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Abstract Recently, there has been considerable work on analyzing learning algo-
rithms with pairwise loss functions in the batch setting. There is relatively little
theoretical work on analyzing their online algorithms, despite of their popularity in
practice due to the scalability to big data. In this paper, we consider online learning
algorithms with pairwise loss functions based on regularization schemes in repro-
ducing kernel Hilbert spaces. In particular, we establish the convergence of the last
iterate of the online algorithm under a very weak assumption on the step sizes and
derive satisfactory convergence rates for polynomially decaying step sizes. Our tech-
nique uses Rademacher complexities which handle function classes associated with
pairwise loss functions. Since pairwise learning involves pairs of examples, which
are no longer i.i.d., standard techniques do not directly apply to such pairwise learn-
ing algorithms. Hence, our results are a non-trivial extension of those in the setting
of univariate loss functions to the pairwise setting.
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1 Introduction

For any T ∈ N, the input space X is a subset of Rd and the output space Y ⊆ R. In
the standard framework of learning theory [11, 29], one considers learning from a set
of examples z = {zi = (xi, yi) ∈ X ×Y : i = 1, 2, . . . , T } drawn independently and
identically (i.i.d) from an unknown distribution ρ on Z = X × Y. Associated with
a specific learning problem, typically a univariate loss function �(h, x, y) is used to
measure the quality of a hypothesis function h : X → Y .

There are various important learning problems involving pairwise loss functions,
i.e. the loss function depends on a pair of examples which can be expressed by
�(f, (x, y), (x′, y′)) for a hypothesis function f : X × X → R. For example, met-
ric learning [12, 17, 30, 35] aims to learn a metric D such that examples with the
same label stay closer while pushing apart examples with distinct labels. In this set-
ting, a typical pairwise loss function is given, for any (x, y), (x′, y′) ∈ X × Y , by
�(D, (x, y), (x ′, y′)) = (1 + r(y, y′)D(x, x′))+ = max(0, 1 + r(y, y′)D(x, x′))
where r(y, y′) = 1 if y = y′ and −1 otherwise. Another prominent exam-
ple is the problem of bipartite ranking [1, 8, 10, 25], which aims to predict the
ordering between objects from their observed features. The quality of a rank-
ing rule f : X × X → R can be measured by a least-square pairwise loss
function �(f, (x, y), (x′, y′)) = (y − y′ − f (x, x′))2. Other learning problems
associated with pairwise loss functions include AUC maximization [38], gradient
learning [21, 22], minimum error entropy principles [13, 15] and similarity learning
[6, 9].

This paper considers learning problems associated with pairwise loss functions
which, for simplicity, is referred to as pairwise learning problems. In this context, we
assume that the hypothesis function f : X ×X → R for pairwise learning problems
belongs to a reproducing kernel Hilbert space (RKHS) defined on the product space
X 2 = X × X . Specifically, let K : X 2 × X 2 → R be a Mercer kernel, i.e. a
continuous, symmetric and positive semi-definite kernel, see e.g. [11, 29]. According
to [2], the RKHS HK associated with kernel K is defined to be the completion of
the linear span of the set of functions {K(x,x′)(·) := K((x, x′), (·, ·)) : (x, x′) ∈ X 2}
with an inner product satisfying the reproducing property, i.e., for any x′, x ∈ X and
g ∈ HK , 〈K(x,x′), g〉K = g(x, x′).

A general regularization scheme in a RKHS HK for pairwise learning can be
written as

fz,λ = arg min
f ∈HK

⎧
⎪⎨

⎪⎩

2

T (T − 1)

T∑

i,j=1
i<j

�(f, (xi, yi), (xj , yj )) + λ

2
‖f ‖2K

⎫
⎪⎬

⎪⎭
. (1)

where λ > 0 is a regularization parameter. The above formulation is a common reg-
ularization formulation in the batch learning setting in the sense that the algorithm
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uses the training data z at once. Recently, there has been considerable work on ana-
lyzing the generalization performance of the above batch learning algorithm and its
related variants using the techniques of U-Statistics [6, 10, 25] or the concept of algo-
rithmic stability [1, 17]. In contrast to well-studied pairwise learning in the batch
setting, online learning algorithms only need to access the data sequentially and are
more popular in practice due to their ability of analyzing big data. However, there is
little work on designing and analyzing online learning with pairwise loss functions
except recent work by [16, 32]. Specifically, Wang et al. [32] and Kar et al. [16] estab-
lished generalization bounds for the average of the iterates of online learning with
uniformly bounded pairwise loss functions. These results are established in the same
spirit as the online to batch conversion bounds [7] for learning algorithms associated
with univariate loss functions.

In this paper, we study the regularized online learning with pairwise loss functions
and establish generalization bounds for its last iterate instead of the average of its iter-
ates as studied in [16, 32]. Our technique uses Rademacher complexities in order to
handle function classes associated with pairwise loss functions. Since pairwise learn-
ing involves pairs of examples, which are no longer i.i.d., and standard techniques
in [37] do not directly apply to such pairwise learning algorithms. Hence, our results
are a non-trivial extension of those in the setting of univariate loss functions [37] to
the pairwise setting.

The remainder of this paper is organized as follows. In Section 2, we introduce
online regularized learning algorithm associated with pairwise loss functions and
state the main results. In particular, a general convergence theorem is established for
the above online algorithms and their convergence rates with polynomial-decaying
step sizes are established. Related work is discussed in Section 2.1. Section 3 devel-
ops some technical results which are needed to prove the main results stated in
Section 2. Section 4 summarizes this paper and discuss some possible directions for
future work.

2 Learning algorithm and main results

In this section, we introduce an online regularized learning algorithm associated
with a pairwise loss �(f (x, x′), r(y, y′)) in a reproducing kernel Hilbert space HK ,
which is motivated by the learning algorithm [32] in the linear setting. For sim-
plicity, we restrict our attention to the hinge loss, i.e. �(f (x, x′), r(y, y′)) = (1 −
r(y, y′)f (x, x′))+. Here, r is a function from Y ×Y to a bounded interval [−M, M]
with some constant M > 0, i.e.

sup
y,y′∈Y

|r(y, y′)| ≤ M.

The definition of function r can vary in different learning settings. For example,
r(y, y′) = sgn(y−y′) for the problem of ranking and, for metric learning, r(y, y′) =
1 if x and x′ are from the same class and −1 otherwise.
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Definition 1 Given the i.i.d. generated training data z = {zi = (xi, yi) : i =
1, 2, . . . , T }, the online regularized pairwise learning (ORPL) is given by f1 = f2 =
0 and

ft+1 = ft −ηt

⎡

⎣
1

t − 1

t−1∑

j=1

�′(ft (xt , xj ), r(yt , yj ))K(xt ,xj )(·) + λft

⎤

⎦ , ∀t ∈ N and 2 ≤ t ≤ T ,

(2)
where {ηt > 0 : t ∈ N} is usually called the step size, λ > 0 is the regularization
parameter and �′(s, r(y, y′)) denotes the sub-gradient of the hinge loss � with respect
to the first argument s ∈ R.

In the above definition, the sub-gradient of the hinge loss can be defined by

�′(s, r(y, y′)) =
{−r(y, y′) if sr(y, y′) ≤ 1
0 otherwise.

The above online learning algorithm ORPL only needs a sequential access to the
training data, and, from the above definition, we know that ft only depends on the
variables zt−1 = {z1, z2, . . . , zt−1}. Specifically, at each time step t+1, the algorithm
ORPL presumes a hypothesis ft ∈ HK upon which a new data zt is revealed. The
quality of ft is assessed on the local regularized empirical error:

Ê t
λ(f ) = 1

t − 1

t−1∑

j=1

�(f (xt , xj ), r(yt , yj )) + λ

2
‖f ‖2K. (3)

Then, a gradient step is made to update ft based on the gradient of the above local
empirical error Ê t

λ(ft ) which is exactly given by

∇Ê t
λ(f )|f =ft = 1

t − 1

t−1∑

j=1

�′(ft (xt , xj ), r(yt , yj ))K(xt ,xj ) + λft .

Here, ∇Ê t
λ(f ) denotes the functional gradient of the functional Ê t

λ in the RKHSHK.

Denote the true risk of a hypothesis f by

E(f ) =
∫∫

�(f (x, x′), r(y, y′))dρ(x, y)dρ(x′, y′). (4)

Our main aim is to consider the generalization performance of fT +1, i.e. the last
iterate of ORPL. Consider the regularization function fλ defined by

fλ = inf
f ∈HK

{

Eλ(f ) =: E(f ) + λ

2
‖f ‖2K

}

. (5)

Now we state the following theorem which shows that the last iterate of ORPL
converges to the regularization function fλ under certain conditions on the step sizes
{ηt : t ∈ N}.
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Theorem 1 For every fixed λ > 0, if the step sizes {ηt : t ∈ N} in algorithm (2)
satisfy

lim
t→∞ ηt = 0 and

∞∑

t=2

ηt = ∞, (6)

then we have

lim
T →∞E [‖fT − fλ‖K ] = 0.

Let κ = sup
x,x′∈X

√
K((x, x′), (x, x′)). If we choose explicit step sizes, the

convergence rate of the last iterate of ORPL can be stated as follows.

Theorem 2 Let 0 < λ ≤ 1, {ft : t = 2, 3, . . . , T + 1} be defined by algorithm (2).
If we choose the step size as ηt = 1

λtα
with 0 < α < 1, then

E
[‖fT +1 − fλ‖2K

] ≤ C1

(
1

λ2T α

)

,

where C1 is a constant independent of T (see its explicit expression in the proof).

In particular, if the step sizes are chosen as ηt = 1
λt

then we can further obtain the
following result.

Theorem 3 Let 0 < λ ≤ 1 and the iterates {ft : t = 2, 3, . . . , T + 1} be generated
by algorithm (2). If we take the step size as ηt = 1

λt
, then we have, for any T ≥ 2, that

E
[‖fT +1 − fλ‖2K

] ≤ C2

(
log T

λ2T

)

,

where C2 is independent of T (see its explicit expression in the proof).

The proofs of Theorems 1, 2 and 3 will be given in Section 3.2. For fixed λ, The-
orem 3 states that E

[‖fT +1 − fλ‖2K
] = O(log T/T ). This rate is consistent with the

rate of standard stochastic gradient descent algorithms in the setting of classification
and regression [24, 26].

In the literature of learning theory [11, 29], we are often interested in the excess
generalization error E(fT +1) − inff E(f ), where the minimization is taken over
all measurable pairwise functions. The above theorems mainly describe the con-
vergence of ‖fT +1 − fλ‖K which is usually referred to as the sample error. By
combining the approximation error which describes the difference between fλ and
fc = arg inff E(f ), we can drive the overall convergence rate of the excess general-
ization error. To this end, we prove the following lemma which may be interesting in
its own right.
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Lemma 2.1 Consider Y = {±1} and define, for any y, y′ ∈ Y , r(y, y′) = yy′.
Let, for any x, x′ ∈ X , η(x) = P(Y = 1|x) and fρ(x, x′) = 2

[
η(x)η(x ′) + (1 −

η(x))(1 − η(x′))
]− 1. Then, fc = sign(fρ), i.e., for any x, x′ ∈ X ,

fc(x, x′) =
{
1, fρ(x, x′) ≥ 0,
−1, otherwise.

(7)

In binary classification (e.g. [11, 29]), one is often interested in finding an
estimator from data to approximate the minimizer gc = arg infg

∫∫

X×Y (1 −
yg(x))+dρ(x, y). It is well-known [34, 39] that gc is identical to the Bayes rule, i.e.
gc = sign(gρ) where gρ is defined by gρ(x) = 2η(x) − 1. Lemma 2.1 can be con-
sidered as extension of this classical result to the scenario of pairwise learning. We
are not aware of any results similar to Lemma 2.1. Therefore, we outline its proof in
Section 3.2 for completeness.

Now we state the overall rate for the excess generalization error.

Corollary 4 Consider Y = {±1} and define, for any y, y′ ∈ Y , r(y, y′) = yy′.
Assume, for some 0 < β ≤ 1, that D(λ) := inff ∈HK

{
E(f ) − E(fc) + λ

2‖f ‖2K
} =

O(λβ). Let the iterates {ft : t = 2, 3, . . . , T + 1} be generated by algorithm (2) with

the choice ηt = 1
λt
, then, by choosing λ = ( log2 T

T

) 1
2(1+β) , we have

E
[
E(fT +1) − E(fc)

] = O
(

T
− β

2(1+β)
√
log T

)

. (8)

In the above corollary, the decay assumption on the approximation error D(λ) is
standard, see e.g. [11, 29]. In the particular case of fc ∈ HK , we have D(λ) ≤
λ‖fc‖2K . This means that E

[
E(fT +1) − E(fc)

] = O
(
T − 1

4 (log T )1/2
)

. This rate is

apparently sub-optimal when compared with the rates in the batch learning setting [1,
25]. Improving the learning rates of the online pairwise learning is one of the future
research directions.

2.1 Related work and discussion

Recently, pairwise learning has attracting increasing attention. A key characteris-
tic of pairwise learning is that pairs of examples are not i.i.d., and hence, standard
techniques of generalization analysis for learning algorithms with a univariate loss
function do not directly apply to pairwise learning. The generalization bounds of
pairwise learning in the batch setting can be established by using U-statistics and
algorithmic stability [5, 6, 10, 13, 14]. Below, we discuss some existing work which
is closely related to ours.

Zhao et al. [38] proposed an online learning algorithm for maximizing area under
ROC curve (AUC) for imbalanced classification. The main challenge for online AUC
maximization (OAM) is that it requires to optimize the pairwise loss between two
examples from distinct classes. They presented an effective online algorithm based
on the reservoir sampling [31].
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By employing the covering number approach, Wang et al. [32] investigated the
regret bounds and generalization performance of online learning algorithms with
pairwise loss functions in the linear setting where the algorithm is similar to ours. The
authors showed the data-dependent bounds for the average risk of the sequences of
hypotheses generated from an arbitrary online learner. Such results can be regarded
as an extension of online to batch conversion bounds [7] for learning algorithms
associated with univariate loss functions. More recently, Kar et al. [16] considered
the generalization bounds for the online learning algorithms with pairwise loss func-
tions. The authors improved the results in [32] by using the Rademacher complexity
techniques.

Now we compare our result with that of the average iterates in [16] where the
generalization ability of the online learning algorithms with pairwise loss functions is
investigated. By careful checking the proof of Theorem 5 in [16], we can restate the

result there as 1
T

∑T
t=1 L(ht ) ≤ L(h∗) + RT

T
+ CdO

(
√

BT log T log(T /δ)

T λ

)
, where RT

denotes the regret bound and BT = max{RT , 2Cd log T log(T /δ)}. Note that, in the
original result stated in [16, Theorem 5], the strongly convex parameter λ is absorbed
in theO(·) notation. By the properties of the strong convexity, the above result means

that ‖h1+···+hT

T
− h∗‖2 ≤ RT

T λ
+ O

(
√

BT log T log(T /δ)

T λ2

)
. We can see our result stated

in Theorem 3 is comparable to the ones appeared in the literature which means, in
theory, the performance of the last iterate of online pairwise learning algorithm is
competitive to that of the average of iterates.

Our work is mainly motivated by [16, 32]. The main novelty of this paper is that
we established, for the first time, the convergence rate for the individual iterate of
online pairwise learning algorithms. The previous literature [14,30] focused on the
average of its iterates, i.e. 1

t+1

∑t+1
j=1 fj . One can directly derive the convergence

rate for the average of the iterates from those of the individual iterates. Indeed, if we
have, for some ϑ ∈ (0, 1], E[‖ft+1 − fλ‖2K

] = O(t−ϑ) for any t , then E
[‖f̄t+1 −

fλ‖2K
] ≤ 1

t+1

∑t+1
j=1 E

[‖fj − fλ‖2K
] = O(t−ϑ), for ϑ ∈ (0, 1) and E

[‖f̄t+1 −
fλ‖2K

] = O(t−1 log t), for ϑ = 1. In this sense, the previous results can be regarded
as corollaries of our new results.

We end this section with some remarks on the applicability of algorithm (2).
The implementation of ORPL algorithm (2) requires, at iteration t , to store the
previous examples {z1, z2, . . . , zt−1}. Consequently, the memory (space) complex-
ity is very high. In order to improve the applicability of ORPL, one intriguing
approach is to develop a memory-efficient implementation which, instead of keep-
ing all previous t − 1 examples at iteration t , stores only a buffer set of a limited
size as employed in [16, 33] using, e.g., reservoir sampling techniques [31]. In
this case, ORPL would work with finite buffers associated with the local error
Lt (f ) = 1

|Bt |
∑

j∈Bt
�(f (xt , xj ), r(yt , yj )) + λ

2‖f ‖2K , where Bt is the state of
buffer at iteration t. Notice that each iterate function ft+1 can be represented as
ft+1 = ∑t

j=1 αt
jK(xt ,xj ). Therefore, another direction to improve the applicability

of algorithm (2) is to design online learning algorithms for pairwise learning, which
would encourage the predictor ft+1 to have sparse support vectors (i.e. with a large
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proportion of zero coefficients αt
j ). Such algorithms should be able to reduce the

computational time at both training and testing stages.

3 Technical results and proofs

This section proves our main results.

3.1 General technical results

For any λ > 0, we can establish the uniform bound for the learning sequence {ft :
t ∈ N} as follows. Our main aim is to consider the generalization performance of ft

which is expected to converge to the true regularization function fλ.

We can establish the following lemma.

Lemma 3.1 For any λ > 0 and t ∈ N, if the step size satisfies ηtλ ≤ 1 for t ≥ 2,
then we have

‖ft‖K ≤ κM

λ
, ∀t ∈ N. (9)

Proof We prove the claim (9) by induction. The initial functions f1 and f2 certainly
satisfy inequality (9). Observe that |�′(ft (xt , xj ), r(yt , yj ))| ≤ M, consequently,

‖ft+1‖K = ‖(1 − ηtλ)ft − ηt

t−1

∑t−1
j=1 �′(ft (xt , xj ), r(yt , yj ))K(xt ,xj )‖K

≤ (1 − ηtλ)‖ft‖K + ηtMκ.

Putting induction assumption ‖ft‖K ≤ κM
λ

into the above inequality yields the
desired estimation for ‖ft+1‖K ≤ (1 − ηtλ) κM

λ
+ ηtMκ = κM

λ
. This completes the

proof of the lemma.

To prove the main convergence results, we need to introduce the concept of
Rademacher complexity [4] which is defined as follows.

Definition 2 Let F be a class of uniformly bounded functions. For every integer n,
we call

Rn(F ) := EzEε

[

sup
f ∈F

1

n

n∑

i=1

εif (zi)

]

,

the Rademacher average over F, where z = {zi}ni=1 are independent random
variables distributed according to some probability measure and ε = {εi}ni=1 are
independent Rademacher random variables, i.e. P(εi = 1) = P(εi = −1) = 1

2 .

The Rademacher complexity has the following useful property (see e.g. [20])
which will be used in the later proof. This property is a refined version of the
well-known contraction inequality due to Ledoux and Talagrand [18, Corollary 3.17].
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Lemma 3.2 Let {gj (θ)} and {hj (θ)} be sets of functions on 
. If for each j, θ, θ ′
that |gj (θ) − gj (θ

′)| ≤ |hj (θ) − hj (θ
′)|, then

Eε

⎡

⎣sup
θ∈


m∑

j=1

εjgj (θ)

⎤

⎦ ≤ Eε

⎡

⎣sup
θ∈


m∑

j=1

εjhj (θ)

⎤

⎦ . (10)

Now we define

Ê t (f ) = 1

t − 1

t−1∑

j=1

�(f (xt , xj ), r(yt , yj )),

and

Ẽ t (f ) = 1

t − 1

t−1∑

j=1

∫

Z
�(f (x, xj ), r(y, yj ))dρ(x, y).

Furthermore, let Ẽ t
λ(f ) = Ẽ t (f ) + λ

2‖f ‖2K. With the above notations, we can get the
following recursive inequality which is very critical to prove the convergence of the
ORPL algorithms.

Theorem 5 Assume ηtλ ≤ 1 for any t ≥ 2, then we have

E

[
‖ft+1 − fλ‖2K

]
≤ (1 − ηtλ)E

[
‖ft − fλ‖2K

]
+ 4M2η2t κ

2 + 2ηt

(
2560e(κM)2

λt

)

. (11)

To prove Theorem 5, we need the following technical lemma which is mainly
motivated by the peeling and re-weighting techniques [3, 28] for Rademacher
averages.

Lemma 3.3 Let t ≥ 2, then for any 0 < τ < 1 there holds

E
[
Ẽ t

λ(fλ) − Ẽ t
λ(ft )

] ≤ τ E [Eλ(fλ) − Eλ(ft )] + 1280eκ2M2

(1 − τ)tλ
. (12)

Proof Let Fλ = {f ∈ HK : ‖f ‖ ≤ κM/λ} which can be further written as Fλ =⋃∞
i=1 F(4ib), where, for any i ≥ 1,

F(4ib) = {
f ∈ Fλ : 4i−1b ≤ b + Eλ(f ) − Eλ(fλ) < 4ib

}
.

Here, b > 0 is a constant to be determined later. Define, for any i ≥ 0,

Ri = sup
f ∈F(4i b)

[
E(f ) − E(fλ) − Ẽ t (f ) + Ẽ t (fλ)

]
.
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To prove the desired result in the lemma, we start to estimate the term
Eλ(ft )−Eλ(fλ)−Ẽ t

λ(ft )+Ẽ t
λ(fλ)

b+Eλ(ft )−Eλ(fλ)
. Indeed, we know from (9) that ft ∈ Fλ. Therefore,

Eλ(ft ) − Eλ(fλ) − Ẽ t
λ(ft ) + Ẽ t

λ(fλ)

b + Eλ(ft ) − Eλ(fλ)
≤ sup

f ∈Fλ

[
Eλ(f ) − Eλ(fλ) − Ẽ t

λ(f ) + Ẽ t
λ(fλ)

b + Eλ(f ) − Eλ(fλ)

]

= sup
i

sup
f ∈F(4i b)

[
Eλ(f ) − Eλ(fλ) − Ẽ t

λ(f ) + Ẽ t
λ(fλ)

b + Eλ(f ) − Eλ(fλ)

]

≤
∞∑

i=1

sup
f ∈F(4i b)

[
Eλ(f ) − Eλ(fλ) − Ẽ t

λ(f ) + Ẽ t
λ(fλ)

b + Eλ(f ) − Eλ(fλ)

]

≤ b−1
∞∑

i=1

4−(i−1) sup
f ∈F(4i b)

[
Eλ(f ) − Eλ(fλ) − Ẽ t

λ(f ) + Ẽ t
λ(fλ)

]

= b−1
∞∑

i=1

4−(i−1)Ri . (13)

It remains to estimateRi . To this end, note thatRi is a function of {z1, z2, . . . , zt−1},
i.e. Ri = Ri (z1, z2, . . . , zt−1). In addition, observe from the strong convexity of
Eλ[·] and the definition of fλ that λ‖f − fλ‖2K ≤ Eλ(f ) − Eλ(fλ). Consequently,

‖f − fλ‖K ≤ 2i

√
b

λ
, ∀f ∈ F(4ib). (14)

Now, for any zj being replaced by z′
j , observe, for f ∈ F(4ib), that

|Ri (z1, . . . , z
′
j , . . . , zt−1) − Ri (z1, . . . , zj , . . . , zt−1)| ≤ 2κM

t − 1
‖f − fλ‖K ≤ 2i+1κM

t − 1

√
b

λ
,

where the last inequality used the estimation (14). Therefore, we know from the
McDiarmid inequality that, with probability 1 − 2−iδ, there holds

Ri − E[Ri] ≤ 2i+1κM

√

2b log( 2
i

δ
)

tλ
.

Now we move on to the estimation of E[Ri] using the standard symmetrization
trick (e.g. [3]). To this end, for any z = (x, y), let Lf (z) = Ez̃�(f (x̃, x), r(ỹ, y)) −
Ez̃�(fλ(x̃, x), r(ỹ, y)).

Let z′
t = {z′

j = (x′
j , y

′
j ) : j = 1, 2, . . . , t} be the i.i.d. copy of zt = {z1, . . . , zt },

then

E[Ri] = Ezt

⎡

⎣ sup
f ∈F(4i b)

[
E(f ) − E(fλ) − 1

t − 1

t−1∑

j=1

Lf (xj , yj )
]

⎤

⎦

= Ezt

⎡

⎣ sup
f ∈F(4i b)

[
Ez′t

[ 1

t − 1

t−1∑

j=1

Lf (x′
j , y

′
j )
]− 1

t − 1

t−1∑

j=1

Lf (xj , yj )
]

⎤

⎦

≤ EztEz′t

⎡

⎣ sup
f ∈F(4i b)

[ 1

t − 1

t−1∑

j=1

Lf (x′
j , y

′
j ) − 1

t − 1

t−1∑

j=1

Lf (xj , yj )
]

⎤

⎦ .
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Hence, for any εj ∈ {1, −1} with j = 1, · · · , t − 1, we have that

EztEz′t

⎡

⎣ sup
f ∈F(4i b)

[ 1

t − 1

t−1∑

j=1

Lf (x′
j , y

′
j ) − 1

t − 1

t−1∑

j=1

Lf (xj , yj )
]

⎤

⎦

= EztEz′t

⎡

⎣ sup
f ∈F(4i b)

1

t − 1

t−1∑

j=1

εj

[
Lf (x′

j , y
′
j ) − Lf (xj , yj )

]

⎤

⎦

≤ 2EztEε

⎡

⎣ sup
f ∈F(4i b)

1

t − 1

t−1∑

j=1

εjLf (xj , yj )

⎤

⎦

≤ 2EztEz̃Eε sup
f ∈F(4i b)

1

t − 1

t−1∑

j=1

εj

[
�(f (x̃, xj ), r(ỹ, yj )) − �(fλ(x̃, xj ), r(ỹ, yj ))

]
.

Using the property of Rademacher averages stated in Lemma 3.2 with θ = f ,
gj (θ) = �(f (x̃, xj ), r(ỹ, yj )) − �(fλ(x̃, xj ), r(ỹ, yj )), and hj (θ) = M[f (x̃, xj ) −
fλ(x̃, xj )] implies that

Eε sup
f ∈F(4i b)

1

t − 1

t−1∑

j=1

εj

[
�(f (x̃, xj ), r(ỹ, yj )) − �(fλ(x̃, xj ), r(ỹ, yj ))

]

≤ MEε sup
f ∈F(4i b)

1

t − 1

t−1∑

j=1

εj

[
f (x̃, xj ) − fλ(x̃, xj )

]

= MEε

[
sup

f ∈F(4i b)

〈 1

t − 1

t−1∑

j=1

εjK(x̃,xj ), f − fλ〉K
]
. (15)

Combining the above inequalities with (14) implies that

Eε

[
sup

f ∈F(4i b)

〈 1

t − 1

t−1∑

j=1

εj K(x̃,xj ), f − fλ〉K
] ≤ Eε

[
sup

‖f −fλ‖K≤2i

√
b
λ

〈 1

t − 1

t−1∑

j=1

εj K(x̃,xj ), f − fλ〉K
]

= 2i

√
b

λ
Eε

∥
∥
∥
∥
∥
∥

1

t − 1

t−1∑

j=1

εj K(x̃,xj )

∥
∥
∥
∥
∥
∥

K

= 2i

√
b

(t − 1)2λ
Eε

(
t−1∑

k,j=1

εj εkK((x̃, xj ), (x̃, xk))
)1/2

≤ 2i

√
b

(t − 1)2λ

(
Eε

t−1∑

k,j=1

εj εkK((x̃, xj ), (x̃, xk))
)1/2 = 2i

√
b

(t − 1)2λ

(
t−1∑

j=1

K((x̃, xj ), (x̃, xj ))
)1/2

≤ 2i κ

√
b

(t − 1)λ
.

Therefore, for any i ≥ 1, with probability 1 − 2−iδ we have that

Ri ≤ 2i+1κM

√
2b

λt
+ 2i+1κM

√

2b log( 2
i

δ
)

tλ
≤ 2i+1κM

√
2b

tλ

⎛

⎝1 +
√

log
(2i

δ

)

⎞

⎠ .

(16)
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Combining the estimation (13) with (16) implies that, with probability 1− δ, there
holds

Eλ(ft ) − Eλ(fλ) − Ẽ t
λ(ft ) + Ẽ t

λ(fλ)

b + Eλ(ft ) − Eλ(fλ)
≤ sup

f ∈Fλ

[
Eλ(f ) − Eλ(fλ) − Ẽ t

λ(f ) + Ẽ t
λ(fλ)

b + Eλ(f ) − Eλ(fλ)

]

≤ 8b−1
∞∑

i=1

2−iκM

√
2b

tλ

⎛

⎝1 +
√

log
(2i

δ

)

⎞

⎠

≤ 8κM

√
2

λbt

(

1 +
∞∑

i=1

2−i

√

i + log
1

δ

)

≤ 8κM

√
2

λbt

(

1 +
√

log
1

δ
+

∞∑

i=1

2−i
√

i

)

≤ 8κM

√
2

λbt

(

3 +
√

log
1

δ

)

, (17)

where, in the last inequality, we have used the fact that

∞∑

i=1

2−i
√

i ≤ 1

2
+

√
2

4
+ 1

2

∞∑

i=3

2−i (i + 1) = 1

2
+

√
2

4
+ 1

8
+ 1

2

∞∑

i=3

2−i i

≤
√
2

4
+ 5

8
+ 1

2

∫ ∞

2
s2−sds =

√
2

4
+ 5

8
+ 1

8

(
1

(log 2)2
+ 2

log 2

)

≤ 2.

This implies that

Eλ(ft ) − Eλ(fλ) − Ẽ t
λ(ft ) + Ẽ t

λ(fλ) ≤ 8κM

√
2

λbt

(

3 +
√

log
1

δ

)

[b + Eλ(ft ) − Eλ(fλ)] .

(18)

For any 0 < τ < 1, selecting b =
[

8κM
(1−τ)

√
2
λt

]2 (

3 +
√

log 1
δ

)2

, substituting it

back into (18) and arranging terms, we obtain, with probability 1 − δ, that

Ẽ t
λ(fλ) − Ẽ t

λ(ft ) ≤ τ(Eλ(fλ) − Eλ(ft )) +
(
128κ2M2

1 − τ

)

(

3 +
√

log 1
δ

)2

tλ
. (19)

Denote the random variable ξ = Ẽ t
λ(fλ) − Ẽ t

λ(ft ) − τ(Eλ(fλ) − Eλ(ft )). The above
estimation implies, with probability at least 1 − δ, that

ξ ≤ (128κ2M2

1 − τ

)
(
3 +

√

log 1
δ

)2

tλ
≤ (128κ2M2

1 − τ

)10

tλ
log

e

δ
.
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The above inequality means Prob[ξ > u] ≤ exp

{

1 − u
1280κ2M2
(1−τ)tλ

}

for any u > 0.

Therefore,

E[ξ ] =
∫ ∞

0
Prob[ξ > u]du −

∫ 0

−∞
Prob[ξ < u]du ≤

∫ ∞

0
Prob[ξ > u]du

≤
∫ ∞

0
exp

{

1 − (1 − τ)tλu

1280κ2M2

}

du ≤ 1280eκ2M2

(1 − τ)tλ
.

This completes the proof of the desired result.

Remark 3.1 Indeed, from (17) we can have, with probability 1 − δ, that

sup
f ∈Fλ

[
Eλ(f ) − Eλ(fλ) − Ẽ t

λ(f ) + Ẽ t
λ(fλ)

b + Eλ(f ) − Eλ(fλ)

]

≤ 8κM

√
2

λbt

(
3 +

√

log
1

δ

)
.

Selecting b =
[

8κM
(1−τ)

√
2
λt

]2 (
3 +

√

log 1
δ

)2 and arranging terms in the above

estimation, we obtain, with probability 1 − δ, that

Ẽ t
λ(fλ)−Ẽ t

λ(f ) ≤ τ(Eλ(fλ)−Eλ(f ))+
(
128κ2M2

1 − τ

) (
3 +

√

log 1
δ

)2

tλ
, ∀f ∈ Fλ.

(20)

Now we are ready to prove Theorem 5 using Lemma 3.3. In the following, we
use the notation E[ξ |z1, . . . , zt ] to denote the conditional expectation of the random
variable ξ conditioned on {z1, . . . , zt }.
Proof of Theorem 5: Let Ât

λ(ft ) = 1
t−1

∑t−1
j=1 �′(ft (xt , xj ), r(yt , yj ))K(xt ,xj ) +λft .

By the definition of ft+1 = ft − ηtÂt
λ(ft ), we have

E[‖ft+1−fλ‖2K ] = E[‖ft −fλ‖2K ]+η2t E[‖Ât
λ(ft )‖2K ]+2ηtE[〈fλ −ft , Ât

λ(ft )〉K ].
(21)

By Lemma 3.1 and the definition of M , we have

‖Ât
λ(ft )‖K ≤ κM + λ‖ft‖K ≤ 2κM. (22)

Now we estimate the third term on the righthand side of equation (21). The reproduc-
ing property and convexity of �(·, r(y, y′)) imply that the term 〈fλ − ft , Ât

λ(ft )〉K
can be bounded by

1

t − 1

t−1∑

j=1

�′(ft (xt , xj ), r(yt , yj ))(fλ(xt ,xj ) − ft (xt , xj )) + λ〈fλ, ft 〉K − λ‖ft‖2K

≤ 1

t − 1

t−1∑

j=1

�′(ft (xt , xj ), r(yt , yj ))(fλ(xt ,xj ) − ft (xt , xj )) + λ

2
(‖fλ‖2K + ‖ft‖2K) − λ‖ft‖2K

≤ Ê t
λ(fλ) − Ê t

λ(ft ).
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Since ft only depends on the examples zt−1 = {z1, . . . , zt−1}, we have
E
[
Ê t

λ(ft )|z1, . . . , zt−1
] = Ẽ t

λ(ft ). Hence,

E
[
Ê t

λ(fλ) − Ê t
λ(ft )

]=E
[
E
[
Ê t

λ(fλ)− Ê t
λ(ft )|z1,. . ., zt−1

]]=E
[
Ẽ t

λ(fλ)−Ẽ t
λ(ft)

]
.(23)

Applying Lemma 3.3 with τ = 1/2 implies that

E
[
Ẽ t

λ(fλ) − Ẽ t
λ(ft )

] ≤ 1

2
E [Eλ(fλ) − Eλ(ft )] + 2560e(κM)2

λt
.

By Eλ(fλ) − Eλ(ft ) ≤ −λ‖ft − fλ‖2K , the above inequality implies that

E
[
Ẽ t

λ(fλ) − Ẽ t
λ(ft )

] ≤ −λ

2
E
[‖ft − fλ‖2K

]+ 2560e(κM)2

λt
.

Substituting the above estimation and inequality (22) back into (21) yields the desired
result. This completes the proof of the theorem.

The proof of the recursive inequality (11) in Theorem 5 critically depends on
the estimation of the term E

[
Ẽ t

λ(fλ) − Ẽ t
λ(ft )

] − E
[
Eλ(fλ) − Eλ(ft )

]
. This term is

very similar to the well-known sample error in the standard framework of learning
theory [11, 29]. One could use the standard Rademacher complexity approach [4]
to directly estimate this critical term. Indeed, observe that E

[
Ẽ t

λ(fλ) − Ẽ t
λ(ft )

] −
E
[
Eλ(fλ)−Eλ(ft )

] = E
[
Ẽ t (fλ)− Ẽ t (ft )

]−E
[
E(fλ)−E(ft )

] = E
[
E(ft )− Ẽ t (ft )

]
.

Then, one can apply the standard symmetrization technique [3] and get the following
estimation:

E
[
E(ft ) − Ẽ t (ft )

] ≤ E sup
‖f ‖K≤ κ

λ

E
[
E(f ) − Ẽ t (f )

]

≤ 2EEε sup
‖f ‖K≤ κ

λ

1

t − 1

t−1∑

j=1

εj

[
�(f (x̃, xj ), r(ỹ, yj ))

]

≤ 2MEEε sup
‖f ‖K≤ κ

λ

1

t − 1

t−1∑

j=1

εjf (x̃, xj )

= 2MEEε

[
sup

‖f ‖K≤ κ
λ

〈 1

t − 1

t−1∑

j=1

εjK(x̃,xj ), f 〉K
]

≤ 2M2κ

t − 1

√
1

λ
E

⎛

⎝
t−1∑

j=1

K((x̃, xj ), (x̃, xj ))

⎞

⎠

1/2

≤ 2M2κ2

√
1

(t − 1)λ
≤ M2κ2

√
2

tλ
.

This estimation together the above observation means that

E
[
Ẽ t

λ(fλ) − Ẽ t
λ(ft )

] ≤ E
[
Eλ(fλ) − Eλ(ft )

]+ M2κ2

√
2

tλ
.
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Using the above inequality, instead of the more refined estimation (12) in the proof
of Theorem 5, we can have

E
[‖ft+1 − fλ‖2K

] ≤ (
1 − ηtλ

)
E
[‖ft − fλ‖2K

]+ 4M2η2t κ
2 + 2

√
2M2κ2ηt√

tλ
. (24)

We can see the inequality (11) is much better than inequality (24), since the last
term on the righthand side of (24) depends on 1√

t
while the counterpart in (11) only

depends on 1
t
. This improvement comes from the Lemma 3.3 which is obtained by

applying peeling and re-weighting techniques [3, 28] to the strongly convex objective
function Eλ(f ) − Eλ(fλ).

3.2 Proofs of main results

In this subsection, we prove the main results, i.e. Theorems 1, 2 and 3. First of all, by
induction we can easily get from the recursive inequality (11) that, for any t0, T ∈ N

and T > t0, there holds

E
[‖fT +1 − fλ‖2K

] ≤
T∏

t=t0

(
1 − ηtλ

)
E
[‖ft0−fλ‖2K

]+4M2κ2
T∑

t=t0

η2t

T∏

j=t+1

(
1 −ηjλ

)

+ 5120eM2κ2
T∑

t=t0

ηt

λt

T∏

j=t+1

(
1 − ηjλ

)
, (25)

where the conventional notation
∏T

j=T +1

(
1 − ηj λ

2

) = 1 is used.

Proof of Theorem 1 : Our proof mainly follows from [37]. By the assumption (6),
there exists some t0 ∈ N such that ηtλ ≤ 1

2 holds for each t ≥ t0. Fixing such t0, we
estimate three terms on the the right hand side of (25) step by step.

Estimation of term 1: We first estimate the first term on the righthand side of (25),

i.e.
T∏

t=t0

(
1 − ηtλ

)
E
[‖ft0 − fλ‖2K

]
. Since

∑∞
t=t0

ηt = ∞ and 0 < ηtλ < 1 for any

t ≥ t0, we have that
T∏

t=t0

(1 − ηtλ) ≤ exp
(−

T∑

t=t0

ηtλ
) → 0 as T → ∞. Hence, for

any ε > 0, there exists some T1 ∈ N such that, for any T > T1,

T∏

t=t0

(
1 − ηtλ

)
E
[‖ft0 − fλ‖2K

] ≤ ε.

Estimation of term 2: Now we are in a position to estimate the second term
on the righthand side of (25). By the assumption limt→∞ ηt = 0, there
exists some integer tε > t0 such that ηt ≤ λε

2 for each t > tε.
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Then we divide
∑T

t=t0
η2t

T∏

j=t+1

(
1 − ηjλ

)
into the following two parts, i.e.

T∑

t=t0

η2t

T∏

j=t+1

(
1−ηjλ

)= tε∑

t=t0

η2t

T∏

j=t+1

(
1 − ηj λ

)

︸ ︷︷ ︸

I1

+ T∑

t=tε+1

η2t

T∏

j=t+1

(
1−ηj λ

)

︸ ︷︷ ︸

I2

.

Fixing tε, we can find some T2 ∈ N such that for every T ≥ T2, there holds
∑T

j=tε+1 ηj ≥ ∑T2
j=tε+1 ηj ≥ 1

λ
log tε

2λ2ε
. Consequently, for t0 ≤ t ≤ tε, we have

T∏

j=t+1

(
1 − ηjλ

) ≤ exp{−
T∑

j=t+1

ηjλ} ≤ exp{−
T∑

j=tε+1

ηjλ} ≤ 2λ2ε

tε
. Putting this

estimation and the fact that ηtλ ≤ 1/2 for t ≥ t0 together yields the following
bound for I1

I1=
tε∑

t=t0

η2t

T∏

j=t+1

(
1−ηjλ

)≤ 2λ2ε

tε

tε∑

t=t0

η2t ≤ 2λ2ε

tε
× tε × 1

4λ2
= ε

2
.

For I2, we can get

I2 =
T∑

t=tε+1

η2t

T∏

j=t+1

(
1−ηjλ

)≤
T∑

t=tε+1

ηt

λε

2

T∏

j=t+1

(
1 − ηjλ

)

= ε
2

T∑

t=tε+1

⎛

⎝
T∏

j=t+1

(
1 − ηjλ

)−
T∏

j=t

(
1 − ηjλ

)

⎞

⎠

= ε
2

⎛

⎝1 −
T∏

j=tε+1

(1 − ηjλ)

⎞

⎠ ≤ ε
2 ,

where the first inequality holds due to the fact that ηt ≤ λε
2 for each t ≥ tε .

Estimation of term 3: The estimation of the third term on the righthand side of (25)
is similar to that of the second term. To see this, observe that there exists t ′ε ∈ N

such that 1
t

≤ λ2ε
2 when t > t ′ε, rewrite the term

T∑

t=t0

ηt

λt

T∏

j=t+1

(
1 − ηjλ

)
as

t ′ε∑

t=t0

ηt

λt

T∏

j=t+1

(
1 − ηjλ

)

︸ ︷︷ ︸
I3

+
T∑

t=t ′ε+1

ηt

λt

T∏

j=t+1

(
1 − ηjλ

)

︸ ︷︷ ︸
I4

.
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By the assumption that
∑∞

t=2 ηt = ∞, there exists some T3 ∈ N such

that there holds that
T∑

t=t ′ε+1

ηt ≥
T3∑

t=t ′ε+1

ηt ≥ 1

λ
log

t ′ε
λ2t0ε

. That means

T∏

j=t+1

(
1 − ηjλ

) ≤ exp{−
T∑

j=t+1

ηjλ} ≤ exp{−
T∑

j=t ′ε+1

ηjλ} ≤ λ2t0ε

t ′ε
holds for

t0 ≤ t ≤ t ′ε and T ≥ T3. Consequently, I3 can be bounded as

I3 =
t ′ε∑

t=t0

ηt

λt

T∏

j=t+1

(
1 − ηj λ

) ≤ λ2t0ε

t ′ε

t ′ε∑

t=t0

ηt

λt
≤ λ2t0ε

t ′ε
× t ′ε × 1

2λ2t0
= ε

2
.

For I4, since 1
t

≤ λ2ε
2 when t > t ′ε, there holds

I4 =
T∑

t=t ′ε+1

ηt

λt

T∏

j=t+1

(
1 − ηjλ

) ≤ ε
2

T∑

t=t ′ε+1

ηtλ

T∏

j=t+1

(
1 − ηjλ

)

= ε
2

T∑

t=t ′ε+1

⎡

⎣
T∏

j=t+1

(1 − ηjλ) −
T∏

j=t

(1 − ηjλ)

⎤

⎦

= ε
2

[
1 −∏T

j=t ′ε+1(1 − ηjλ)
]

≤ ε
2 .

Combining all the above estimations, for T ≥ max{T1, T2, T3}, we have
that

E
[‖fT +1 − fλ‖2K

] ≤ (1 + 4κ2M2 + 5120eκ2M2)ε.

Since ε > 0 is arbitrary, this completes the proof of Theorem 1.

To derive explicit rates, we need the following technical estimations from [37] and
[27].

Lemma 3.4 For any 0 < ν ≤ 1, t < T , 0 < α ≤ 1, and b > 0, the following
estimations hold true.

(i)
∑T

j=t+1 j−α ≥
{

1
1−α

[(T + 1)1−α − (t + 1)1−α], 0 < α < 1
log(T + 1) − log(t + 1), α = 1.

(ii)
∑T −1

t=1
1

t2α
exp

{
−ν

∑T
j=t+1 j−α

}
le

{
18

νT α + 9T 1−α

(1−α)21−α exp{− ν(1−2α−1)
1−α

(T +1)1−α}, α<1,
8

1−ν
(T + 1)−ν, α = 1.

(iii) e−νx ≤ (
b
νe

)b
x−b.

We are now ready to prove Theorem 2.
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Proof [Proof of Theorem 2] By letting t0 = 2 in inequality (25) we have that

E
[‖fT +1 − fλ‖2K

] ≤
T∏

t=2

(1 − ηtλ) ‖fλ‖2K + 4M2κ2
T∑

t=2

η2t

T∏

j=t+1

(
1 − ηjλ

)

+ 5120eκ2M2
T∑

t=2

ηt

λt

T∏

j=t+1

(
1 − ηjλ

)
. (26)

By the definition of fλ, we know that E(fλ)+ λ
2‖fλ‖2K ≤ E(0)+ λ

2‖0‖2K = 1, which

implies that ‖fλ‖K ≤
√

2
λ
. Taking ηt = 1

λtα
with 0 < α < 1 and by estimation (i) of

Lemma 3.4, we can bound the first part as

T∏

t=2

(1 − ηtλ) ‖fλ‖2K ≤ exp

{

−
T∑

t=2

ηtλ

}

‖fλ‖2K = exp

{

−
T∑

t=2

1

tα

}

‖fλ‖2K

≤ exp

{

− (1 − (2/3)1−α)

(1 − α)
(T + 1)1−α

}
2

λ
. (27)

Applying (iii) of Lemma 3.4 with b = α
1−α

and ν = 1−( 23 )1−α

1−α
yields that

exp

{

− (1 − (2/3)1−α)

(1 − α)
(T + 1)1−α

}

≤
[

α

(1 − (2/3)1−α)e

] α
1−α

T −α.

Putting this estimation into (27) implies that

T∏

t=2

(1 − ηtλ) ‖fλ‖2K ≤
[

α

(1 − (2/3)1−α)e

] α
1−α 2

λT α
. (28)

Since 1
λt

≤ ηt = 1
λtα

, the third part can be bounded by the second part, i.e.

T∑

t=2

ηt

λt

T∏

j=t+1

(
1 − ηjλ

) ≤
T∑

t=2

η2t

T∏

j=t+1

(
1 − ηjλ

)
. (29)

For the second part, we know from estimation (ii) of Lemma 3.4 that

T∑

t=2

η2t

T∏

j=t+1

(
1 − ηjλ

)
=

T∑

t=2

1

λ2t2α

T∏

j=t+1

(
1 − 1

jα

)

≤ 1

λ2

(
18

T α
+ 9T 1−α

(1 − α)21−α
exp

{
− 1 − 2α−1

1 − α
(T + 1)1−α

}
+ 1

T 2α

)

≤ 1

λ2

(
19

T α
+ 9T 1−α

(1 − α)21−α
exp

{
− 1 − 2α−1

1 − α
(T + 1)1−α

})

. (30)
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Applying (iii) of Lemma 3.4 with b = 1
1−α

and ν = 1−2α−1

1−α
implies that

T 1−α exp
{

− (1 − 2α−1)

1 − α
(T + 1)1−α

}
≤
(

1

(1 − 2α−1)e

) 1
1−α

T −α.

Putting the above estimation into (30) implies that

T∑

t=2

η2t

T∏

j=t+1

(
1 − ηjλ

)
≤
(
19 + 9

(1 − α)21−α

( 1

(1 − 2α−1)e

) 1
1−α

) 1

λ2T α
. (31)

Putting (28), (29) and (30) into (26) implies that

E
[‖fT +1 − fλ‖2K

] ≤ C1
1

λ2T α
,

whereC1=
[

2
(

α

(1−(2/3)1−α)e

) α
1−α +4(1+1280e)(κM)2

(
19+ 9

(1−α)21−α

(
1

(1−2α−1)e

) 1
1−α
)]

.

This completes the proof of the theorem.

Proof of Theorem 3 If we take the step size as ηt = 1
tλ

in inequality (26), we have

E
[‖fT +1 − fλ‖2K

] ≤
T∏

t=2

(
1 − ηtλ

)
E
[‖fλ‖2K

]+ 4M2κ2
T∑

t=2

η2t

T∏

j=t+1

(
1 − ηjλ

)

+ 5120eM2κ2
T∑

t=2

ηt

λt

T∏

j=t+1

(
1 − ηjλ

)

≤
T∏

t=2

(
1 − 1

t

)
‖fλ‖2K + 4(1 + 1280e)M2κ2

T∑

t=2

1

t2λ2

T∏

j=t+1

(
1 − 1

j

)

= 1
T

‖fλ‖2K + 4(1+1280e)M2κ2

T λ2

T∑

t=2

1

t

≤ 2
T λ

+ 4(1 + 1280e)M2κ2 log T

T λ2
≤ [2 + 4(1 + 1280e)M2κ2] log T

T λ2
.

This completes the proof of the theorem by taking C2 = [2 + 4(1 + 1280e)M2κ2].

We turn our attention to the proof of Lemma 2.1 and Corollary 4.

Proof of Lemma 2.1 We rewrite the generalization error as

E(f )=
∫∫

(1 − yy′f (x, x′))+dρ(x, y)dρ(x ′, y′)=
∫∫

L(f (x, x′))dρX(x)dρX(x′).

Here,

L(t) =
∫∫

(1 − yy′t)+dρ(y|x)dρ(y′|x′)

= (1 − t)+Prob(yy′ = 1|x, x ′) + (1 + t)+Prob(yy′ = −1|x, x′)
= (1 − t)+[η(x)η(x ′) + (1 − η(x))(1 − η(x′))] + (1 + t)+[η(x)(1 − η(x′))

+η(x′)(1 − η(x))].
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When t = fc(x, x′) ∈ {−1, +1}, one can easily see that L(fc(x, x′)) =
2Prob(yy′ �= fc(x, x′)|x, x′). And from the definition of fc, we have
L(fc(x, x′)) ≤ 2Prob(yy′ = s|x, x′) for any s ∈ {−1, +1}.

Case 1: If t ≥ 1, we have (1 − t)+ = 0 and

L(t) = (1 + t)[η(x)(1 − η(x′)) + η(x′)(1 − η(x))]
≥ 2[η(x)(1 − η(x′)) + η(x′)(1 − η(x))] = 2Prob(yy′ = −1|x, x′) ≥ L(fc(x, x′)).

Case 2: If t ≤ −1, we have (1 + t)+ = 0 and

L(t) = (1 − t)[η(x)η(x′) + (1 − η(x))(1 − η(x′))] ≥ 2[η(x)η(x ′)
+ (1 − η(x))(1 − η(x′))] ≥ L(fc(x, x′)).

Case 3: If −1 < t < 1, we have

L(t) =(1− t)[η(x)η(x′) + (1−η(x))(1−η(x′))]+(1+t)[η(x)(1−η(x′)+η(x′)(1−η(x)))]
≥ (1 − t)

1

2
L(fc(x, x′)) + (1 + t)

1

2
L(fc(x, x′)) = L(fc(x, x′)).

Hence, we have L(t) ≥ L(fc(x, x′)) for all t ∈ R, it follows that

E(f ) =
∫∫

L(f (x, x ′))dρX(x)dρX(x′) ≥
∫∫

L(fc(x, x′))dρXd(x)ρX(x′) = E(fc).

This completes the proof of the lemma.

We are now ready to give the proof of Corollary 4.

Proof of Corollary 4 Observe that

E(fT +1) − E(fc) ≤
[
E(fT +1) − E(fλ)

]
+
[
E(fλ) − E(fc)

]
≤
[
E(fT +1) − E(fλ)

]
+ D(λ)

≤ κ‖fT +1 − fλ‖K + D(λ). (32)

We know from Theorem 3 that, for any 0 < λ ≤ 1, that

E
[‖fT +1 − fλ‖K

] ≤ (
E
[‖fT +1 − fλ‖2K

]) 1
2 = O

( log T

λ
√

T

)
.

Putting this estimation with D(λ) = O
(
λβ
)
, from (32) we obtain that

E
[
E(fT +1) − E(fc)

] = O
( log T

λ
√

T
+ λβ

)
.

Choosing λ = ( log2 T
T

) 1
2(1+β) yields the desired result.

This paper focuses on the convergence of the individual iterate ft in the expec-
tation form. We end this section with a comment on describing the difficulties of
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deriving the convergence of ‖fT +1 − fλ‖K‖2K with high confidence. To this end,
let

Ãt
λ(ft ) = 1

t − 1

t−1∑

j=1

∫

Z

�′(ft (x, xj ), r(y, yj ))K(x,xj )dρ(x, y) + λft ,

and we know that

〈fλ − ft , Ãt
λ(ft )〉K ≤ Ẽ t

λ(fλ) − Ẽ t
λ(ft ). (33)

Combining the above estimation, we can see, by the definition of ft+1 and (22), that
‖ft+1 − fλ‖2K can be bounded by

‖ft − fλ‖2K + 4κ2M2η2t + 2ηt 〈fλ − ft , Ât
λ(ft ) − Ãt

λ(ft )〉K + 2ηt (Ẽ t
λ(fλ) − Ẽ t

λ(ft ))

≤ ‖ft − fλ‖2K + 4κ2M2η2t + 2ηt 〈fλ − ft , Ât
λ(ft ) − Ãt

λ(ft )〉K

+ηt (Eλ(fλ) − Eλ(ft )) + 512κ2M2

(

3 +
√

log
1

δ

)2

/tλ

≤ (1 − ηtλ)‖ft − fλ‖2K + 2ηt 〈fλ − ft , Ât
λ(ft ) − Ãt

λ(ft )〉K + 4κ2M2

⎡

⎢
⎢
⎢
⎣

η2t +
128

(

3 +
√

log 1
δ

)2

tλ

⎤

⎥
⎥
⎥
⎦

,

where the second to the last inequality used (20) with τ = 1
2 , the fact that ft ∈ Fλ

for any t , and Eλ(ft ) − Eλ(fλ) ≥ λ‖ft − fλ‖2K . Consequently,

‖fT +1 − fλ‖2K ≤
T∏

t=2

(1 − ηtλ)‖fλ‖2K + 4κ2M2
T∑

j=2

T∏

k=j+1

(1 − ηkλ)

⎡

⎢
⎢
⎢
⎣

η2j +
128

(

3 +
√

log 1
δ

)2

ηj

jλ

⎤

⎥
⎥
⎥
⎦

+ 2
T∑

j=2

T∏

k=j+1

(1 − ηkλ)ηj 〈fλ − fj , Âj
λ(fj ) − Ãj

λ(fj )〉K. (34)

By choosing ηj = 1
jλ
, the first two terms on the right hand side of (34) can achieve

the fast convergence rate O(
log T

λ2T
) since

T∏

t=2

(1 − ηtλ)‖fλ‖2K = 1

T
‖fλ‖2K ≤ 1

T λ
,

and

T∑

j=2

T∏

k=j+1

(1− ηkλ)
[
η2j +

128
(
3 +

√

log 1
δ

)2
ηj

jλ

] ≤
1 + 128

(
3 +

√

log 1
δ

)2

λ2

( log T

T

)
.

Notice that {〈fλ − fj , Âj
λ(fj ) − Ãj

λ(fj )〉K : j ∈ N} is a martingale difference
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sequence. Choosing ηj = 1
jλ

and directly applying the Pinelis-Bernstein inequality
[23] to this martingale difference sequence implies that

T∑

j=2

T∏

k=j+1

(1 − ηkλ)ηj 〈fλ − fj , Âj
λ(fj ) − Ãj

λ(fj )〉K

= 1

T λ

T∑

j=2

〈fλ − fj , Âj
λ(fj ) − Ãj

λ(fj )〉K = O(
1√
T λ2

).

From the above arguments, we now clearly see that the critical hurdle to get the
fast convergence rate for ‖fT +1 − fλ‖2K with high probability comes from the

term
∑T

j=2
∏T

k=j+1(1 − ηkλ)ηj 〈fλ − fj , Âj
λ(fj ) − Ãj

λ(fj )〉K. We can get the
fast convergence rate in the form of expectation since the expectation of this term
disappears.

4 Conclusion

In this paper, we first introduced an online learning algorithm (2) with pairwise loss
function with focus on the hinge loss for the sake of brevity. Our analysis can be
easily extended to other general pairwise loss functions. Under certain conditions on
step sizes, we established general convergence results and derived the learning rate.

There are several possible directions for future work. Firstly, in this paper we con-
sider the performance of the last iterate fT +1 of algorithm (2). It would be interesting
to investigate the performance of the average of all iterates (f1 + f2 + · · · + fT )/T

or the average of the α proportion iterates with 0 < α ≤ 1, it is expected to get the
optimal rate by averaging scheme. For more discussion about the averaging scheme
for online learning algorithms associated with univariate loss functions, see [26] and
references therein. Secondly, our results only indicates a sub-linear convergence rate,
it is unknown how to get an exponential convergence rate under certain conditions
on the step sizes and the RKHSHK. Thirdly, our analysis requires the regularization
parameter to be strictly positive, i.e. λ > 0. We know from [36], for the least-square
loss in the univariate setting, that convergence results also can be established even
when λ = 0. However, it still remains a challenging question to us on how to establish
similar convergence results for algorithm (2) with λ = 0.
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10. Clémencon, S., Lugosi, G., Vayatis, N.: Ranking and empirical minimization of U-statistics. Ann. of
Stat. 36, 844–874 (2008)

11. Cucker, F., Zhou, D.-X.: Learning Theory: An ApproximationTheory Viewpoint. Cambridge Univesity
Press (2007)

12. Davis, J., Kulis, B., Jain, P., Sra, S., Dhillon, I.: Information-theoretic metric learning. In: Proceedings
of the 24th International Conference on Machine Learning (ICML) (2007)

13. Fan, J., Hu, T., Wu, Q., Zhou, D.X.: Consistency analysis of an empirical minimum error
entropy algorithm, Applied and Computational Harmonic Analysis 41(1), 161–189 (2016).
doi:10.1016/j.acha.2014.12.005

14. Guo, Z.C., Ying, Y.: Guaranteed classification via regularized similarity learning. Neural Comput. 26,
497–522 (2014)

15. Hu, T., Fan, J., Wu, Q., Zhou, D.X.: Regularization schemes for minimum error entropy principle.
Anal. Appl. 13, 437–455 (2015)

16. Kar, P., Sriperumbudur, B., Jain, P., Karnick, H.: On the generalization ability of online learning algo-
rithms for pairwise loss functions. In: Proceedings of the 30th International Conference on Machine
Learning (ICML) (2013)

17. Jin, R., Wang, S., Zhou, Y.: Regularized distance metric learning: theory and algorithm. In: Advances
in Neural Information Processing Systems (NIPS) (2009)

18. Ledoux, M., Talagrand, M.: Probability in Banach Spaces: isoperimetry and processes. Springer
(1991)

19. McDiarmid, C.: Surveys in Combinatorics, Chapter on the methods of bounded differences, pp. 148–
188. Cambridge University Press, Cambridge (UK) (1989)

20. Meir, R., Zhang, T.: Generalization error bounds for Bayesian mixture algorithms. J. Mach. Learn.
Res. 4, 839–860 (2003)

21. Mukherjee, S., Wu, Q.: Estimation of gradients and coordinate covariation in classification. J. Mach.
Learn. Res. 7, 2481–2514 (2006)

22. Mukherjee, S., Zhou, D.X.: Learning coordinate covariances via gradients. J. Mach. Learn. Res. 7,
519–549 (2006)

23. Pinelis, I.: Optimum bounds for the distributions of martingales in banach spaces. Ann. Prob. 22,
1679–1706 (1994)

24. Rakhlin, A., Shamir, O., Sridharan, K.: Making gradient descent optimal for strongly convex stochas-
tic optimization. In: Proceedings of the 29th International Conference on Machine Learning (ICML)
(2012)

25. Rejchel, W.: On ranking and generalization bounds. J. Mach. Learn. Res. 13, 1373–1392 (2012)
26. Shamir, O., Zhang, T.: Stochastic gradient descent for non-smooth optimization: convergence results

and optimal averaging schemes. In: Proceedings of the 30th International Conference on Machine
Learning (ICML) (2013)

27. Smale, S., Yao, Y.: Online learning algorithms. Found. Comput. Math. 6, 145–170 (2006)
28. Sridharan, K., Srebro, N., Shalev-Shwartz, S.: Fast rates for regularized objectives Advances in Neural

Information Processing Systems (NIPS) (2008)
29. Steinwart, I., Christmann, A.: Support Vector Machines. Springer-Verlag, New York (2008)
30. Weinberger, K.Q., Blitzer, J., Saul, L.: Distance metric learning for large margin nearest neighbour

classification. In: Advances in Neural Information Processing Systems (NIPS) (2005)

http://dx.doi.org/10.1016/j.acha.2014.12.005


Z.-C. Guo et al.

31. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1), 37–57 (1985)
32. Wang, Y., Khardon, R., Pechyony, D., Jones, R.: Generalization bounds for online learning algorithms

with pairwise loss functions. COLT (2012)
33. Wang, Y., Khardon, R., Pechyony, D., Jones, R.: Online learning with pairwise loss functions. ArXiv

Preprint (2013). arXiv:1301.5332
34. Wu, Q., Zhou, D.X.: Analysis of support vector machine classification. J. Comput. Anal. Appl. 8(2),

99–119 (2006)
35. Ying, Y., Li, P.: Distance metric learning with eigenvalue optimization. J. Mach. Learn. Res. 13, 1–26

(2012)
36. Ying, Y., Pontil, M.: Online gradient descent algorithms. Found. Comput. Math. 5, 561–596 (2008)
37. Ying, Y., Zhou, D.X.: Online regularized classification algorithms. IEEE Trans. Inf. Theory 11, 4775–

4788 (2006)
38. Zhao, P., Hoi, S.C.H., Jin, R., Yang, T.: Online AUC Maximization. In: Proceedings of the 28th

International Conference on Machine Learning (ICML) (2011)
39. Zhang, T.: Statistical behavior and consistency of classification methods based on convex risk

minimization. Ann. of Stat. 32, 56–85 (2004)

http://arxiv.org/abs/1301.5332

	Online regularized learning with pairwise loss functions
	Abstract
	Introduction
	Learning algorithm and main results
	Related work and discussion

	Technical results and proofs
	General technical results
	Proofs of main results

	Conclusion
	Acknowledgments
	References


