has a τ -quantile of p-average type 2, the approx-
imation error condition (2.4) is satisfied for some 0 < r ≤ 1, and that for some
constants a ≥ 1, ξ ∈ (0, 1), the sequence of eigenvalues (λi) of the integral operator
Lk satisfies λi ≤ ai−1/ξ for every i ∈ N, it was shown in [28] that with confidence
at least 1 − δ,

RL∗,P (Π|L|0(fL,Dn,λ)) −R∗
L∗,P,F ≤ C̃ log

2
δ
n−α,

where

α = min
{

(p+ 1)r
(p+ 2)r + (p+ 1 − r)ξ

,
2r
r + 1

}
.

Here the parameter ξ measures the capacity of the RKHS Hk and it plays a similar
role as half of the parameter ζ in Assumption 2.5. For a C∞ kernel and r = 1

2 ,
one can choose ξ and ζ to be arbitrarily small and the above power index α can be
taken as α = min{ p+1

p+2 ,
2
3} − ε.

The learning rate in Theorem 2.9 may be improved by relaxing Assumption 2.2
to a Sobolev smoothness condition for f∗

F ,P and a regularity condition for the
marginal distribution PX . For example, one may use a Gaussian kernel k = k(n)
depending on the sample size n and [29] achieve the approximation error condition
(2.4) for some 0 < r < 1. This is done for quantile regression in [42, 7]. Since we
are mainly interested in additive models, we shall not discuss such an extension.

Example 3.2. Let s = 2, X1 = X2 = [0, 1] and X = [0, 1]2. Let σ > 0 and the
additive kernel k be given by (1.6) with k1, k2 in Example 1.1 as

k1(u, v) = k2(u, v) = exp
(
−|u− v|2

σ2

)
, u, v ∈ [0, 1].

If the function f∗
F ,P is given by (1.9), |y| ≤ |L|0 almost surely for some constant

|L|0 > 0, and P has a τ -quantile of p-average type 2 for some p ∈ (0,∞], then by

taking λ = n− 4(p+1)
3(p+2) , for any ε > 0 and 0 < δ < 1, (2.10) holds with confidence at

least 1 − δ.

Remark 3.3. It is unknown whether the above learning rate can be derived by
existing approaches in the literature (e.g., [28, 29, 41, 42, 7]) even after projection.
Note that the kernel in the above example is independent of the sample size. It
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would be interesting to see whether there exists some r > 0 such that the function
f defined by (1.9) lies in the range of the operator Lr

kΠ . The existence of such a
positive index would lead to the approximation error condition (2.4), see [25, 31].

Let us now add some numerical comparisons on the goodness of our learning
rates given by Theorem 2.12 with those given by [7]. Their Corollary 4.12 gives
(essentially) minimax optimal learning rates for (clipped) SVMs in the context of
nonparametric quantile regression using one Gaussian RBF kernel on the whole
input space under appropriate smoothness assumptions of the target function. Let
us consider the case that the distribution P has a τ -quantile of p-average type 2,
where p = ∞, and assume that both Corollary 4.12 in [7] and our Theorem 2.12
are applicable. That is, we assume in particular that P is a probability measure
on X × Y := R

d × [−1,+1] and that the marginal distribution PX has a Lebesgue
density g ∈ Lw(Rd) for some w ≥ 1. Furthermore, suppose that the optimal decision
function f∗

L∗,F ,P has (to make Theorem 2.12 applicable with r ∈ (0, 1
2 ]) the additive

structure f∗
L∗,F ,P = f∗

1 + · · ·+ f∗
s with each f∗

j as stated in Assumption 2.2, where
Xj = R

dj and d :=
∑s

j=1 dj , with minimal risk R∗
L∗,P,F and additionally fulfills (to

make Corollary 4.12 in [7] applicable)

f∗
L∗,P,F ∈ L2(Rd) ∩ L∞(Rd) ∩Bα

2s,∞(Rd),

where s := w
w−1 ∈ [1,∞] and Bα

2s,∞(Rd) denotes a Besov space with smooth-
ness parameter α ≥ 1. The intuitive meaning of α is, that increasing values of
α correspond to increased smoothness. We refer to [8, pp. 25–27, 44] for details
on Besov spaces. It is well known that the Besov space Bα

p,q(R
d) contains the

Sobolev space Wα
p (Rd) for α ∈ N, p ∈ (1,∞), and max{p, 2} ≤ q ≤ ∞, and

that Wα
2 (Rd) = Bα

2,2(R
d). We mention that if all kj are suitably chosen Wendland

kernels, their reproducing kernel Hilbert spacesHj are Sobolev spaces, see [39, The-
orem 10.35, p. 160]. Furthermore, we use the same sequence of regularizing param-
eters as in [7, Corollaries 4.9 and 4.12], i.e.

λn = c1n
−βES(d,α,θ), where βES(d, α, θ) :=

2α+ d

2α(2 − θ) + d
, n ∈ N, (3.2)

where d ∈ N, α ≥ 1, θ ∈ [0, 1], and c1 is some user-defined positive constant
independent of n ∈ N. For reasons of simplicity, let us fix c1 = 1. Then [7, Corollary
4.12] gives learning rates for the risk of SVMs for τ -quantile regression, if a single
Gaussian RBF-kernel on X ⊂ R

d is used for τ -quantile functions of p-average type 2
with p = ∞, which are of order

c2n
ε−αES(d,α), where αES(d, α) =

2α
2α+ d

.

Hence the learning rate in Theorem 2.9 is better than the one in [7, Corollary 4.12]
in this situation, if

α(r, βES(d, α, θ), θ, ζ) > αES(d, α),
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Table 1. Comparison of exponents of learning rates.

θ ∈ [0, 1] ζ ∈ (0, 2) limd→∞ αES(d, α) from limd→∞ α(r, βES(d, α, θ), θ, ζ)
[7, Corollary 4.12] from Theorem 2.12

> 0 fixed 0 positive
1 1 0 min{r, 1/3}
1 3/2 0 min{r, 1/7}
1/2 1 0 min{r, 1/7}
0 fixed 0 0
∈ [0, 1] → 2 0 0

Note: The table lists the limits of the exponents limd→∞ αES(d, α) from [7,
Corollary 4.12] and limd→∞ α(r, βES(d, α, θ), θ, ζ) from Theorem 2.12, respec-
tively, if the regularizing parameter λ = λn is chosen in an optimal manner for the
nonparametric setup, i.e. λn = n−βES(d,α,θ), with βES(d, α, θ) → 1 for d → ∞
and α ∈ [1,∞). Recall that r ∈ (0, 1

2
].

Table 2. Comparison of exponents of learning rates.

r θ ζ limd→∞ α(r, βES(d, α, θ), θ, ζ)

0.5 1 0.1 0.5
1 0.333
1.9 0.026

0.5 0.5 0.1 0.311
1 0.143
1.9 0.013

0.5 0.1 0.1 0.05
1 0.026
1.9 0.003

0.25 1 0.1 0.25
1 0.25
1.9 0.026

0.25 0.5 0.1 0.25
1 0.143
1.9 0.013

0.25 0.1 0.1 0.05
1 0.026
1.9 0.003

0.1 1 0.1 0.1
1 0.1
1.9 0.026

0.1 0.5 0.1 0.1
1 0.1
1.9 0.013

0.1 0.1 0.1 0.05
1 0.026
1.9 0.003

Note: The table lists the limits of the exponents
limd→∞ α(r, βES(d, α, θ), θ, ζ) from Theorem 2.12, if the
regularizing parameter λ is chosen in optimal manner for the

nonparametric setup, i.e. λ = n−(2α+d)/(2α(2−θ)+d) with
α ∈ [1,∞) and θ ∈ [0, 1], see [7, Corollary 4.12].
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provided the assumption of the additive model is valid. Table 1 lists the values of
α(r, βES(d, α, θ), θ, ζ) from (2.14) for some finite values of the dimension d, where
α ∈ [1,∞). All of these values of α(r, βES(d, α, θ), θ, ζ) are positive with the excep-
tions if θ = 0 or ζ → 2. This is in contrast to the corresponding exponent in the
learning rate by [7, Corollary 4.12], because

lim
d→∞

αES(d, α) = lim
d→∞

2α
2α+ d

= 0, ∀α ∈ [1,∞).

Table 2 and Figs. 1 and 2 give additional information on the limit limd→∞ ×
α(r, βES(d, α, θ), θ, ζ). Of course, higher values of the exponent indicates faster rates
of convergence. It is obvious, that an SVM based on an additive kernel has a signif-
icantly faster rate of convergence in higher dimensions d compared to SVM based
on a single Gaussian RBF kernel defined on the whole input space, of course under
the assumption that the additive model is valid. The figures seem to indicate that
our learning rate from Theorem 2.12 is probably not optimal for small dimensions.
However, the main focus of the present paper is on high dimensions.

We now briefly comment on the goodness of the learning rate provided by
Theorem 2.9. Let us assume that the distribution P on X ×Y := R

d × [−1,+1] has
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Fig. 1. Plots of exponents limd→∞ α(r, βES(d, α, θ), θ, ζ) from Theorem 2.12 (thick curve) and
[7, Corollary 4.12] (thin curve) versus the dimension d, if the regularizing parameter λ = λn is
chosen in an optimal manner for the nonparametric setup, i.e. λn = n−(2α+d)/(2α(2−θ)+d) with
α = 1. We set θ = 0.5 and ζ = 1.
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Fig. 2. Similar to Fig. 1, but for α = 10.

a τ -quantile of p-average type q = 2 for some p ∈ (1,∞]. Furthermore, consider the
sequence of regularizing parameters

λ := c1n
−βES(d,α,θ), with βES(d, α, θ) :=

2α+ d

2α(2 − θ) + d
,

where c1 > 0, α ≥ 1, and θ ∈ [0, 1]. For reasons of simplicity, we set c1 = 1. Under
the assumptions of Corollary 4.9 in [7], the learning rate for the risk of SVMs for
τ -quantile regression, when a single Gaussian RBF-kernel on X = R

d is used, is
then of order

c2n
ε−αES(d,α,θ), where αES(d, α, θ) =

2α
2α(2 − θ) + d

,

where c2 > 0 is a constant independent of n. If α, θ, and p are chosen such that
2α+d

2α(2−θ)+d = 4(p+1)
3(p+2) is fulfilled with d ∈ N, we can make a fair comparison between

the learning rates given by [7, Corollary 4.9] and by Theorem 2.9, respectively.
Obviously, the learning rate given in Theorem 2.9 favorably compares to the one
given by [7, Corollary 4.9] for high dimensions d, if the assumption of an additive
model is satisfied, because the exponent α(p) = 2(p+1)

3(p+2) in Theorem 2.9 is positive
and independent of d ∈ N, whereas αES(d, α, θ) → 0, if d→ ∞.

Summarizing, the following conclusion seems to be fair. If an additive model
is valid, its structure is known, and the dimension d of X = R

d is high, then it
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makes sense to use an additive kernel, because (i) from a theoretical point of view:
faster rate of convergence, (ii) from the big data point of view: the same accuracy
of estimating the risk can in principle be achieved already with much smaller data
sets, (iii) from an applied point of view: increased interpretability and flexibility.

4. Proofs

This section contains all the proofs of this paper. As some of the results may
be interesting in their own, we treat the topics of estimating the approximation
error, the proof of the somewhat surprising assertion in Example 1.1, sample error
estimates, and the proofs of our learning rates from Sec. 2 in different subsections.

4.1. Estimating the approximation error

To carry out our analysis, we need an error decomposition framework.

Lemma 4.1. There holds

RL∗,P (fL,Dn,λ) −R∗
L∗,P,F + λ‖fL,Dn,λ‖2

H ≤ S + D(λ), (4.1)

where the terms are defined as

S = {RL∗,P (fL,Dn,λ) −RL∗,Dn(fL,Dn,λ)}
+ {RL∗,Dn(fL,P,λ) −RL∗,P (fL,P,λ)}, (4.2)

D(λ) = RL∗,P (fL,P,λ) −R∗
L∗,P,F + λ‖fL,P,λ‖2

H . (4.3)

Proof. We compare the risk with the empirical risk and write RL∗,P (fL,Dn,λ) as
{RL∗,P (fL,Dn,λ) −RL∗,Dn(fL,Dn,λ)} + RL∗,Dn(fL,Dn,λ). Then we add and subtract
a term involving the function fL,P,λ to find

RL∗,P (fL,Dn,λ) −R∗
L∗,P,F + λ‖fL,Dn,λ‖2

H

= {RL∗,P (fL,Dn,λ) −RL∗,Dn(fL,Dn,λ)}
+ {(RL∗,Dn(fL,Dn,λ) + λ‖fL,Dn,λ‖2

H) − (RL∗,Dn(fL,P,λ) + λ‖fL,P,λ‖2
H)}

+ {RL∗,Dn(fL,P,λ) −RL∗,P (fL,P,λ)}
+ {RL∗,P (fL,P,λ) −R∗

L∗,P,F + λ‖fL,P,λ‖2
H}.

But (RL∗,Dn(fL,Dn,λ) + λ‖fL,Dn,λ‖2
H) − (RL∗,Dn(fL,P,λ) + λ‖fL,P,λ‖2

H) ≤ 0 by the
definition of fL,Dn,λ. Then the desired statement is proved.

In the error decomposition (4.1), the first term S is called sample error and will
be dealt with later on. The second term D(λ) is the approximation error which can
be stated equivalently by Definition 2.1.
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In this section we estimate the approximation error based on Assumption 2.2.
Our estimation is based on the following lemma which is proved by the same method
as that in [25]. Recall that the integral operator Lkj is a positive operator on
L2(PXj ), hence Lkj + λI is invertible.

Lemma 4.2. Let j ∈ {1, . . . , s} and 0 < r ≤ 1
2 . Assume f∗

j = Lr
kj

(g∗j ) for some
g∗j ∈ L2(PXj ). Define an intermediate function fj,λ on Xj by

fj,λ = (Lkj + λI)−1Lkj (f
∗
j ). (4.4)

Then we have

‖fj,λ − f∗
j ‖2

L2(PXj
) + λ‖fj,λ‖2

kj
≤ λ2r‖g∗j ‖2

L2(PXj
). (4.5)

Proof. If {(λi, ψi)}i≥1 are the normalized eigenpairs of the integral operator Lkj ,
then the system {√λiψi : λi > 0} is orthogonal in Hj .

Write g∗j =
∑

i≥1 diψi with ‖{di}‖�2 = ‖g∗j ‖L2(PXj
) < ∞. Then f∗

j =
∑

i≥1 ×
λr

i diψi and

fj,λ − f∗
j = (Lkj + λI)−1Lkj (f

∗
j ) − f∗

j = −
∑
i≥1

λ

λi + λ
λr

i diψi.

Hence

‖fj,λ − f∗
j ‖2

L2(PXj
) =
∑
i≥1

(
λ

λi + λ
λr

i di

)2

= λ2r
∑
i≥1

(
λ

λi + λ

)2(1−r)(
λi

λi + λ

)2r

d2
i .

Also,

‖fj,λ‖2
kj

=

∥∥∥∥∥∥
∑
i≥1

λi

λi + λ
λr

i diψi

∥∥∥∥∥∥
2

kj

=

∥∥∥∥∥∥
∑
i≥1

λ
1
2+r
i

λi + λ
di

√
λiψi

∥∥∥∥∥∥
2

kj

=
∑
i≥1

λ1+2r
i

(λi + λ)2
d2

i .

Therefore, we have

‖fj,λ − f∗
j ‖2

L2(PXj
) + λ‖fj,λ‖2

kj

= λ2r
∑
i≥1

{(
λ

λi + λ

)2(1−r)(
λi

λi + λ

)2r

+
(

λ

λi + λ

)1−2r (
λi

λi + λ

)1+2r
}
d2

i

≤ λ2r
∑
i≥1

{
λ

λi + λ
+

λi

λi + λ

}
d2

i = λ2r‖{di}‖2
�2 = λ2r‖g∗j ‖2

L2(PXj
).

This proves the desired bound.
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4.2. Proof of Theorem 2.3

Proof of Theorem 2.3. Observe that fj,λ ∈ Hj . So f1,λ + · · ·+ fs,λ ∈ H and by
the definition of the approximation error, we have

D(λ) ≤ RL∗,P (f1,λ + · · · + fs,λ) −R∗
L∗,P,F + λ‖f1,λ + · · · + fs,λ‖2

H .

But

R∗
L∗,P,F = RL∗,P (f∗

F ,P ) = RL∗,P (f∗
1 + · · · + f∗

s )

according to Assumption 2.2. Using the inequality in (1.5), we obtain

D(λ) ≤ RL∗,P (f1,λ + · · · + fs,λ) −RL∗,P (f∗
1 + · · · + f∗

s ) + λ

s∑
j=1

‖fj,λ‖2
Hj
.

Applying the Lipschitz property (1.1), the excess risk term can be estimated as

RL∗,P (f1,λ + · · · + fs,λ) −RL∗,P (f∗
1 + · · · + f∗

s )

=
∫
Z
L∗(x, y, f1,λ(x1) + · · · + fs,λ(xs))dP (x, y)

−
∫
Z
L∗(x, y, f∗

1 (x1) + · · · + f∗
s (xs))dP (x, y)

≤
∫
Z
|L|1

∣∣∣∣∣∣
s∑

j=1

fj,λ(xj) −
s∑

j=1

f∗
j (xj)

∣∣∣∣∣∣ dP (x, y)

≤ |L|1
s∑

j=1

∫
Xj

|fj,λ(xj) − f∗
j (xj)|dPXj (xj).

But ∫
Xj

|fj,λ(xj) − f∗
j (xj)|dPXj (xj) = ‖fj,λ − f∗

j ‖L1(PXj
) ≤ ‖fj,λ − f∗

j ‖L2(PXj
).

The bound (4.5) implies the following two inequalities

‖fj,λ − f∗
j ‖2

L2(PXj
) ≤ λ2r‖g∗j ‖2

L2(PXj
) (4.6)

and

λ‖fj,λ‖2
kj

≤ λ2r‖g∗j ‖2
L2(PXj

). (4.7)

Taking square roots on both sides in (4.6) yields

D(λ) ≤
s∑

j=1

(|L|1‖fj,λ − f∗
j ‖L2(PXj

) + λ‖fj,λ‖2
Hj

).

This together with (4.7) and Lemma 4.2 gives

D(λ) ≤
s∑

j=1

{|L|1λr‖g∗j ‖L2(PXj
) + λ2r‖g∗j ‖2

L2(PXj
)}

and completes the proof of the statement.
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4.3. Proof of the assertion in Example 1.1

Proof of Example 1.1. The function f can be written as f = f1 + 0 where f1 is
a function on X1 given by f1(x1, x

′
1) = k1(x1, 0) ∈ H1. So f ∈ H .

Now we prove (1.10). Assume to the contrary that f ∈ HkΠ . We apply a char-
acterization of the RKHS HkΠ given in [20, Theorem 1] as

HkΠ =

f = e−
‖x‖2

σ2

∞∑
|α|=0

wαx
α : ‖f‖2

K =
∞∑

�=0

�!
(2/σ2)�

∑
|α|=�

w2
α

C�
α

<∞
, (4.8)

where ‖x‖2 = |x1|2 + |x2|2 and C�
α = �!

α1!α2!
for α = (α1, α2) ∈ Z

2
+. Since f ∈ HkΠ ,

we have

f(x1, x2) = exp
{
−|x1|2

σ2

}
= e−

|x1|2+|x2|2
σ2

∞∑
|α|=0

wαx
α,

where the coefficient sequence {wα : α ∈ Z
2
+} satisfies

‖f‖2
K =

∞∑
�=0

�!
(2/σ2)�

∑
|α|=�

w2
α

C�
α

<∞.

It follows that

exp
{|x2|2
σ2

}
=

∞∑
m=0

1
m!

( |x2|2
σ2

)m

=
∞∑

|α|=0

wαx
α.

Hence

wα =

{
1

m!σ2m , if α = (0, 2m) with m ∈ Z+,

0 otherwise,

and

‖f‖2
K =

∞∑
m=0

(2m)!
(2/σ2)2m

w2
(0,2m)

C2m
(0,2m)

=
∞∑

m=0

(2m)!
(2/σ2)2m

(
1

m!σ2m

)2

=
∞∑

m=0

(2m)!
22m(m!)2

.

Finally we apply the Stirling’s approximation:
√

2πm
(m
π

)m

≤ m! ≤ e√
2π

√
2πm

(m
π

)m

,

and find

‖f‖2
K =

∞∑
m=0

(2m)!
22m(m!)2

≥
∞∑

m=0

√
2π(2m)

(
2m
π

)2m

22m
(

e√
2π

√
2πm

(m
π

)m)2 =
∞∑

m=0

2
√
π

e2
√
m

= ∞.

This is a contradiction. Therefore, f �∈HkΠ . This proves the conclusion in
Example 1.1.
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4.4. Sample error estimates

In this subsection we bound the sample error S defined by (4.2) by Assumption
2.10. It can first be decomposed in two terms:

S = S1 + S2, (4.9)

where

S1 = {RL∗,P (fL,Dn,λ) −RL∗,P (f∗
F ,P )}

− {RL∗,Dn(fL,Dn,λ) −RL∗,Dn(f∗
F ,P )}, (4.10)

S2 = {RL∗,Dn(fL,P,λ) −RL∗,Dn(f∗
F ,P )}

− {RL∗,P (fL,P,λ) −RL∗,P (f∗
F ,P )}. (4.11)

The second term S2 can be bounded easily by the Bernstein inequality.

Lemma 4.3. Under Assumptions 2.2 and 2.10, for any 0 < λ ≤ 1 and 0 < δ < 1,
with confidence 1 − δ

2 , we have

S2 ≤ C′
1 log

2
δ

max

{
λ

r−1
2

n
,
λ

r−1
2 + θ(r+1)

4√
n

}
, (4.12)

where C′
1 is a constant independent of δ, n or λ and given explicitly in the proof,

see (4.13).

Proof. Consider the random variable ξ on (Z,B(Z)) defined by

ξ(x, y) = L∗(x, y, fL,P,λ(x)) − L∗(x, y, f∗
F ,P (x)), z = (x, y) ∈ Z.

Here B(Z) denotes the Borel-σ-algebra. Recall our notation for the constant
κ :=

∑s
j=1 supxj∈Xj

√
kj(xj , xj) ≥ √‖k‖∞. By Assumptions 2.2 and 2.10,

‖f∗
F ,P‖L∞(PX ) <∞ and by Theorem 2.3,

‖fL,P,λ‖L∞(PX ) ≤ κ‖fL,P,λ‖H ≤ κ
√
D(λ)/λ ≤ κ

√
Crλ

r−1
2 <∞.

This in connection with the Lipschitz condition (1.1) for L tells us that the random
variable ξ is bounded by

Bλ := |L|1(‖f∗
F ,P‖L∞(PX ) + κ

√
Crλ

r−1
2 ).

By Assumption 2.10, we also know that its variance σ2(ξ) can be bounded as

σ2(ξ) ≤
∫
Z

(ξ(x, y))2dP (x, y)

≤ cθ(1 + ‖fL,P,λ‖L∞(PX ))2−θ{RL∗,P (fL,P,λ) −RL∗,P (f∗
F ,P )}θ

≤ cθ(1 + κ
√
Crλ

r−1
2 )2−θ{Crλ

r}θ ≤ cθ(1 + κ
√
Cr)2−θCθ

rλ
r−1+ θ(r+1)

2 .
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Now we apply the one-sided Bernstein inequality to ξ which asserts that, for all
ε > 0,

Prob

(
1
n

n∑
i=1

ξ(zi) − E(ξ) > ε

)
≤ exp

− nε2

2
(
σ2(ξ) +

1
3
Bλε

)
 .

Solving the quadratic equation

nε2

2
(
σ2(ξ) +

1
3
Bλε

) = log
2
δ

for ε > 0, we see that with confidence 1 − δ
2 , we have

1
n

n∑
i=1

ξ(zi) − E(ξ)

≤
1
3
Bλ log

2
δ

+

√(
1
3
Bλ log

2
δ

)2

+ 2nσ2(ξ) log
2
δ

n

≤
2Bλ log

2
δ

3n
+

√√√√2 log
2
δ

n
σ2(ξ) ≤ C′

1 log
2
δ

max

{
λ

r−1
2

n
,
λ

r−1
2 + θ(r+1)

4√
n

}
,

where C′
1 is the constant given by

C′
1 = |L|1(‖f∗

F ,P‖L∞(PX ) + κ
√
Cr) +

√
2cθ(1 + κ

√
Cr)1−

θ
2C

θ
2
r . (4.13)

But 1
n

∑n
i=1 ξ(zi) − E(ξ) = S2. So our conclusion follows.

The term S1 involves the function fL,Dn,λ which varies with the sample. Hence
we need a concentration inequality to bound this term. We shall do so by applying
the following concentration inequality [41] to the function set

G = {L∗(x, y, f(x)) − L∗(x, y, f∗
F ,P (x)) : f ∈ H with ‖f‖H ≤ R} (4.14)

parametrized by the radius R involving the �2-empirical covering numbers of the
function set.

Proposition 4.4 ([41, Proposition 6]). Let G be a set of measurable functions
on Z, and B, c > 0, θ ∈ [0, 1] be constants such that each function f ∈ G satisfies
‖f‖∞ ≤ B and E(f2) ≤ c(Ef)θ. If for some a > 0 and p ∈ (0, 2),

sup
�∈N

sup
z∈Z�

logN2,z(G, ε) ≤ aε−p, ∀ ε > 0,
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then there exists a constant c′p depending only on p such that for any t > 0, with
probability at least 1 − e−t, there holds

Ef − 1
n

n∑
i=1

f(zi) ≤ 1
2
η1−θ(Ef)θ + c′pη + 2

(
ct

n

)1/(2−θ)

+
18Bt
n

, ∀ f ∈ G,

where

η := max
{
c

2−p
4−2θ+pθ

(a
n

) 2
4−2θ+pθ

, B
2−p
2+p

( a
n

) 2
2+p

}
.

Lemma 4.5. Under Assumptions 2.5 and 2.10, for any R ≥ 1, 0 < λ ≤ 1 and
0 < δ < 1, with confidence 1 − δ

2 , we have

{RL∗,P (f) −RL∗,P (f∗
F ,P )} − {RL∗,Dn(f) −RL∗,Dn(f∗

F ,P )}

≤ C′
2R

1−θn− 2(1−θ)
4−2θ+ζθ (RL∗,P (f) −RL∗,P (f∗

F ,P ))θ

+C′′
2 log

2
δ
Rn− 2

4−2θ+ζθ , ∀ ‖f‖H ≤ R, (4.15)

where C′
2, C

′′
2 are constants independent of R, δ, n or λ and given explicitly in the

proof. In particular, C′
2 = 1

2 when θ = 1.

Proof. Consider the function set G defined by (4.14). Each function takes the form
g(x, y) = L∗(x, y, f(x)) − L∗(x, y, f∗

F ,P (x)) with ‖f‖H ≤ R. It satisfies

‖g‖∞ ≤ |L|1‖f − f∗
F ,P‖∞ ≤ |L|1(κ+ ‖f∗

F ,P‖L∞(PX ))R =: B

and by Assumption 2.10 and the condition R ≥ 1,

E(g2) ≤ (1 + κ)2−θcθR
2−θ(Eg)θ.

Moreover, the Lipschitz property (1.1) and Theorem 2.6 imply that for any ε > 0
there holds

sup
�∈N

sup
z∈Z�

logN2,z(G, ε) ≤ logN
(
{f ∈ H : ‖f‖H ≤ R}, ε

|L|1

)
≤ scζ

(
s|L|1R
ε

)ζ

.

Thus all the conditions of Proposition 4.4 are satisfied with p = ζ and we see that
with confidence at least 1 − δ

2 , there holds

Eg − 1
n

n∑
i=1

g(zi) ≤ 1
2
η1−θ(Eg)θ + c′ζη + 2

(
c log(2/δ)

n

)1/(2−θ)

+
18B log(2/δ)

n
, ∀ g ∈ G, (4.16)

where c = (1 + κ)2−θcθR
2−θ, a = scζ(s|L|1R)ζ and

η = max
{
c

2−ζ
4−2θ+ζθ

( a
n

) 2
4−2θ+ζθ

, B
2−ζ
2+ζ

( a
n

) 2
2+ζ

}
.
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But

Eg = RL∗,P (f) −RL∗,P (f∗
F ,P )

and

1
n

n∑
i=1

g(zi) = RL∗,Dn(f) −RL∗,Dn(f∗
F ,P ).

Notice from the inequality 4 − 2θ + ζθ ≥ 2 + ζ that

η ≤ C′
3Rn

− 2
4−2θ+ζθ ,

where C′
3 is the constant given by

C′
3 := ((1 + κ)2−θcθ)

2−ζ
4−2θ+ζθ (scζ(s|L|1)ζ)

2
4−2θ+ζθ

+ (|L|1(κ+ ‖f∗
F ,P‖L∞(PX )))

2−ζ
2+ζ (scζ(s|L|1)ζ)

2
2+ζ .

Then our desired bound holds true with the constants given by

C′′
2 = max

{
1
2
(C′

3)
1−θ, c′ζC

′
3, 2(1 + κ)(cθ)1/(2−θ) + 18|L|1(κ+ ‖f∗

F ,P‖L∞(PX ))
}

and

C′
2 =

{
C′′

2 if 0 ≤ θ < 1,
1
2 if θ = 1.

Here the case θ = 1 can be seen directly from (4.16). This completes the proof.

Combining all the above results yields the following error bounds. For R ≥ 1,
we denote a sample set

W(R) = {z ∈ Zn : ‖fL,Dn,λ‖H ≤ R}. (4.17)

Proposition 4.6. Under Assumptions 2.2, 2.5 and 2.10, let R ≥ 1, 0 < λ ≤ 1 and
0 < δ < 1. Then there exists a subset VR of Zn with probability at most δ such that

RL∗,P (fL,Dn,λ) −R∗
L∗,P,F + λ‖fL,Dn,λ‖2

H

≤ C′
2R

1−θn− 2(1−θ)
4−2θ+ζθ (RL∗,P (fL,Dn,λ) −RL∗,P (f∗

F ,P ))θ

+C′
1 log

2
δ

max

{
λ

r−1
2

n
,
λ

r−1
2 + θ(r+1)

4√
n

}

+C′′
2 log

2
δ
Rn− 2

4−2θ+ζθ + Crλ
r, ∀ z ∈ W(R)\VR. (4.18)

To apply the above analysis we need a radius R which bounds the norm of the
function fL,Dn,λ.
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Lemma 4.7. If L(x, y, 0) is bounded by a constant |L|0 almost surely, then we have
almost surely

‖fL,Dn,λ‖H ≤
√
|L|0/λ.

Proof. By the definition of the function fL,Dn,λ, we have

RL∗,Dn(fL,Dn,λ) + λ‖fL,Dn,λ‖2
H ≤ RL∗,Dn(0) + λ‖0‖2

H = 0.

Hence we have almost surely

λ‖fL,Dn,λ‖2
H ≤ −RL∗,Dn(fL,Dn,λ)

≤ 1
n

n∑
i=1

L(xi, yi, 0) ≤ |L|0.

Then our desired bound follows.

Applying Proposition 4.6 to R =
√|L|0/λ gives a learning rate. But we can

do better by an iteration technique. However, we will first give the proof of Theo-
rem 2.6.

4.5. Proofs of the main results in Sec. 2

Proof of Theorem 2.6. By the definition of the �2-empirical covering number,
for every j ∈ {1, . . . , s} and x(j) ∈ (Xj)n, there exists a set of functions {f (j)

i :
i = 1, . . . ,N (j)} with N (j) = N ({f ∈ Hj : ‖f‖Hj ≤ 1}, ε) such that for every
f (j) ∈Hj with ‖f (j)‖Hj ≤ 1 we can find some ij ∈ {1, . . . ,N (j)} satisfying d2,x(j) ×
(f (j), f

(j)
ij

)≤ ε.
Now every function f ∈ H with ‖f‖H ≤ 1 can be written as f = f (1) + · · ·+f (s)

with ‖f (j)‖Hj ≤ 1. Also, every x = (x�)n
�=1 ∈ (X )n can be expressed as x� =

(x(1)
� , . . . , x

(s)
� ) with x(j) = (x(j)

� )n
�=1 ∈ (Xj)n. By taking the function fi1,...,is =

f
(1)
i1

+ · · · + f
(s)
is

, we see that

d2,x(f, fi1,...,is) =

{
1
n

n∑
�=1

(f(x�) − fi1,...,is(x�))2
}1/2

=

{
1
n

n∑
�=1

((f (1)(x(1)
� ) + · · · + f (s)(x(s)

� ))

− (f (1)
i1

(x(1)
� ) + · · · + f

(s)
is

(x(s)
� )))2

}1/2

≤
s∑

j=1

{
1
n

n∑
�=1

(f (j)(x(j)
� ) − f

(j)
ij

(x(j)
� ))2

}1/2

=
s∑

j=1

d2,x(j)(f (j), f
(j)
ij

) ≤ sε.
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The number of functions of the form fi1,...,is is Πs
j=1N (j). Therefore,

logN ({f ∈ H : ‖f‖H ≤ 1}, sε) ≤
s∑

j=1

logN ({f ∈ Hj : ‖f‖Hj ≤ 1}, ε)

≤ scζ

(
1
ε

)ζ

.

Then our desired statement follows by scaling R to 1.

We are now in a position to prove our main results stated in Sec. 2. Theorem 2.12
is proved by applying Proposition 4.6 iteratively. The iteration technique for analyz-
ing regularization schemes has been well developed in the literature [29, 41, 12, 13].

Proof of Theorem 2.12. Take R[0] = max{√|L|0, 1} 1√
λ
. Lemma 4.7 tells us that

W(R[0])=Zn. We apply an iteration technique with a sequence of radii {R[�] ≥
1}�∈N to be defined below.

Apply Proposition 4.6 to R = R[�], and when 0 ≤ θ < 1, apply the elementary
inequality

1
q

+
1
q∗

= 1 with q, q∗ > 1 ⇒ a · b ≤ 1
q
aq +

1
q∗
bq

∗
, ∀ a, b ≥ 0

with q = 1
θ , q

∗ = 1
1−θ and

a = 2−θ(RL∗,P (fL,Dn,λ) −RL∗,P (f∗
F ,P ))θ, b = 2θC′

2R
1−θn− 2(1−θ)

4−2θ+ζθ .

We know that there exists a subset VR[�] of Zn with measure at most δ such that

RL∗,P (fL,Dn,λ) −R∗
L∗,P,F + λ‖fL,Dn,λ‖2

H

≤ 1
2
{RL∗,P (fL,Dn,λ) −RL∗,P (f∗

F ,P )}

+ (2θC′
2)

1
1−θR[�]n− 2

4−2θ+ζθ

+C′
1 log

2
δ

max

{
λ

r−1
2

n
,
λ

r−1
2 + θ(r+1)

4√
n

}

+C′′
2 log

2
δ
R[�]n− 2

4−2θ+ζθ + Crλ
r, ∀ z ∈ W(R[�])\VR[�] .

It follows that when λ = n−β for some β > 0, we have

RL∗,P (fL,Dn,λ) −R∗
L∗,P,F + λ‖fL,Dn,λ‖2

H

≤ max{an,δR
[�], bn,δ}, ∀ z ∈ W(R[�])\VR[�] , (4.19)

where

an,δ := {4(2θC′
2)

1
1−θ + 4C′′

2 } log
2
δ
n− 2

4−2θ+ζθ

and

bn,δ := {4C′
1 + 4Cr} log

2
δ
n−α′
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with

α′ := min
{

1
2

+ β

(
θ(1 + r)

4
− 1 − r

2

)
, rβ

}
.

Thus we have

‖fL,Dn,λ‖H ≤ max{n β
2
√
an,δ

√
R[�], n

β
2
√
bn,δ}, ∀ z ∈ W(R[�])\VR[�] .

Hence

W(R[�]) ⊆ W(R[�+1]) ∪ VR[�] , (4.20)

after we define the sequence of radii {R[�] ≥ 1}�∈N by

R[�+1] = max{n β
2
√
an,δ

√
R[�], n

β
2
√
bn,δ, 1}. (4.21)

For any positive integer J ∈ N, we have

Zm = W(R[0]) ⊆ W(R) ∪ VR[0] ⊆ · · · ⊆ W(R[J]) ∪ (∪J−1
�=0 VR[�]),

which tells us that the set W(R[J]) has measure at least 1 − Jδ. We also see itera-
tively from the definition (4.21) that

R[J] ≤ max{n β
2
√
an,δ

√
R[J−1], n

β
2
√
bn,δ, 1}

≤ · · · ≤ max{(n β
2
√
an,δ)

1+ 1
2+···+ 1

2J−1 (R[0])
1

2J , n
β
2
√
bn,δ, 1, . . . ,

× (n
β
2
√
an,δ)

1+ 1
2+···+ 1

2J−1 (max{n β
2
√
bn,δ, 1})

1
2J−1 }

≤ {4(2θC′
2)

1
1−θ + 4C′′

2 + 4C′
1 + 4Cr + 1}max{

√
|L|0, 1} log

2
δ
nα′′

,

where

α′′ = max
{(

2 − 1
2J−1

)(
β

2
− 1

4 − 2θ + ζθ

)
+

β

2J+1
,
β

2
− α′

2
,

×
(
β

2
− 1

4 − 2θ + ζθ

)
1
2

(
β

2
− α′

2

)
, . . . ,

×
(

2 − 1
2J−1

)(
β

2
− 1

4 − 2θ + ζθ

)
+

1
2J−1

(
β

2
− α′

2

)}

≤ max
{
β − 2

4 − 2θ + ζθ
,
β

2
− α′

2

}
+

1
2J

= max

{
β − 2

4 − 2θ + ζθ
,
(1 − r)β

2
,
(1 − r)β

2
+
β(1 + r)(1 − θ

2 ) − 1
4

}
+

1
2J
.

Denote

α′′′ = max

{
β − 2

4 − 2θ + ζθ
,
(1 − r)β

2
,
(1 − r)β

2
+
β(1 + r)(1 − θ

2 ) − 1
4

}
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and the constant

C3 = {4(2θC′
2)

1
1−θ + 4C′′

2 + 4C′
1 + 4Cr}max{

√
|L|0, 1}.

Choose J to be the smallest positive integer greater than or equal to log2
1
ε . Then

1
2J ≤ ε and

R[J] ≤ C3 log
2
δ
nα′′′+ε.

Applying (4.19) to � = J , we know that for every z ∈ W(R[J])\VR[J] , there holds

RL∗,P (fL,Dn,λ) −R∗
L∗,P,F ≤ max{an,δR

[J], bn,δ}

≤ (C3{4(2θC′
2)

1
1−θ + 4C′′

2 } + {4C′
1 + 4Cr})

×
(

log
2
δ

)2

nε−min{ 2
4−2θ+ζθ −α′′′, α′}.

Since the set W(R[J]) has measure at least 1 − Jδ while the set VR[J] has measure
at most δ, we know that with confidence at least 1 − (J + 1)δ,

RL∗,P (fL,Dn,λ) −R∗
L∗,P,F ≤ C̃

(
log

2
δ

)2

mε−α,

where

α = min
{

2
4 − 2θ + ζθ

− α′′′, α′
}

and

C̃ = (C3{4(2θC′
2)

1
1−θ + 4C′′

2 } + {4C′
1 + 4Cr}).

Scaling Jδ to δ, and expressing α explicitly, we see that the conclusion of Theo-
rem 2.12 holds true.

It only remains to prove Theorem 2.9. We will do so by showing that Theorem 2.9
is a special case of Theorem 2.12.

Proof of Theorem 2.9. Since P has a τ -quantile of p-average type 2 for some
p ∈ (0,∞], we know from [27] that Assumption 2.10 holds true with θ = p

p+1 . Since
Xj ⊂ R

dj and kj ∈ C∞(Xj × Xj), we know from [44] that Assumption 2.5 holds
true for an arbitrarily small ζ > 0. By inserting r = 1

2 , β = 4(p+1)
3(p+2) and θ = p

p+1

into the expression of α in Theorem 2.12 and choosing ζ to be sufficiently small,
we know that the conclusion of Theorem 2.9 follows from that of Theorem 2.12.
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[19] L. Meier, S. van de Geer and P. Bühlmann, High-dimensional additive modeling,
Ann. Statist. 37 (2009) 3779–3821.

[20] H. Q. Minh, Some properties of Gaussian reproducing kernel Hilbert spaces and
their implications for function approximation and learning theory, Constr. Approx.
32 (2010) 307–338.

[21] T. Poggio and F. Girosi, A theory of networks for approximation and learning, Proc.
IEEE 78 (1990) 1481–1497.

A
na

l. 
A

pp
l. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
04

/0
8/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

March 3, 2015 15:24 WSPC/S0219-5305 176-AA 1550005

Learning rates for the risk of kernel-based quantile regression estimators 29

[22] G. Raskutti, M. J. Wainwright and B. Yu, Minimax-optimal rates for sparse additive
models over kernel classes via convex programming, J. Mach. Learn. Res. 13 (2012)
389–427.

[23] B. Schölkopf and A. J. Smola, Learning with Kernels (MIT Press, Cambridge, MA,
2002).

[24] B. Schölkopf, A. J. Smola, R. C. Williamson and P. L. Bartlett, New support vector
algorithms, Neural Comput. 12 (2000) 1207–1245.

[25] S. Smale and D.-X. Zhou, Shannon sampling II. Connections to learning theory, Appl.
Comput. Harmonic Anal. 19 (2005) 285–302.

[26] I. Steinwart and A. Christmann, Support Vector Machines (Springer, New York,
2008).

[27] I. Steinwart and A. Christmann, How SVMs can estimate quantiles and the median,
Adv. Neural Inf. Process. Syst. 20 (2008) 305–312.

[28] I. Steinwart and A. Christmann, Estimating conditional quantiles with the help of
the pinball loss, Bernoulli 17 (2011) 211–225.

[29] I. Steinwart and C. Scovel, Fast rates for support vector machines using Gaussian
kernels, Ann. Statist. 35 (2007) 575–607.

[30] C. J. Stone, Additive regression and other nonparametric models, Ann. Statist. 13
(1985) 689–705.

[31] H. Sun and Q. Wu, Indefinite kernel network with dependent sampling, Anal. Appl.
11 (2013) 1350020, 15 pp.

[32] J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor and J. Vandewalle,
Least Squares Support Vector Machines (World Scientific, Singapore, 2002).

[33] T. Suzuki and M. Sugiyama, Fast learning rate of multiple kernel learning: Trade-off
between sparsity and smoothness, Ann. Statist. 41 (2013) 1381–1405.

[34] I. Takeuchi, Q. V. Le, T. D. Sears and A. J. Smola, Nonparametric quantile estima-
tion, J. Mach. Learn. Res. 7 (2006) 1231–1264.

[35] V. N. Vapnik, The Nature of Statistical Learning Theory (Springer, New York, 1995).
[36] V. N. Vapnik, Statistical Learning Theory (Wiley, New York, 1998).
[37] V. N. Vapnik and A. Lerner, Pattern recognition using generalized portrait method,

Autom. Remote Control 24 (1963) 774–780.
[38] G. Wahba, Support vector machines, reproducing kernel Hilbert spaces and the

randomized GACV, in Advances in Kernel Methods — Support Vector Learning,
eds. B. Schölkopf, C. J. C. Burges and A. J. Smola (MIT Press, Cambridge, MA,
1999), pp. 69–88.

[39] H. Wendland, Scattered Data Approximation (Cambridge University Press,
Cambridge, 2005).

[40] Q. Wu, Y. M. Ying and D.-X. Zhou, Learning rates of least square regularized regres-
sion, Found. Comput. Math. 6 (2006) 171–192.

[41] Q. Wu, Y. M. Ying and D.-X. Zhou, Multi-kernel regularized classifiers, J. Complexity
23 (2007) 108–134.

[42] D. H. Xiang, Conditional quantiles with varying Gaussians, Adv. Comput. Math. 38
(2013) 723–735.

[43] D. H. Xiang and D.-X. Zhou, Classification with Gaussians and convex loss, J. Mach.
Learn. Res. 10 (2009) 1447–1468.

[44] D.-X. Zhou, Capacity of reproducing kernel spaces in learning theory, IEEE Trans.
Inform. Theory 49 (2003) 1743–1752.

A
na

l. 
A

pp
l. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
04

/0
8/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.


