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Abstract

The problem of learning the kernel function has received considerable attention in
machine learning. Much of the work has focused on kernel selection criteria, partic-
ularly on minimizing a regularized error functional over a prescribed set of kernels.
Empirical studies indicate that this approach can enhance statistical performance and
is computationally feasible. In this paper, we present a theoretical analysis of its gen-
eralization error. We establish for a wide variety of classes of kernels, such as the set
of all multivariate Gaussian kernels, that this learning method generalizes well and,
when the regularization parameter is appropriately chosen, it is consistent. A central
role in our analysis is played by the interaction between the sample error and the
approximation error.
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1 Introduction

A widely used approach for learning a function from empirical data consists in minimizing
a regularization functional which models a trade-off between an error term, measuring the
fit to the data, and a smoothness term, measuring the function complexity. Specifically, in
this paper we focus on learning methods which, given a set of examples z = {(xj, yj) : j ∈
INm} ⊆ Z := X × Y , sampled i.i.d. according to an unknown distribution ρ supported on
X × Y , where Y ⊆ IR, estimates a real-valued function by solving the variational problem

min
f∈HK

Eλ(f,K) (1.1)

where Eλ(f,K) := Ez(f) +λ‖f‖2
K , Ez(f) is the empirical error of the function f on the data

z, namely,

Ez(f) =
1

m

∑
j∈INm

`(yj, f(xj))

as measured by a prescribed nonnegative loss function ` : IR × IR → IR+, λ is a positive
parameter, INm := {1, . . . ,m} and IR+ = {t : t ≥ 0}. The minimum in (1.1) is taken over
all functions f ∈ HK , a reproducing kernel Hilbert space (RKHS) with reproducing kernel
K [5]. This approach has a long history. It has been studied, from different perspectives, in
statistics, in optimal estimation, and more recently, has been a focus of attention in machine
learning theory, see, for example, [13, 25] and the references therein for a discussion. The
choice of the loss function ` leads to different learning methods among which the prominent
ones are square loss regularization and support vector machines.

When the kernel K is fixed, the algorithm (1.1) is well understood, see, for example,
[10, 12, 32, 31, 36, 43] and the references therein. The choice of the parameter λ plays a
central role in the method as it allows one to control the smoothness of the function f ,
thereby avoiding overfitting. Theoretically, it is chosen by a trade-off between the estimates
for the sample error and the approximation error, see, for example, [12, 10, 32, 31].

A more challenging task is the choice of the kernel. This has motivated various studies
addressing the problem of minimizing functional (1.1) not only over f ∈ HK but also over
K in some prescribed class K of kernels [8, 18, 22, 24, 27, 30]. That is, we consider the
variational problem

(Kz, fz) := argmin
{
Eλ(f,K) : K ∈ K, f ∈ HK

}
. (1.2)

When the set K is a convex and bounded subset of the set of positive definite kernels,
this problem can be reformulated as a regularized empirical error minimization problem, in
which the regularizer is a Banach space norm induced by the class K. In particular if K is
the convex hull of finitely many basic kernels, then that norm is a mixed norm involving
the reproducing kernel norms of the basic kernels [28]. This point of view provides a useful
interpretation for the problem of learning the kernel, however it is not central in the present
paper and will be addressed further.

Motivated by the need to improve the approximation error, this scheme was also studied
in [36]. Practical experience with this method [2, 3, 6, 8, 22, 23, 24] indicates that it can
enhance the performance of the learning algorithm and is computationally efficient to solve.
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For a discussion of the hypotheses on K which ensure that the minimum above exists see
[27, 36, 28].

In this paper we focus on the problem of bounding the generalization error of fz, namely,
E(fz) − E(f ∗` ), where E(f) is the expected error of f , E(f) := E `(y, f(x)), the expectation
E being over the probability measure ρ, and f ∗` is the target function defined as f ∗` :=
arg min E(f), where the minimum is taken over all measurable functions. Our analysis holds
for a wide class of kernels K with two basic assumptions. First, we require that the class K
is uniformly bounded, that is,

κ = sup
K∈K

sup
x∈X

√
K(x, x) <∞.

Second, we demand that all kernels in K are continuous. Therefore, it follows by the repro-
ducing kernel property of HK [5], for all K ∈ K and f ∈ HK , that

‖f‖∞ := max
x∈X
|f(x)| ≤ κ‖f‖K , (1.3)

an inequality which we will use repeatedly in our subsequent analysis.
In our analysis a probabilistic upper bound on the sample error is achieved by estimating

the Rademacher complexity of the set

K0 = {K(x, ·) : K ∈ K, x ∈ X} . (1.4)

The results are presented in Section 3 and proved in Section 4. Earlier analysis similar to
that which appears here may be found in [8, 22], however, as far as we know we achieve
greater generality than is available so far. In particular our work applies to continuously
parameterized kernel classes, such as those investigated in [3, 42]. Recent papers have ad-
dressed the problem of computing the Rademancher average of function classes given by the
union of finitely many reproducing kernels or their convex hull [11, 25, 21]. A more general
approach is presented in [40, 41], in which Rademacher chaos complexity is employed to get
faster rates under certain conditions. In Section 5 we apply these bounds to the importan-
t case of Gaussian kernels with arbitrary variance and illustrate our results in the case of
support vector machines and regularized least squares. Section 6 presents final remarks and
future direction of research.

2 Preventing overfitting?

We proceed our presentation of the probabilistic analysis for the generalization error by
proving a positive lower bound for the regularization functional Eλ in (1.1) which is valid for
any set of uniformly bounded kernels K. This observation is not relevant for our subsequent
error bounds, however it suggests that overfitting would not occur provided the regularization
parameter is appropriately chosen.

Below, if K ∈ K we denote by K(x) the m × m Gram matrix (K(xi, xj) : i, j ∈ INm)
where x = (xi : i ∈ INm) ∈ Xm. We also define the vector y := (yi : i ∈ INm) ∈ IRm.
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Proposition 2.1. Let ` : IR × IR → IR+ be a nonnegative loss function with the property
that for any c > 0 there exists δ > 0 such that

`(u, v) ≥ δ|u− v|2 for all u, v ∈ IR satisfying |u− v| ≤ c.

If y 6= 0 then for every λ > 0 and z ∈ Zm then there exists µ > 0 such that Eλ(fz, Kz) ≥ µ.

Proof. We note that

λ‖fz‖2
Kz
≤ Eλ(fz, Kz) ≤ Eλ(0, Kz) = ¯̀ :=

1

m

∑
i∈INm

`(yi, 0).

Hence, using inequality (1.3), we have, for every i ∈ INm, that

|fz(xi)| ≤ κ‖fz‖Kz ≤ κ
√

¯̀/λ.

We define ‖y‖∞ := maxi∈INm |yi| and observe that the choice c = ‖y‖∞ + κ
√

¯̀/λ ensures
that |yi − fz(xi)| ≤ c and, so, by hypothesis there is a corresponding δ > 0 such that

`(yi, fz(xi)) ≥ δ(yi − fz(xi))2.

Consequently, we obtain that

Eλ(fz, Kz) ≥ δQz(fz) + λ‖fz‖2
Kz
≥ δQλ̂(Kz)

where λ̂ := λ
δ
,

Qz(fz) :=
1

m

∑
i∈INm

(yi − fz(xi))2

and
Qλ(Kz) := min

f∈HKz

{Qz(f) + λ‖f‖2
Kz
}.

According to [27, Lemma 3.1] we have that

Qλ̂(fz) = λ̂(y, (Kz(x) +mλ̂I)−1y) ≥ λ̂‖y‖2

m(κ2 +mλ̂)

and the result follows by noting that

Eλ(fz, Kz) ≥ δ
λ̂‖y‖2

m(κ2 +mλ̂)
=

δλ‖y‖2

m(δκ2 +mλ)
.

Proposition 2.1 applies to the square loss but not to the hinge loss used in support vector
machines. To deal with the hinge loss we modify the proof above and obtain the following
result.
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Proposition 2.2. Let ` : IR × IR → IR+ be a nonnegative loss function with the property
that for some c > 0 there exists a δ > 0 such that

`(u, v) ≥ δ|u− v|2 for all u ∈ Y and |v| ≤ c.

If y 6= 0 for every λ > 0 and z ∈ Zm then there exists µ > 0 such that Eλ(fz, Kz) ≥ µ.

Proof. First note if ‖fz‖Kz ≥ c
κ

then we have that

Eλ(fz, Kz) ≥ λ‖fz‖2
Kz
≥ λc2

κ2
.

Otherwise, there holds the inequality ‖fz‖Kz ≤ c
κ

which implies by (1.3), for every i ∈ INm,
that

|fz(xi)| ≤ κ‖fz‖Kz ≤ c.

Therefore, the assumption on the loss function ` tells us that there is a δ > 0 such that
`(yi, fz(xi)) ≥ δ(yi− fz(xi))2. We now use the same argument as in the proof of Proposition
2.1 to obtain that

Eλ(fz, Kz) ≥ µ̃ :=
δλ‖y‖2

m(δκ2 +mλ)

and our conclusion follows by taking µ = min
{
λc2

κ2
, µ̃
}
.

The assumption on the loss function in Proposition 2.2 covers both the square loss and
the hinge loss given by the formula `(u, v) = (1 − uv)+ = max {0, 1− uv} which is used in
support vector machine classification, see for example [16]. To see this, take c = 1

2
and recall

that for binary classification Y = {−1, 1}. Consequently, if u ∈ Y and |v| ≤ 1
2
, then |uv| ≤ 1

2

and 1
2
≤ |u− v| ≤ 3

2
from which it follows that (1− uv)+ ≥ (1

2
) ≥ 2

9
|u− v|2.

The lower bound above says that Eλ(fz, Kz) is bounded away from zero when the set K is
uniformly bounded. This suggests that, with additional information on the target function
and with an appropriate choice of λ our approach may be free of overfitting, a phenomenon
which occurs when the empirical error is zero but the expected error in far from zero. We
shall confirm this fact by our analysis below.

3 Error bound

In this section, we present our results of generalization error analysis. For this purpose, we
require some notation. First, we follow [10, 37, 36] and introduce the projection operator,
defined for every measurable function f : X → IR and positive constant T , as πT (f)(x) =
sgn(f)(x) min(|f(x)|, T ), where sgn(f)(x) = 1, if f(x) ≥ 0 and −1 otherwise, namely,

πT (f)(x) =


−T, if f(x) < −T
f(x), if f(x) ∈ [−T, T ]

T, if f(x) > T.
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The constant T is called the projection level and is useful for providing a better estimate
for classification but it is not needed for regression problems. Next, we define the truncated
sample error as

Sz(m,λ, f, T ) =
{
E (πT (fz))− Ez(πT (fz))

}
+
{
Ez(f)− E(f)

}
and the corresponding sample error as

Sz(m,λ, f) = Sz(m,λ, f,∞) =
{
E (fz)− Ez(fz)

}
+
{
Ez(f)− E(f)

}
.

The third quantity we need is the regularization error of a function f ∈ HK which is defined
as

A(f) = E(f)− E(f ∗` ) + λ‖f‖2
K

where, recall f ∗` := arg min E(f). The regularization error of f is a regularized version of the
approximation error E(f)− E(f ∗` ). The function f in the above equation can be arbitrarily
chosen, however, only proper choices lead to good estimates of the regularization error. A
good choice is f = f ∗λ where

(K∗λ, f
∗
λ) = arg min

K∈K
min
f∈HK

{
E(f) + λ‖f‖2

K

}
.

The regularization error of f ∗λ will be denoted by A∗(λ), that is, we have that

A∗(λ) = A(f ∗λ) = min
K∈K

min
f∈HK

{
E(f)− E(f ∗` ) + λ‖f‖2

K

}
.

This quantity measures the approximation ability of the hypothesis space, {f : f ∈ HK , K ∈
K}, to represent the target function f ∗` and is determined by the structure of the loss function,
the distribution ρ underlying the data and the hypothesis space. If some prior knowledge on
the target function is available, we can estimate the decay rate of the regularization error,
as we shall do in Section 5. Finally, we need the residual loss defined, for every T > 0, as

Ψ(T ) = sup
(x,y)∈Z

sup
f :X→IR

{
`(y, πT (f)(x))− `(y, f(x))

}
.

Note that Ψ(T ) ≥ 0 for all T > 0 and Ψ(∞) = 0. The use of residual error for a unified
error decomposition framework was introduced in [35] and applied to the analysis of logistic
classification in [39].

Proposition 3.1. For every K ∈ K, f ∈ HK and any T > 0, there holds the inequality

E (πT (fz))− E(f ∗` ) ≤ Sz(m,λ, f, T ) + Ψ(T ) +A(f).

In particular, taking T =∞, we have that E (fz)− E(f ∗` ) ≤ Sz(m,λ, f) +A(f).

Proof. We write E(π(fz))− E(f ∗` ) as{
E(πT (fz))− Ez(πT (fz))

}
+
{

(Ez(πT (fz)) + λ‖fz‖2
Kz

)− (Ez(f) + λ‖f‖2
K)
}

+
{
Ez(f)− E(f)

}
+
{
E(f)− E(f ∗` ) + λ‖f‖2

K

}
− λ‖fz‖2

Kz
.
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To bound the second term in the above equation we observe, for every K ∈ K and f ∈ HK ,
that

Ez(πT (fz)) + λ‖fz‖2
Kz
≤ Ψ(T ) + Ez(fz) + λ‖fz‖2

Kz
≤ Ψ(T ) + Ez(f) + λ‖f‖2

K .

The result follows by combining this inequality with the above definitions.

We note that the error decomposition in Proposition 3.1 is different from the traditional
technique that bounds the excess error by sample error and approximation error. It contains
an additional residual loss term. Similar non-traditional error decompositions have also
appeared in the analysis of learning with sample dependent hypothesis space [38] and the
analysis of minimum error entropy algorithm [19, 20, 17].

The sample error consists of two terms. The second term Ez(f) − E(f) is the deviation
between the empirical mean and the expectation of `(y, f(x)) respectively. This is a fixed
random variable on Z which is easy to bound. The first term, E(fz)−Ez(fz), is the deviation
between the expected value and the empirical mean of `(y, fz(x)) with respect to z = (x, y) ∈
Z. More effort is required to bound it because the function fz varies with z and, so, we need
to deal with a set of random variables. For this purpose, we use the notion of Rademacher
complexity.

Definition 3.2. We say that the random variable ε is a Rademacher variable if Prob(ε =
−1) = Prob(ε = 1) = 1

2
. Let F be a function class on Z and εi, i ∈ INm be a set of

Rademacher variables. The Rademacher complexity on F is defined as

R(F ,m) = E

[
sup
f∈F

∣∣∣∣∣ 1

m

∑
i∈INm

εif(zi)

∣∣∣∣∣
]

where the expectation is over the i.i.d. Rademacher variables εi and the i.i.d. variables zi.

If F is a class of real-valued functions on Z, c ∈ IR, φ : IR→ IR and h a bounded function,
we define the sets cF := {cf : f ∈ F}, φ◦F := {φ(f) : f ∈ F} and F+h = {f + h : f ∈ F}.
We recall some simple properties of the Rademacher complexity for F , see, for example, [7].

Lemma 3.3. If F is a function class on Z then we have that

(i) E
[
supf∈F

∣∣ 1
m

∑
i∈INm

f(zi)− E f
∣∣] ≤ 2R(F ,m);

(ii) For every c ∈ IR, there holds R(cF ,m) = |c|R(F ,m);

(iii) If φ is a Lipschitz function with Lipschitz constant L and φ(0) = 0, then we have that
R(φ ◦ F ,m) ≤ 2LR(F ,m);

(iv) If h is a bounded function, then R(F + h,m) ≤ R(F ,m) + 1√
m
‖h‖∞.

We also note that it is straightforward to see that R(coF ,m) = R(F ,m) where coF is the
convex hull of F . Moreover, if we let F be the closure of F , that is, the set of functions on Z
with the property that there is a sequence {fn} of functions on Z such that, for any z ∈ Z,
we have that limn→∞ fn(z) = f(z) then we also have R(F ,m) = R(F ,m). Consequently,
any upper bound for the class K extends to the larger class coK.
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We are now in a position to state our main results for the estimation of the sample error.
To this end, we need, for t ∈ IR+, two quantities,

Φ(t) := sup
y∈Y

sup
|s|≤t

`(y, s)

and

L(t) = sup
y∈Y

sup
|s1|,|s2|≤t

|`(y, s1)− `(y, s2)|
|s1 − s2|

.

We also introduce the constants γ =
√

Φ(0)/λ and τ := min {T, κγ} as they appear often
in our subsequent analysis. Note that we suppress the dependency of these constants on λ
as it is only later that we shall adjust λ to obtain our estimates for the approximation error.
Recall, in the theorem stated next, the proof of which is given in Section 4, that the set K0

was defined by equation (1.4).

Theorem 3.4. If f ∈ HK, δ ∈ (0, 1) then with confidence 1− δ there holds

Sz(m,λ, f, T ) ≤ 4L (τ) γ
√
R(K0,m) +

2Φ(0)√
m

+

(
1

2
Φ (τ) + Φ (‖f‖∞)

)√
2 log 2

δ

m
.

When projection is not involved, the sample error is bounded in the corollary below.

Corollary 3.5. For δ ∈ (0, 1), with confidence 1− δ there holds

Sz(m,λ, f ∗λ) ≤ 4L (κγ) γ
√
R(K0,m) +

1√
m

(
2Φ(0) +

3

2
Φ (κγ)

√
2 log

2

δ

)
.

Note that if limm→∞R(K0,m) = 0 and limλ→0A∗(λ) = 0, we can choose λ = λ(m) in
such a way that E(fz) − E(f ∗` ) tends to zero in probability as m tends to infinity. In other
words, under the above hypotheses, our results imply the consistency of algorithm (1.2).
Moreover, the convergence rates can be derived when quantitative estimates of R(K0,m)
and A∗(λ) are available, see our examples in Section 5.

One may find in the literature similar bounds for transductive learning where the error
on test data is bounded in terms of the error on training data and the empirical Rademacher
complexity of the kernel matrices; see [8, 22]. However, these results do not imply our results
for inductive learning. More recent results in [11, 25, 21] have the advantage of computability
of the empirical Rademacher complexity in terms of the trace or eigenvalues of the kernel
matrix, they may not provide useful bounds for RBF kernel classes such as the Gaussians
with arbitrary variances. As we shall see in Section 5 our results overcome this difficulty.

4 Estimating the sample error

In this section, we provide the proofs for the estimate of the sample error described earlier.
They are based on the lemmas below. The first lemma bounds the second term in the sample
error.
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Lemma 4.1. Let f be a bounded function. For every δ ∈ (0, 1), with confidence 1− δ there
holds

Ez(f)− E(f) ≤ Φ (‖f‖∞)

√
2 log 1

δ

m
.

Proof. Consider the random variable ξ = `(y, f(x)). Notice that Ez(f) = 1
m

∑
i∈INm

ξ(zi)
and E(f) = E ξ. By our assumption, 0 < ξ ≤ Φ(‖f‖∞) which implies that |ξ − E ξ| ≤
Φ(‖f‖∞). Therefore, the conclusion follows by applying the one-sided Hoeffding inequality
to the random variable ξ, see, for example, [14].

The second lemma concerns some ancillary inequalities for f ∈ HK .

Lemma 4.2. If f ∈ HK and K ∈ K then

(i) ‖f‖∞ ≤ κ
√
A(f)/λ

(ii) ‖f ∗λ‖∞ ≤ κγ

(iii) ‖fz‖Kz ≤ γ

(iv) ‖πT (f)‖∞ ≤ min{T, κ‖f‖K}.

Proof. The first claim follows directly from the fact that

λ‖f‖2
K ≤ E(f)− E(f ∗` ) + λ‖f‖2

K = A(f)

and (1.3). Note that
A∗(λ) ≤ E(0)− E(f ∗` ) ≤ Φ(0).

Hence, the second claim is a consequence of the first one. The third claim follows in a
manner identical to the second one and the last claim follows from the definition of πT and
inequality (1.3).

By inequalities (iii) and (iv) above it follows that

E(πT (fz))− Ez(πT (fz)) ≤ g(z) := sup
f∈γBK

(
E(πT (f))− Ez(πT (f))

)
(4.1)

where BK is the union of the unit balls in HK over K ∈ K, that is,

BK =
⋃
K∈K

{
f ∈ HK : ‖f‖K ≤ 1

}
.

The third lemma applies the McDiarmid’s inequality, see [26], to the random variable g(z)
to measure the difference between g(z) and E g(z).

Lemma 4.3. Let g(z) be defined as above. For every δ ∈ (0, 1), with confidence 1− δ there
holds

g(z) ≤ E g(z) + Φ (τ)

√
log 1

δ

2m
.
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Proof. Denote by z′i the sample which coincides with z except for the i-th pair zi = (xi, yi)
replaced by z′i = (x′i, y

′
i). Consequently, we observe that

g(z)− g(z′i) = sup
f∈γBK

(E(πT (f))− Ez(πT (f)))− sup
f∈γBK

(E(πT (f))− Ez′i(πT (f)))

≤ sup
f∈γBK

(Ez′i(πT (f))− Ez(πT (f)))

=
1

m
sup
f∈γBK

(`(y′i, πT (f(x′i)))− `(yi, πT (f(xi))))

≤ 1

m
Φ (τ)

where the last inequality follows from inequality (iv) of Lemma 4.2. Interchanging the roles
of z and z′i, in the above computation, gives us the inequality

|g(z)− g(z′i)| ≤
1

m
Φ (τ)

and, so, by McDiarmid’s inequality we have that

Prob {g(z)− E g(z) > ε} ≤ exp

(
− 2mε2

Φ2 (τ)

)
and the desired result follows.

The last lemma estimates E g(z) in terms of the Rademacher complexity of the set K0.

Lemma 4.4. We have that

E g(z) ≤ 4L (τ) γ
√
R(K0,m) +

2Φ(0)√
m

.

Proof. We use Lemma 3.3 repeatedly and verify that

E g(z) ≤ 2E sup
f∈γBK

∣∣∣∣∣ 1

m

m∑
i=1

εi`(yi, f(xi))

∣∣∣∣∣
≤ 2E sup

f∈γBK

∣∣∣∣∣ 1

m

m∑
i=1

εi(`(yi, f(xi))− `(yi, 0))

∣∣∣∣∣+
2Φ(0)√
m

≤ 4L (τ)R(γBK,m) +
2Φ(0)√
m

= 4L (τ) γ R(BK,m) +
2Φ(0)√
m

.
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By the definition of BK and the reproducing kernel property we have that

sup
f∈BK

∣∣∣∣∣ 1

m

∑
i∈INm

εif(xi)

∣∣∣∣∣ =
1

m
sup
K∈K

sup
‖f‖K≤1

∣∣∣∣∣
〈∑
i∈INm

εiKxi , f

〉
K

∣∣∣∣∣
=

1

m
sup
K∈K

∥∥∥∥∥∑
i∈INm

εiKxi

∥∥∥∥∥
K

=
1

m
sup
K∈K

( ∑
i,j∈INm

εiεjK(xi, xj)

)1/2

≤ 1√
m

sup
K∈K

(
sup
t∈X

∣∣∣∣∣∑
i∈INm

εiK(xi, t)

∣∣∣∣∣
)1/2

,

where the last inequality follows from the Hölder inequality and the fact |εj| = 1. Hence, by
Jensen’s inequality we conclude that

R(BK,m) ≤ 1√
m

(
E sup
K∈K

sup
t∈X

∣∣∣∣∣∑
i∈INm

εiK(xi, t)

∣∣∣∣∣
)1/2

=
√
R(K0,m).

This finishes the proof.

We note that the proof of Theorem 3.4 follows by combing inequality (4.1), Lemmas 4.3,
4.4 and 4.1. As for Corollary 3.5, we choose T = ∞ and f = f ∗λ in Theorem 3.4 and use
inequality (ii) of Lemma 4.2.

5 Learning with Gaussians

In this section we specify our results to the family of Gaussian kernels, that is, we assume
that X ⊂ IRn and consider the family of kernels

G := {Gσ : σ ∈ (0,∞)},

where Gσ(x, y) = exp(−σ‖x − y‖2), x, y ∈ IRn and ‖ · ‖ is the Euclidean norm on IRn. We
shall prove the following result about the Gaussian family G.

Proposition 5.1. For each n ∈ IN, there exists a constant dn such that, for all m ∈ IN
R(G0,m) ≤ dn

logm√
m

.

To prove the proposition we use some tools from empirical processes, see for example
[33]. To this end, we recall the concept of covering numbers.

Definition 5.2. Let (M , d) be a pseudo-metric space and S a subset of M . For every ε > 0,
the covering number of S by balls of radius ε with respect to d, denoted by N (S, ε, d), is
defined as the minimal number of balls of radius ε whose union covers S, namely,

N (S, ε, d) = min

{
n ∈ N : there exist {sj}nj=1 ⊂M such that S ⊆

n⋃
j=1

B(sj, ε)

}
where B(sj, ε) := {s ∈M : d(s, sj) < ε}.

11



Next, we introduce the p-norm empirical covering number. Let dp denote the normalized
`p–metric on the Euclidean space IRm defined, for all a = (ai : i ∈ INm), b = (bi : i ∈ INm) ∈
IRm, as dp(a, b) =

(
1
m

∑
i∈INm

|ai − bi|p
)1/p

.

Definition 5.3. Let F be a class of bounded functions defined onX, x = (xi : i ∈ INm) ∈ Xm

and F|x = {(f(xi) : i ∈ INm) : f ∈ F} ⊆ IRm. For 1 ≤ p ≤ ∞, we define the p-norm empirical
covering number of F associated to x as Np,x(F , ε) = N (F|x, ε, dp). Moreover, we let

Np(F , ε,m) := sup
x∈Xm

Np,x(F , ε).

Proof of Proposition 5.1. By [42, Lemma 12 and Lemma 13], there exists some constant

cn depending only on n such that log N∞(G0, ε,m) ≤ cn
ε

(
log m

ε

)2
. Since N2(F , ε,m) ≤

N∞(F , ε,m) we also have that

log N2(G0, ε,m) ≤ cn
ε

(
log

m

ε

)2

. (5.1)

Next, we recall that if F is a bounded function class whose 2-norm empirical covering
number N2(F , ε,m) is finite for all ε > 0 then the Rademacher average can be bounded in
the following manner [33]

R(F ,m) ≤ 1√
m

∫ U

0

√
log N2(F , ε,m) dε, (5.2)

where U = supf∈F E f 2. But, for each f ∈ G we have that E f 2 ≤ 1. Hence, by combining
inequalities (5.1) and (5.2) we conclude there is a constant dn such that for each m

R(G0,m) ≤ cn√
m

∫ 1

0

1√
ε

log
m

ε
dε ≤ dn

logm√
m
.

Using this estimate in Theorem 3.4 and Corollary 3.5, provides an estimate for the sample
error. These estimates suggest a way to choose the regularization parameter and compute the
learning rate. If some prior knowledge is available on the target function we can estimate the
decay of the regularization error. To further illustrate our results, we consider two classical
learning algorithms: regularized least squares (RLS) and support vector machine (SVM)
classification.

5.1 Regularized least squares

In the sequel, we denote by ρ(y|x) the conditional probability of y for a given point x ∈ X
and by ρX the marginal distribution of ρ on X. Recall that κ = 1 for the class G. In regression
problems we assume that |y| ≤ M almost surely. In RLS, the loss function takes the form
`(y, f(x)) = (y − f(x))2. A standard argument shows that the target function is given by
the regression function, that is,

f ∗` (x) =

∫
Y

ydρ(y|x)

12



and, for every function f ∈ L2(ρX), there holds

E(f)− E(f ∗` ) = ‖f − f ∗` ‖2
L2(ρX).

Moreover, it is easy to verify, for t ∈ IR+, that Φ(t) ≤ (M + t)2 and L(t) ≤ 2(M + t). Putting
these estimates into Corollary 3.5, when λ ≤ 1, we obtain, with confidence 1− δ, that

Sz(m,λ, f ∗λ) ≤
(

16
√
dn + 2 + 6

√
2log 2

δ

)
M2

√
logm

λm1/4
.

Corollary 5.4. If there are constants c > 0 and β ∈ (0, 1] such that for all λ > 0 A∗(λ) ≤
cλβ, then there is a constant c′ such that for any m there exists a λ such that, with confidence
1− δ,

‖fz − f ∗` ‖2
L2(ρX) ≤ c′

(
16M2

√
dn + 2M2 + 6M2

√
2 log 2

δ

) β
1+β
(√

logm

m1/4

) β
1+β

. (5.3)

In proving the corollary we have used the fact that the function h(λ) = a/λ+ cλβ, λ > 0

achieves its minimum at λ = λ̂ = (a/cβ)
1

1+β . A direct computation gives, for some constact
c′, that

h(λ̂) = (cβ)
1

1+β (1 + 1/β)a
β
β+1 = c′a

β
β+1 .

The result follows by setting

a =
(

16
√
dn + 2 + 6

√
2 log(2/δ)

)
M2
√

logm/m
1
4

and a direct computation.
Corollary 5.4 tells us that the learning rate can be computed once the regularization error

is estimated. Let us illustrate this by an example.

Example 1. If dρX is the Lebesgue measure on X and f ∗` is a restriction to X of a function
in

Hs(IRn) =

{
f ∈ L2(IRn) : ‖f‖Hs =

(
(2π)−n

∫
IRn

(1 + |ξ|2)s|f̂(ξ)|2dξ
)1/2

<∞

}
,

where f̂ denotes the Fourier transform of f, then

A∗(λ) ≤ cλ
4s

2n+4s+ns

with
c = (π2 + π−n/2)‖f ∗` ‖2

L2 + ‖f ∗` ‖2
Hs .

Hence, by Corollary 5.4 there exist constants c′ and λ such that with confidence 1− δ

‖fz − f ∗` ‖2
L2 ≤ c′

(
16M2

√
dn + 2 + 6M2

√
2 log 2

δ

) 4s
2n+8s+ns

(
logm√
m

) 2s
2n+8s+ns

.
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Proof. For every σ ∈ (0,∞), we define functions f`,σ, for every x ∈ IRn

f`,σ(x) =
(σ
π

)n/2 ∫
X

Gσ(x, y)f ∗` (y)dy.

By [32, Lemma 8.1] we have that f`,σ ∈ HGσ and ‖f`,σ‖Gσ ≤ π−
n
4 σ

n
4 ‖f ∗` ‖L2 . Moreover, we

have that

‖f`,σ − f ∗` ‖2
L2 =

∥∥∥(e−π‖·‖2σ − 1
)
f̂ ∗`

∥∥∥2

L2

=

∫
‖t‖≤σ

1
2+s

(
e−

π‖t‖2
σ − 1

)2

|f̂ ∗` (t)|2dt+

∫
‖t‖>σ

1
2+s

(
e−

π‖t‖2
σ − 1

)2

|f̂ ∗` (t)|2dt

≤
∫
‖t‖≤σ

1
2+s

(
π‖t‖2

σ

)2

|f̂ ∗` (t)|2dt+

∫
‖t‖>σ

1
2+s

|f̂ ∗` (t)|2dt

≤
∫
‖t‖≤σ

1
2+s

π2σ−
2s
2+s |f̂ ∗` (t)|2dt+

∫
‖t‖>σ

1
2+s

σ−
2s
2+s |f̂ ∗` (t)|2‖t‖2sdt

≤
(
π2‖f ∗` ‖2

L2 + ‖f ∗` ‖2
Hs

)
σ−

2s
2+s .

Since Gσ ∈ G and f`,σ ∈ HGσ for all σ ∈ (0,∞), we have that

A∗(λ) ≤ inf
σ∈(0,∞)

{
‖f`,σ − f ∗` ‖2

L2 + λ‖f`,σ‖2
Gσ

}
.

By taking σ = λ−
2(2+s)

2n+4s+ns we obtain the desired estimate for A∗(λ).

By the analysis in [31], for any fixed β, σ > 0, inff∈HGσ
{
E(f)− E(f ∗` ) + λ‖f‖2

Gs

}
cannot

decay with rate O(λβ) as λ→ 0+. Hence, a polynomial decay of ‖fz− f ∗` ‖2
L2(ρX) is generally

impossible. Thus, Example 1 ensures that the multiple kernel learning algorithm (1.2) sig-
nificantly improves the approximation power and learning ability over the algorithm with a
single kernel of fixed bandwidth. Similar improvement and fast rate can also be achieved by
varying and validating the bandwidth parameter [32, 15].

5.2 Support vector machine classification

In binary classification we choose Y = {1,−1} and wish to find a classifier f : X → Y. The
prediction power of f is measured by the classification error

R(f) = Prob {f(X) 6= Y } .

The optimal classifier, which yields the minimal classification error is called the Bayes rule:
f ∗ = arg minR(f) with the minimum taken over all classifiers f : X → Y . If, for every
y ∈ Y , we let

Xy :=

{
x ∈ X : Prob(y|x) >

1

2

}
and

X0 :=

{
x ∈ X : Prob(1|x) =

1

2

}
,
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Then the Bayes rule takes the form f ∗(x) = y if x ∈ Xy for y ∈ Y . We note, in passing,
that, unless X0 is empty, the Bayes rule is not unique. The performance of a classification
algorithm is measured by the approximation ability of the output classifier to the Bayes rule
with respect to the classification error.

SVM classification uses the loss function `(y, f(x)) = max {1− yf(x), 0} and the target
function is f ∗` = f ∗ [34]. It computes the real-valued function fz which solves problem (1.2)
and gives the classifier sgn(fz). In order to bound the excess classification error of fz we use
the projection operator and recall, for all real-valued functions f : X → Y , that

R(sgn(f))−R(f ∗) ≤ E(π1(f))− E(f ∗) (5.4)

see, for example, [43, 37]. We observe that Ψ(T ) = 0 if T ≥ 1 and, for all t ∈ IR+, that
Φ(t) = (1+t) and L(t) = 1. Combining Proposition 3.1, Theorem 3.4 with T = 1 and f = f ∗λ
and Proposition 5.1 we obtain that

E(π1(fz))− E(f ∗) ≤
(

4
√
dn + 2 + 3

√
2log 2

δ

) √
logm

λ1/2m1/4
+A∗(λ).

Using the above equation and equation (5.4) we we obtain the following corollary.

Corollary 5.5. If there exist constants c > 0 and β ∈ (0, 1] such that, for all λ > 0,
A∗(λ) ≤ cλβ then, for any m there is a choice of λ such that, for some constant c′, with
confidence 1− δ

R(sgn(fz))−R(f ∗) ≤ c′
(

4
√
dn + 2 + 3

√
2 log 2

δ

) 2β
1+2β

(
logm√
m

) β
1+2β

.

As an example of this observation we consider distributions satisfying the geometric noise
condition [32]. To this end, let τ(x) = d(x,X0

⋃
X−i) for x ∈ Xi, i = 1, −1, 0. We say ρ has

geometric noise exponent α > 0 if there exists c > 0 such that, for all t > 0,∫
X

∣∣Prob(1|x)− Prob(−1|x)
∣∣e−τ2(x)/tdρX(x) ≤ ct−αn/2.

Thus, applying [32, Theorem 2.14] and Corollary 5.5, we are led to the following example.

Example 2. If X is a subset of the unit ball in IRn and ρ has geometric noise exponent α > 0
with constant c, then there is a constant d > 0 such that, for all λ > 0, A∗(λ) ≤ dλα/(α+1).
Hence, there exist a constant d′ and a choice of λ such that with confidence 1− δ

R(sgn(fz))−R(f ∗) ≤ d′
(

4
√
dn + 2 + 3

√
2 log 2

δ

) 2α
3α+1

(
logm√
m

) α
3α+1

.

6 Discussion

We have provided an analysis of the generalization error for a general kernel learning method
based on a regularization scheme within a class K of uniformly bounded reproducing kernels.
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When K is the family of Gaussian kernels with arbitrary variance, our analysis guarantees the
consistency of the learning algorithm and provides good error rates for the case of regularized
least squares and support vector machines.

We note that an earlier version of this paper appeared in [29]. The sample error bound
was motivated by an earlier version of [42] released in 2004, which established the necessary
and sufficient condition for the learnability and consistency of learning the kernel problem
and derived the covering number for the union of the unit balls in RKHSs with Gaussians. In
the late published version, the work [42] also derived error bounds which in certain instances
improve upon those given in [29].

A number of research questions can be studied starting from the framework presented
in this paper. We close with highlighting some useful kernel classes K and learning schemes
which stem out of the main theme of this paper and which would be valuable subject of
future work.

• In [27] a convex set of kernels parameterized by a locally compact set Σ is considered,
namely

K =

{∫
Σ

G(σ)dp(σ) : p ∈ P(Σ)

}
, (6.1)

where for each σ ∈ Σ, G(σ) : X × X → IR is a prescribed kernel which depends
continuously on σ and P(Σ) is the set of all probability measures on Σ. This study
reveals good kernel classes K which have faster learning rates than the one obtained
for single kernel. For example, when Σ ⊆ IR+ and the function G(σ) is a multivariate
Gaussian kernel with variance σ then K equals the closed convex hull of G, that is, the
class of radial kernels, and the Rademacher complexities of coG0 and G0 are the same.

• Problems addressed in this paper naturally extend to the context of operator valued
kernels, as considered, for example, in [9]. Among the several classes of operator valued
kernels which would be valuable to analyse from a statistical learning theory point of
view, we mention the general class

Koperator = {AK : A ∈ A, K ∈ K} , (6.2)

where K is a class of scalar kernels, e.g. the class (6.1) above, and A is a subset of the
set of bounded positive operators on a Hilbert space Y . Operator valued kernels arise
in various application areas, in particular they are instrumental in multitask learning.
In this setting the kernels are matrix valued (hence sometimes called multitask kernels)
and the set A in equation (6.2) is a subset of the set of positive definite matrices. It
is interesting to note that if A is the set of all positive definite matrices with trace
bounded by one, and the set K is a singleton then problem (1.1) is equivalent to
trace norm regularization in a reproducing kernel Hilbert space, as considered [1, 4].
Therefore, if we further enlarge the class K, the approach considered in this paper gives
rise to the problem of learning the kernel for trace norm regularization, which could
be a valuable direction of future study.

• The learning scheme in equation (1.2) involves the minimization of the sum of the
regularized empirical error over all functions f ∈ HK and over all kernels K ∈ K.
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The regularization over f is necessary in order to avoid overfitting, however the reg-
ularization over K is implicit in the choice of the class K. Therefore, it is natural to
consider an alternative two stage optimization approach, in which we first minimize
the regularized empirical error over f ∈ HK and subsequently the empirical error of
the minimizer fz is minimized error over K ∈ K. For example in the case of the square
loss function a direct computation gives that

1

m

∑
i∈INm

(yi − fz(xi))2 = λ(y, (Kz(x) +mλI)−2y) (6.3)

whereas, as noted in Section 2,

1

m

∑
i∈INm

(yi − fz(xi))2 + λ‖fz‖2
K = λ(y, (Kz(x) +mλI)−1y). (6.4)

Note that these two expressions differ only in the exponents that appear in the right
hand side of equations (6.3) and (6.4). In the future, it would be interesting to in-
vestigate how these different exponents in the objective function affects the learning
rate. This observation may also be relevant for binary classification with the hinge loss
function.
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