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Abstract6

Online pairwise learning algorithms with general convex loss functions without regu-7

larization in a Reproducing Kernel Hilbert Space (RKHS) are investigated. Under mild8

conditions on loss functions and the RKHS, upper bounds for the expected excess gener-9

alization error are derived in terms of the approximation error when the stepsize sequence10

decays polynomially. In particular, for Lipschitz loss functions such as the hinge loss, the11

logistic loss and the absolute-value loss, the bounds can be of order O(T− 1
3 log T ) after12

T iterations, while for the least squares loss, the bounds can be of order O(T− 1
4 log T ).13

In comparison with previous works for these algorithms, a broader family of convex loss14

functions is studied here, and refined upper bounds are obtained.15

Keywords: Learning theory; Online Learning; Reproducing kernel Hilbert space;16

Pairwise learning17

1 Introduction18

Many classical learning tasks can be modeled as learning a good estimator or predictor19

f : X → Y based on an observed dataset {(xt, yt)}Tt=1 of input-output samples from X × Y ,20

where X is an input space and Y ⊆ R an output space. Learning algorithms are often21

implemented by minimizing 1
T

∑T
t=1 V (yt, f(xt)) over a hypothesis space of functions in var-22

ious ways including regularization schemes [26]. Here V : R2 → R+ is a loss function used23

for measuring the performance of a predictor f . It induces a local error V (y, f(x)) over an24

input-output sample (x, y) ∈ X × Y . For non-parametric regression with Y = R, the least25

squares loss function V (y, a) = (y − a)2 is often used and, for an input x ∈ X and an esti-26

mator f , the induced local error V (y, f(x)) = (y − f(x))2 measures how well the predicted27

value f(x) approximates the output value y ∈ R. For binary classification with Y = {1,−1}28

consisting of the two labels corresponding to the two classes, the misclassification loss func-29

tion V (y, a) = χ(−∞,0)(ya) generated by the characteristic function of the interval (−∞, 0)30

† The work described in this paper is supported partially by the Research Grants Council of Hong Kong
[Project No. CityU 104113]. The corresponding author is Yunwen Lei. Junhong Lin is now within the LCSL,
MIT & Istituto Italiano di Tecnologia, Cambridge, MA 02139, USA
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is a natural choice, and the induced local error V (y, f(x)) = χ(−∞,0)(yf(x)) over a sample31

(x, y) ∈ X × Y equals 1 when the sign of f(x) and y correspond to the two different la-32

bels in Y (that is, yf(x) < 0), while V (y, f(x)) = 0 when they correspond to a same label33

with yf(x) ≥ 0. But the characteristic function χ(−∞,0) is not convex, and the optimization34

problems involved in the related learning algorithms are not convex. For designing efficient35

learning algorithms, χ(−∞,0) may be replaced by a convex function φ : R → R+, leading to36

convex optimization problems involving the local error V (y, f(x)) = φ(yf(x)). One choice37

of φ is the hinge loss φh(v) = max{1 − v, 0} used in the classical support vector machines38

for solving binary classification problems [26]. The above learning framework has been well39

developed within the last two decades [26, 9]. It might be categorized as “pointwise learning”,40

as the local error V (y, f(x)) takes only one sample point (x, y) ∈ X × Y into account.41

In this paper, we study another important family of learning problems categorized as42

“pairwise learning” in which the local error takes a pair {(x, y), (x′, y′)} of two samples from43

X × Y into account. Its learning tasks include ranking [1, 8], similarity and metric learning44

[5, 28], AUC maximization [34], and gradient learning [20, 30, 19]. The goal of pairwise45

learning is to learn a good predictor f : X2 → R predicting a value f(x, x′) ∈ R for each46

input pair (x, x′) ∈ X2 according to various tasks. To measure the learning performance of a47

predictor f , we use a loss function V : R2 → R+ to induce the local error V (r(y, y′), f(x, x′))48

over two input-output samples (x, y), (x′, y′) ∈ X × Y , where r : Y × Y → R is a function,49

called reducing function, chosen according to the learning task. The reducing function r is an50

essential concept making pairwise learning different from pointwise learning. We demonstrate51

how to choose the reducing function r by the following examples.52

1. For the least squares regression with Y = R and V (y, a) = (y − a)2, a sample (x, y) is53

drawn from a probability measure and the expected value of y ∈ R given x ∈ X equals54

f∗(x), the value of the conditional mean (regression) function f∗ at x. So y − y′ =55

f∗(x) − f∗(x′) in expectation and we choose the reducing function r : Y × Y → R as56

the output value difference r(y, y′) = y− y′. Then the local error V (r(y, y′), f(x, x′)) =57

(y − y′ − f(x, x′))2 measures how well the predicted value f(x, x′) for an input pair58

(x, x′) approximates f∗(x)− f∗(x′) via the output value difference y − y′.59

2. For metric learning in binary classification with Y = {1,−1}, we aim to learn a metric60

f such that a pair (x, x′) of inputs (objects) from the same class (y = y′) are close to61

each other while a pair from different classes (y 6= y′) have a large distance f(x, x′).62

A typical choice of the reducing function r : Y × Y → R is given by r(y, y′) = 163

if y = y′ and −1 otherwise [5]. The local error induced by the convex loss function64

V (y, a) = max{0, 1+ya} is V (r(y, y′), f(x, x′)) = max{0, 1+r(y, y′)f(x, x′)}. It gives a65

large local error 1 + f(x, x′) if the distance f(x, x′) between the input pair (x, x′) from66

the same class (y = y′) is large.67

3. For ranking in a regression framework with Y = R, we aim to learn a good ordering f68

between objects (inputs) based on their observed features such that f(x, x′) < 0 if x is69

preferred over x′ meaning that the ranking labels satisfy y < y′. A typical choice [21]70

of the reducing function r : Y × Y → R is given by r(y, y′) = sign(y − y′), the sign71
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of y − y′. Then the local error induced by the hinge loss φh is V (r(y, y′), f(x, x′)) =72

φ(sign(y − y′)f(x, x′)).73

Batch learning and online learning are two kinds of learning algorithms. The former uses74

an entire dataset to perform learning tasks, while the latter uses the dataset in a stream75

way. For batch learning algorithms in the pairwise learning framework, theoretical error and76

robustness analysis has been carried out in [1, 8, 21, 5, 7]. One challenge in conducting analysis77

in pairwise learning is that pairs of training samples are not independent. For example, given78

the independently and identically distributed (i.i.d.) samples {zt = (xt, yt)}Tt=1, a batch79

algorithm for pairwise learning possibly involves a target function80

T (T − 1)

2

∑
1≤i<j≤T

V (r(yi, yj), f(xi, xj)) + pen(f, λ), (1.1)

where pen(f, λ) ≥ 0 is some regularization term used to avoid overfitting. In this case, local81

errors V (r(yi, yj), f(xi, xj)) and V (r(yi, yj′), f(xi, xj′)) are indeed dependent. Thus, standard82

techniques for classification and regression cannot be directly applied, and new tools such as83

U-statistics [8] or algorithmic stability [1] are necessary for the analysis.84

In spite of their good theoretical guarantees, batch algorithms for pairwise learning may85

be difficult to implement for large-scale learning problems in practice. Indeed, even for the86

simpler case of univariate learning, the computational complexity of batch algorithms with87

many loss functions is of order O(T 3). Moreover, batch algorithms for pairwise learning suffer88

from extra computational burden of optimizing an objective defined over O(T 2) possible89

sample pairs.90

In practical applications, online learning may be more favorable, due to its scalability91

to large datasets and applicability to situations where the samples are collected sequentially.92

Theoretical results for online learning in classification and regression have been well developed93

(see for example [6, 24, 31, 2, 22, 18] and references therein), but there is relatively little work94

for online learning in pairwise learning. Recent research of this direction can be found in95

[15, 27, 32]. In particular, online pairwise learning in a linear space was investigated in96

[15, 27], and convergence results were established for the average of the iterates under the97

assumption of uniform boundedness of the loss function, with a rate O(1/
√
T ) in the general98

convex case, or a rate O(1/T ) in the strongly convex case. Online pairwise learning in a RKHS99

with the least squares loss was studied in [32] where bounds in probability were derived for100

the excess generalization error.101

In this paper, we improve the analysis of online pairwise learning (see Algorithm 1 in102

the next section) in a RKHS with general convex loss functions. Our main purpose is to103

develop convergence results for such learning algorithms using polynomially decaying stepsize104

sequences. Unlike [15, 27], we do not assume that the iterates are restricted to a bounded105

domain or the loss function is strongly convex. In particular, we will provide bounds for106

the expected excess generalization error, under a mild condition on approximation errors107

and an increment condition on the loss. For Lipschitz loss functions such as the hinge loss108

and the logistic loss, our bounds can be of order O(T−
1
3 log T ), while for the least squares109

loss, our bounds can be of order O(T−
1
4 log T ). For general convex loss functions, previous110
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error analysis techniques dealing with the least squares loss in [32], which rely on integral111

operators, do not apply and are replaced by tools from convex analysis and Rademacher112

complexity. The key to our proof is an error decomposition, which enables us to study the113

weighted excess generalization error in terms of the weighted average and the moving weighted114

average. The novelty lies in an estimate of the differences between partial and generalization115

errors of the learning sequence. We shall establish bounds for the learning sequence using116

tools from convex analysis, and give uniform bounds for the differences between partial and117

full generalization errors over any given ball using Rademacher complexity. Our methods118

may be applied to pairwise learning with non-convex loss functions. In particular, it would119

be interesting to extend our methods to online learning or gradient descent methods for a120

minimum error entropy principle [10, 14].121

2 Main Results with Discussions122

In this section, after stating our pairwise learning problems and basic assumptions, we present123

our main results with some simulations and discussions. Proofs are postponed till the next124

section.125

Let the input space X be a separable metric space and ρ be a Borel probability measure126

on Z := X × Y.127

For a predictor f : X2 → R, we use a loss function V : R2 → R+ and a reducing function
r : Y × Y → R to give the local error V (r(y, y′), f(x, x′)) for z = (x, y), z′ = (x′, y′) ∈ Z. The
generalization error or risk E = EV associated with the loss function V is defined as

E(f) =

∫
Z

∫
Z
V (r(y, y′), f(x, x′))dρ(z)dρ(z′).

We assume that there exists at least one minimizer fVρ of the generalization error E(f), among128

all measurable functions f : X2 → R. The goal of pairwise learning is to learn fVρ from the129

sample set S = {zt = (xt, yt)}Tt=1 of size T ∈ N. Throughout this paper, we assume that the130

samples are independently drawn according to ρ.131

Our learning algorithm is a kernel method, where a RKHS is our hypothesis space. Let132

K: X2×X2 → R be a Mercer Kernel, i.e., a continuous, symmetric and positive semi-definite133

kernel. The kernel K defines the RKHS (HK , ‖ · ‖K) as the completion of the linear span of134

the set {K(x,x′)(·) := K((x, x′), (·, ·)) : (x, x′) ∈ X2} with respect to an inner product 〈, 〉K135

satisfying the reproducing property: i.e., 〈K(x,x′), g〉K = g(x, x′) for any (x, x′) ∈ X2 and136

g ∈ HK .137

We assume in this paper that V is convex with respect to the second variable. That is, for138

any fixed y ∈ R, the univariate function V (y, ·) on R is convex, hence its left-hand derivative139

V ′−(y, f) exists at every f ∈ R and is non-decreasing.140

The online pairwise learning algorithm considered in this paper is as follows.141

Algorithm 1. The online pairwise learning algorithm associated with the loss function V142
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and the kernel K is defined by f1 = f2 = 0 and143

ft+1 = ft −
ηt
t− 1

t−1∑
j=1

V ′−(r(yt, yj), ft(xt, xj))K(xt,xj), t = 2, . . . , T, (2.1)

where {ηt > 0}t is a step size sequence.144

The main purpose of this paper is to estimate the expected excess generalization error145

E[E(fT )− E(fVρ )]. To this end, we shall make the following assumptions.146

Assumption 2.1. We assume147

|V |0 := sup
y,y′∈Y

V (r(y, y′), 0) <∞ (2.2)

and an increment condition for the left-hand derivative V ′−(y, ·) that for some q ≥ 0 and148

constant cq > 0, there holds149 ∣∣V ′−(r(y, y′), f)
∣∣ ≤ cq(1 + |f |q), ∀f ∈ R, y, y′ ∈ Y. (2.3)

We assume the kernel to be bounded with150

κ = max

(
sup

x,x′∈X

√
K((x, x′), (x, x′)), 1

)
<∞. (2.4)

Assumption (2.2) automatically holds for loss functions widely used for classification,151

where V takes the form V (y, f) = φ(−yf) with φ : R → R+ being a convex function,152

including the hinge loss φh, the exponential loss φ(v) = exp(−v) and the logistic loss φ(v) =153

log(1 + exp(−v)). Assumption (2.2) is equivalent to the boundedness assumption on the154

output space Y for r(y, y′) = y − y′ and loss functions of the form V (y, f) = φ(y − f) for155

regression with lim|y|→∞ φ(y) = ∞, including the p-norm absolute distance loss φ(y) = |y|p156

with p ≥ 1. Note that (2.2) may also hold for the case that Y is not bounded, e.g., the ranking157

problems with r(y, y′) = sign(y−y′). The increment condition on loss functions (2.3) and the158

boundness assumption on the kernel are quite common in learning theory. For specific loss159

functions, one can easily compute the constants q and cq in (2.3). For example, if the loss160

function is the hinge loss V (y, f) = φh(yf), we know [25] that (2.3) is satisfied with q = 0161

and cq = supy,y′∈Y |r(y, y′)|, and in this case |V |0 = 1.162

We also need a notion of approximation error to state our main results.163

Definition 2.2. The approximation error associated with the tripe (ρ, V,K) is defined by164

D(λ) = inf
f∈HK

{
E(f)− E(fVρ ) + λ‖f‖2K

}
, ∀λ > 0. (2.5)

Our main result of this paper is stated as follows.165
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Theorem 2.3. Under Assumption 2.1, let {ηt+1 = η1t
−θ}t∈N with q

q+1 ≤ θ < 1 and η1166

satisfying167

0 < η1 ≤ min

{ √
1− θ

2
√

2cqκ(κ+ 1)q
,

1− θ
4|V |0

}
. (2.6)

Then the sequence {ft}t generated by Algorithm 1 satisfies

Ez1,··· ,zT
{
E(fT )− E(fVρ )

}
≤ C̃0D((T − 1)θ−1) + C̃1ΛT−1,

where ΛT−1 is the quantity defined by168

ΛT−1 =

{
(T − 1)−(1−θ), when θ > q+2

q+3 ,

(T − 1)−
qθ+θ−q

2 log(eT ), when θ ≤ q+2
q+3 ,

(2.7)

and C̃0 and C̃1 are constants independent of T (given explicitly in the proof).169

To state explicit convergence rates, we need the following assumption for the decay of the170

approximation error.171

Assumption 2.4. Assume that for some β ∈ (0, 1] and cβ > 0, the approximation error172

satisfies173

D(λ) ≤ cβλβ, ∀λ > 0. (2.8)

The assumption (2.8) on the approximation error is independent of the samples, and174

measures the approximation ability of the space HK to fVρ with respect to (ρ, V ). It is175

standard in learning theory both in pairwise [32] and pointwise learning [25, 29, 11]. Note176

that in the ideal case with fVρ ∈ HK , condition (2.8) always holds with β = 1 and cβ ≤ ‖fVρ ‖2K .177

We now have the following corollary, which follows directly from Theorem 2.3.178

Corollary 2.5. Under the assumptions and notations of Theorem 2.3, and Assumption 2.4,179

we have180

Ez1,··· ,zT
{
E(fT )− E(fVρ )

}
= O(T (θ−1)β + ΛT ). (2.9)

In particular, we have181

(I) for θ = q+2
q+3 ,

Ez1,··· ,zT
{
E(fT )− E(fVρ )

}
= O(T

− β
q+3 log T ).

(II) for θ = q+2β
q+1+2β ,

Ez1,··· ,zT
{
E(fT )− E(fVρ )

}
= O(T

− β
q+1+2β log T ).

The above result gives bounds on the expected excess generalization error, where the182

general convergence rate in (2.9) depends on three parameters: q, β, and θ. In general, it is183

easy to compute the increment parameter q for a given loss function, whereas the parameter184

β is unknown. Given only the growth parameter q, Part (I) of Corollary 2.5 suggests that185
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the optimal convergence rate is achieved by setting θ = q+2
q+3 . If furthermore, the parameter186

β is provided, the optimal convergence rate is achieved by setting θ = q+2β
q+1+2β .187

Specifying the loss function in the above results, we have the following convergence rates188

with the hinge loss and the least squares loss.189

Corollary 2.6 (Hinge loss). Let the loss function V (y, a) be given with the hinge loss as190

V (y, a) = φh(ya). Assume (2.4), (2.8) and M := supy,y′∈Y |r(y, y′)| < ∞. Choose {ηt+1 =191

η1t
−θ}t∈N with η1 satisfying (2.6), where q = 0, cq = M and |V |0 = 1. Then for the sequence192

{ft}t generated by Algorithm 1, we have the following convergence rates.193

(I) If θ = 2
3 , then

Ez1,··· ,zT
{
E(fT )− E(fVρ )

}
= O

(
T−

β
3 log T

)
.

Specially, if β = 1, i.e., fVρ ∈ HK , then the upper bound is of order O
(
T−

1
3 log T

)
.194

(II) If θ = 2β
2β+1 , then

Ez1,··· ,zT
{
E(fT )− E(fVρ )

}
= O

(
T
− β

2β+1 log T
)
.

Corollary 2.7 (Least squares loss). Let V be given by the least squares loss as V (y, a) =195

(y − a)2. Assume (2.4), (2.8) and M := 2 max
(

supy,y′∈Y |r(y, y′)|, 1
)
<∞. Choose {ηt+1 =196

η1t
−θ}t∈N with η1 satisfying (2.6), where q = 1, cq = M and |V |0 = supy,y′∈Y (r(y, y′))2. Then197

for the sequence {ft}t generated by Algorithm 1, we have the following convergence rates.198

(I) If θ = 3
4 , then

Ez1,··· ,zT
{
E(fT )− E(fVρ )

}
= O

(
T−

β
4 log T

)
.

Specially, if β = 1, i.e., fVρ ∈ HK , then the upper bound is of order O
(
T−

1
4 log T

)
.199

(II) If θ = 2β+1
2β+2 , then

Ez1,··· ,zT
{
E(fT )− E(fVρ )

}
= O

(
T
− β

2β+2 log T
)
.

Simulations. We perform simulation experiments here to illustrate the derived convergence200

rates with polynomial decaying stepsizes. We consider the ranking problem with the loss201

function V (y, a) given by the hinge loss as V (y, a) = φh(ya) and the reducing function202

r(y, y′) = sign(y− y′). We consider the Boston housing dataset [13], which has 506 examples203

and 13 features, including per capita crime rate by town, weighted distances to five Boston204

employment centres and average number of rooms per dwelling. We wish to predict the205

ordering based on values of houses and consider linear ranking rules with K((x, x′), (u, u′)) =206

(x − x′)>(u − u′) for x, x′, u, u′ ∈ R13. Here x> denotes the transpose of x. Let ρ be the207

uniform distribution on the 506 examples in the Boston housing dataset. We define the208

ranking error of a predictor f : X ×X → R by L(f) = E[sign(y − y′)f(x, x′) < 0]. We apply209
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Figure 1: The behavior of Algorithm 1 on the Boston housing dataset. Left: ranking er-
rors versus different stepsize sequences, right: generalization errors versus different stepsize
sequences.

Algorithm 1 with ηt = (t− 1)−θ and θ ∈ {0, 1, 23}. We repeat the experiments 400 times and210

report the average ranking errors and average generalization errors. Figure 1 illustrates the211

behavior of Algorithm 1 with three different stepsize sequences. It shows that the algorithm212

with polynomial decaying stepsize sequence with θ = 2
3 performs better than that with the213

constant stepsize sequence ηt ≡ 1 and the sequence with θ = 1. This is consistent with our214

theoretical results in Corollary 2.6.215

Discussions. As mentioned before, online pairwise learning involves non-i.i.d. sample pairs.216

Thus, the analysis for pairwise learning is more challenging, in contrast with that for the on-217

line pointwise learning [6, 24, 31, 2, 22, 18]. With the step size ηt = η1t
− β
β+1 , the convergence218

rate O(T
− β
β+1 log T ) was established in [18] for the online pointwise learning, which is com-219

parable to the convergence rate for batch learning in the pointwise setting. The convergence220

rate we derived in Corollary 2.5 for the online pairwise learning is of order O(T
− β

2β+1+q log T ).221

This is due to an essential statistical difference between these two families of learning al-222

gorithms: while the online pointwise learning uses unbiased estimators of the true gradi-223

ents in the learning process, the randomized gradient 1
t−1
∑t−1

j=1 V
′
−(r(yt, yj), ft(xt, xj))K(xt,xj)224

used in the online pairwise learning is a biased estimator of the true gradient
∫
Z

∫
Z V

′
−(y −225

y′, ft(x, x
′))K(x,x′)dρ(z)dρ(z′). We overcome this obstacle by applying the tool of Rademacher226

complexity to control the difference between partial generalization errors and generalization227

errors, resulting in, however, an additional term that dominates the upper bound in Propo-228

sition 3.6.229

In what follows, we compare our work with existing results on online algorithms for pair-230

wise learning. We first compare our work with [15, 27], where the online-to-batch conversion231

bounds for projected online pairwise learning algorithms in Euclidean spaces were provided.232
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Assuming that fVρ ∈ Rd is in the projected-bounded domain, upper bounds on the excess233

generalization error of order O(T−
1
2 ) were presented in [15] for the average iterates. In con-234

trast, Algorithm 1 does not have any additional projection step and is implemented in the235

unconstrained setting on RKHSs including the Euclidean spaces. Besides, our bounds are s-236

tated in a more general setting for the last iterates, involving approximation errors. It should237

be mentioned that convergence rates O(T−
1
2 log T ) can be achieved by our analysis for the238

pairwise learning setting if an additional projection is performed at each iteration and β = 1.239

Finally, we compare our results with the existing work in [32, 33, 12]. Algorithm 1 with kernel240

methods was studied in [32] for the least squares loss, and in [33] for 1-activating loss V , i.e.,241

loss function which is differentiable and satisfies242

|V ′(y, f)− V ′(y, g)| ≤ L|f − g|, ∀y ∈ R, f, g ∈ R, (2.10)

for some 0 < L < ∞. A convergence rate of order O(T
−min

{
β
β+1

, 1
3

}
log T ) is achieved for243

the algorithm with the least squares loss in [32]. However, the analysis in [32] is based on an244

integral operator approach and does not apply to general convex loss functions. Note that245

the results in [32] are in probability while our results are stated in expectation, and it would246

be interesting to further develop bounds in probability for the algorithm involving convex loss247

functions. In comparison with the results in [33] where 1-activating loss functions are studied248

with an assumption on the existence of a minimizer of E(f) for f ∈ HK , our results hold249

for a broader class of loss functions and are better for 1-activating loss functions in a more250

general setting. First, the hinge loss and the p-absolute value loss functions with p 6= 2 are not251

covered in [33]. Second, it is easy to see that an 1-activating loss function always satisfies the252

growth condition (2.3) with q = 1. Thus, by setting β = 1 and ηt = η1t
−α+2
α+3 in Corollary 2.5,253

our optimal convergence rates are of order O(T−
1
4 log T ) for 1-activating loss functions, which254

are better than the bounds in [33] of order O(T ε−
1
6 ) with an arbitrarily small ε > 0. When255

the incremental exponent q satisfies 0 ≤ q < 1, the learning rates of order O(T
− β
q+1+2β log T )256

stated in Corollary 2.5 (II) are also better than those of order O(T
− β

2β+2
√

log T ) derived for257

online pairwise learning based on regularization schemes in RKHSs in the earlier work [12].258

3 Proofs259

In this section, we prove Theorem 2.3. To do so, it is necessary to prove some preliminary260

lemmas.261

3.1 Bounding the learning sequence262

For notational simplicity, we introduce the following two notations: the local empirical error
of a function f : X ×X → R at point zt with respect to an ordered dataset S = {z1, · · · , zT }

Ê tS(f) =
1

t− 1

t−1∑
j=1

V (r(yt, yj), f(xt, xj)),

9



and the partial generalization error with respect to an ordered dataset S = {z1, · · · , zT }

Ẽ tS(f) =
1

t− 1

t−1∑
j=1

∫
Z
V (r(y, yj), f(x, xj))dρ(x, y).

We first introduce the following lemma whose proof essentially makes use of the convexity263

and increment property of loss functions.264

Lemma 3.1. Under condition (2.3), for an arbitrary fixed f ∈ HK , and t = 2, . . . , T ,265

‖ft+1 − f‖2K ≤ ‖ft − f‖2K + η2tG
2
t + 2ηt(Ê tS(f)− Ê tS(ft)), (3.1)

where266

G2
t = 4c2qκ

2(κ+ 1)2q max
{

1, ‖ft‖2qK
}
. (3.2)

Proof. Since ft+1 is given by (2.1), we have

‖ft+1 − f‖2K =‖ft − f‖2K + η2t

∥∥∥∥∥∥ 1

t− 1

t−1∑
j=1

V ′−(r(yt, yj), ft(xt, xj))K(xt,xj)

∥∥∥∥∥∥
2

K

+
2ηt
t− 1

t−1∑
j=1

V ′−(r(yt, yj), ft(xt, xj))
〈
K(xt,xj), f − ft

〉
K
.

Observe that

‖K(xt,xj)‖K =
√
K((xt, xj), (xt, xj)) ≤ κ

and that
‖f‖∞ ≤ κ‖f‖K , ∀f ∈ HK .

These together with the increment condition (2.3) yield267 ∥∥∥V ′−(r(yt, yj), ft(xt, xj))K(xt,xj)

∥∥∥
K
≤ κ

∣∣V ′−(r(yt, yj), ft(xt, xj))
∣∣

≤ κcq(1 + |ft(xt, xj)|q) ≤ κcq(1 + κq‖ft‖qK).

Therefore,

‖ft+1 − f‖2K ≤ ‖ft − f‖2K + η2tG
2
t +

2ηt
t− 1

t−1∑
j=1

V ′−(r(yt, yj), ft(xt, xj))
〈
K(xt,xj), f − ft

〉
K
.

Using the reproducing property, we get268

‖ft+1−f‖2K ≤ ‖ft−f‖2K+η2tG
2
t+

2ηt
t− 1

t−1∑
j=1

V ′−(r(yt, yj), ft(xt, xj))(f(xt, xj)−ft(xt, xj)). (3.3)

Since V (r(yt, yj), ·) is a convex function, we have

V ′−(r(yt, yj), a)(b− a) ≤ V (r(yt, yj), b)− V (r(yt, yj), a), ∀a, b ∈ R.

Using this relation in (3.3), we get our desired result.269

10



Using the above lemma, we can bound the learning sequence as follows. The proof is270

motivated by the recent work in [16] and [17], using an induction argument.271

Lemma 3.2. Assume condition (2.3). Let q
q+1 ≤ θ < 1 and ηt+1 = η1t

−θ for t ∈ N with η1272

satisfying (2.6). Then for t = 1, . . . , T ,273

‖ft+1‖K ≤ (t− 1)
1−θ
2 . (3.4)

Proof. We prove our statement by induction.274

Taking f = 0 in Lemma 3.1, we know that

‖ft+1‖2K ≤ ‖ft‖2K + η2tG
2
t + 2ηt(Ê tS(0)− Ê tS(ft)) ≤ ‖ft‖2K + η2tG

2
t + 2ηt|V |0.

This verifies (3.4) for the case t = 2 since f1 = f2 = 0 and 4η21c
2
qκ

2(κ+ 1)2q + 2η1|V |0 ≤ 1.275

Assume ‖ft‖K ≤ (t− 2)
1−θ
2 with t ≥ 3. Then276

G2
t ≤ 4c2qκ

2(κ+ 1)2q(t− 2)(1−θ)q. (3.5)

Hence277

‖ft+1‖2K ≤ (t− 2)1−θ + 4η21(t− 1)−2θc2qκ
2(κ+ 1)2q(t− 1)(1−θ)q + 2η1(t− 1)−θ|V |0

≤ (t− 1)1−θ

{(
1− 1

t− 1

)1−θ
+

4η21c
2
qκ

2(κ+ 1)2q

(t− 1)(q+1)θ+1−q +
2η1|V |0
t− 1

}
.

Since
(

1− 1
t−1

)1−θ
≤ 1− 1−θ

t−1 and the condition θ ≥ q
q+1 implies (q+ 1)θ+ 1− q ≥ 1, we have

‖ft+1‖2K ≤ (t− 1)1−θ

{
1− 1− θ

t− 1
+

4η21c
2
qκ

2(κ+ 1)2q

t− 1
+

2η1|V |0
t− 1

}
.

Finally we use the restriction (2.6) for η1 and find ‖ft+1‖2K ≤ (t− 1)1−θ. This completes the278

induction procedure and proves our conclusion.279

With the above two lemmas, and noticing that ft is independent of zt, we can easily prove280

the following result.281

Proposition 3.3. Assume condition (2.3). Let q
q+1 ≤ θ < 1 and ηt+1 = η1t

−θ for all t ∈ N282

with η1 satisfying (2.6). Assume that t ∈ {2, . . . , T} and that f ∈ HK is independent of zt283

(but may depend on z1, · · · , zt−1). Then we have284

Ezt‖ft+1 − f‖2K ≤ ‖ft − f‖2K
+ 4η21c

2
qκ

2(κ+ 1)2q(t− 1)(1−θ)q−2θ + 2ηt

[
Ẽ tS(f)− Ẽ tS(ft)

]
.

(3.6)

11



Proof. Taking expectations on both sides of (3.1) with respect to zt, and noting that ft is
independent of zt, we get

Ezt‖ft+1 − f‖2K ≤ ‖ft − f‖2K + η2tG
2
t + 2ηt

[
Ẽ tS(f)− Ẽ tS(ft)

]
.

Lemma 3.2 shows that ‖ft‖K ≤ (t − 1)
1−θ
2 , which implies (3.5). Applying (3.5) and using285

ηt = η1(t− 1)−θ in the above inequality yield the desired bound.286

Proposition 3.3 gives an iterated inequality related to the partial generalization error287

Ẽ tS(ft). Note that our goal is to derive upper bounds on the excess generalization error.288

It is thus necessary to develop relationships between the partial generalization error and289

generalization error, which will be considered in the following subsection.290

3.2 From partial generalization error to generalization error291

For R > 0, denote BR the ball of radius R in HK : BR = {f ∈ HK : ‖f‖K ≤ R}. The following292

lemma gives a uniform upper bound on the differences between the partial generalization error293

and generalization error over any ball BR with R ≥ 1. Its proof uses a standard symmetry294

technique and some properties related to Rademacher complexity.295

Lemma 3.4. For R ≥ 1, and all 1 ≤ t ≤ T

Ez1,··· ,zt−1

[
sup
f∈BR

{E(f)− Ẽ tS(f)}
]
≤ 2cqRκ(1 + κqRq)√

t− 1
.

The above inequality is also true if we replace {E(f)− Ẽ tS(f)} by {Ẽ tS(f)− E(f)}.296

Proof. For notational simplicity, we denote

L(f, zj) =

∫
Z
V (r(y, yj), f(x, xj))dρ(z).

Then

Ẽ tS(f) =
1

t− 1

t−1∑
j=1

L(f, zj)

and

E(f) =

∫
Z
L(f, z′)dρ(z′).

Let S′ = {z′1, · · · , z′T } be another independent sample set. We first note that297

ES [ sup
f∈BR

{E(f)− Ẽ tS(f)}]

= ES [ sup
f∈BR

{ES′ [Ẽ tS′(f)]− Ẽ tS(f)}]

≤ ES,S′ [ sup
f∈BR

{Ẽ tS′(f)− Ẽ tS(f)}].

12



Here, we abuse the notation ES for Ez1,··· ,zt−1 . Let σ1, σ2, . . . , σT be independent random298

variables drawn from the Rademacher distribution i.e. Pr(σi = +1) = Pr(σi = −1) = 1/2 for299

i = 1, 2, . . . , T . Using a standard symmetry technique, for example in [3],300

ES,S′ [ sup
f∈BR

{Ẽ tS′(f)− Ẽ tS(f)}]

≤ ES,S′,σ

 sup
f∈BR

 1

t− 1

t−1∑
j=1

σj(L(f, z′j)− L(f, zj))


 .

Thus,301

ES [ sup
f∈BR

{E(f)− Ẽ tS(f)}]

≤ ES,S′,σ

 sup
f∈BR

 1

t− 1

t−1∑
j=1

σj(L(f, z′j)− L(f, zj))




≤ 2ES,σ

 sup
f∈BR

1

t− 1

t−1∑
j=1

σjL(f, zj)


= 2ES,σ

 sup
f∈BR

Ez

 1

t− 1

t−1∑
j=1

σjV (r(y, yj), f(x, xj))


≤ 2Ez,S,σ

 sup
f∈BR

1

t− 1

t−1∑
j=1

σjV (r(y, yj), f(x, xj))

 .
For any z ∈ Z, the term ES,σ

[
supf∈BR

1
t−1
∑t−1

j=1 σjV (r(y, yj), f(x, xj))
]

is the Rademacher

complexity [4] of the function class BR with respect to ρ for sample size t − 1. Using (2.3)
and that ‖f‖∞ ≤ κ‖f‖K , it is easy to see that for any f, f ′ ∈ BR,

|V (r(y, yj), f(x, xj))− V (r(y, yj), f
′(x, xj))| ≤ cq(1 +Rqκq)|f(x, xj)− f ′(x, xj)|.

Applying Talagrand’s contraction lemma (see e.g., [19, Theorem 7]), we have302

ES,σ

 sup
f∈BR

1

t− 1

t−1∑
j=1

σjV (r(y, yj), f(x, xj))


≤ cq(1 + κqRq)ES,σ

 sup
f∈BR

1

t− 1

t−1∑
j=1

σjf(x, xj)


and therefore,303

ES [ sup
f∈BR

E{E(f)− Ẽ t(f)}]
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≤ 2cq(1 + κqRq)Ez,S,σ

 sup
f∈BR

1

t− 1

t−1∑
j=1

σjf(x, xj)


= 2cq(1 + κqRq)Ez,S,σ

 sup
f∈BR

〈
f,

1

t− 1

t−1∑
j=1

σjK(x,xj)

〉
K

 .
Applying the Schwarz inequality,304

ES [ sup
f∈BR

E{E(f)− Ẽ t(f)}]

≤ 2cq(1 + κqRq)Ez,S,σ

 sup
f∈BR

‖f‖K

∥∥∥∥∥∥ 1

t− 1

t−1∑
j=1

σjK(x,xj)

∥∥∥∥∥∥
K

 .
Applying E[‖g‖K ] ≤ (E[‖g‖2K ])

1
2 , and noting that σ1, σ2, . . . , σT are independent random305

variables with mean zeros,306

ES [ sup
f∈BR

E{E(f)− Ẽ t(f)}]

≤ 2cq(1 + κqRq)R

t− 1

Ez,S,σ
∥∥∥∥∥∥
t−1∑
j=1

σjK(x,xj)

∥∥∥∥∥∥
2

K


1
2

=
2cq(1 + κqRq)R

t− 1

 t−1∑
j=1

Ex,xj
∥∥∥K(x,xj)

∥∥∥2
K

 1
2

≤ 2cq(1 + κqRq)Rκ√
t− 1

,

where for the last inequality we use the boundness assumption on the kernel. Thus we get307

the desired result. The proof is complete.308

Combining the above lemma with Lemma 3.2, we get the following corollary.309

Corollary 3.5. Under the assumptions of Lemma 3.2, we have for any t = 3, · · · , T,

|Ez1,··· ,zt−1 [E(ft)− Ẽ tS(ft)]| ≤ 2cqκ(1 + κq)(t− 1)
(1−θ)(q+1)−1

2 .

3.3 A useful proposition310

The following proposition will be used several times in our proof. Its proof follows directly311

from Proposition 3.3 and Corollary 3.5.312

14



Proposition 3.6. Under assumptions of Proposition 3.3, for any f ∈ HK which is indepen-313

dent of z1, · · · , zt, or f = fk (3 ≤ k ≤ t), we have314

2ηtEz1,··· ,zt−1 [E(ft)− E(f)]

≤Ez1,··· ,zt
{
‖ft − f‖2K − ‖ft+1 − f‖2K

}
+ Cq,κ,η1(t− 1)−q

∗
.

(3.7)

Here315

q∗ =
3θ − (1− θ)q

2
. (3.8)

and Cq,κ,η1 is a constant depending only on q, κ and η1, given explicitly by (3.10) in the proof.316

Proof. Note that for 3 ≤ k ≤ T , fk depends only on z1, · · · , zk−1. By Proposition 3.3, we317

have318

Ez1,··· ,zt‖ft+1 − f‖2K ≤ Ez1,··· ,zt‖ft − f‖2K
+ 4η21c

2
qκ

2(κ+ 1)2q(t− 1)(1−θ)q−2θ + 2ηtEz1,··· ,zt−1

[
Ẽ tS(f)− Ẽ tS(ft)

]
.

Rewrite Ez1,··· ,zt−1

[
Ẽ tS(f)− Ẽ tS(ft)

]
as319

Ez1,··· ,zt−1 [E(f)− E(ft)] + Ez1,··· ,zt−1

[
(Ẽ tS(f)− E(f)) + (E(ft)− Ẽ tS(ft))

]
. (3.9)

If f = fk with 1 ≤ k ≤ t, by applying Corollary 3.5 to bound the last term of (3.9), and
noting that θ ≥ q

q+1 implies

(1− θ)(q + 1)− 1

2
− θ =

(1− θ)q − 3θ

2
≥ (1− θ)q − 2θ,

we get (3.7) with320

Cq,κ,η1 = 4η21c
2
qκ

2(κ+ 1)2q + 8η1cqκ(1 + κq). (3.10)

If f is independent of z1, · · · , zt, the last term of (3.9) is exactly

Ez1,··· ,zt−1

[
E(ft)− Ẽ tS(ft)

]
.

Using Corollary 3.5 to bound this term again, we get (3.7). From the above analysis, one can321

conclude the proof.322

3.4 Estimating excess generalization error323

We now give the following general result, with which we can prove our main result, Theorem324

2.3. For notational simplicity, we denote the excess generalization error of f∗ ∈ HK with325

respect to (ρ, V ) by A(f∗):326

A(f∗) = E(f∗)− E(fVρ ). (3.11)
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Theorem 3.7. Assume (2.3) with q ≥ 0. Let ηt+1 = η1t
−θ with q

q+1 ≤ θ < 1 and η1 satisfying327

(2.6). Then for every fixed f∗ ∈ HK ,328

Ez1,··· ,zT−1

{
E(fT )− E(fVρ )

}
≤ A(f∗)

1− θ
+
‖f∗‖2K

2η1
(T − 1)θ−1 + C̃1ΛT−1, (3.12)

where ΛT−1 is given by (2.7) and C̃1 is a positive constant depending on q, κ, θ (independent329

of T and f∗, and given explicitly in the proof).330

The proof of this theorem is postponed to the next subsection. A novel error decomposition331

plays an important role in the proof. Note that the decomposition of ρ into the margin332

probability measure on X and the conditional probability measures allows the case with333

noise.334

Now we are in a position to prove Theorem 2.3.335

Proof of Theorem 2.3. By Theorem 3.7, we have

Ez1,··· ,zT−1

{
E(fT )− E(fVρ )

}
≤ C̃0

(
E(f∗)− E(fVρ ) + (T − 1)θ−1‖f∗‖2K

)
+ C̃1ΛT−1,

where

C̃0 =
1

1− θ
+

1

2η1
.

Since the constants C̃0 and C̃1 are independent of f∗ ∈ HK , we can take infimum over f∗ ∈ HK336

on both sides, and conclude the desired result.337

3.5 Proof of Theorem 3.7338

Before proving Theorem 3.7, we present two lemmas, whose proofs follow from Proposition339

3.6 and some elementary inequalities. In the rest of this subsection, we denote Ez1,··· ,zT by E340

for simplicity.341

Lemma 3.8 (Weighted average). Under the assumption of Theorem 3.7, for any T ≥ 2,342

1

T − 1

T∑
t=2

2ηtE
{
E(ft)− E(fVρ )

}
≤
‖f∗‖2K
T − 1

+
2η1A(f∗)

1− θ
(T − 1)−θ

+


q∗Cq,κ,η1
q∗−1 (T − 1)−1, when θ > q+2

q+3 ,

Cq,κ,η1(T − 1)−1 log(eT ), when θ = q+2
q+3 ,

Cq,κ,η1
1−q∗ (T − 1)−q

∗
, when θ < q+2

q+3 .

Here q∗ and Cq,κ,η1 are given by (3.8) and (3.10), respectively.343

Proof. Note that by Proposition 3.6, we have (3.7). Choosing f = f∗ in (3.7) and adding344

both sides with 2ηtA(f∗), we get345

2ηtE
[
E(ft)− E(fVρ )

]
≤E

{
‖ft − f∗‖2K − ‖ft+1 − f∗‖2K

}
+ Cq,κ,η1(t− 1)−q

∗
+ 2ηtA(f∗),
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Taking summations over t = 2, . . . , T, with f2 = 0, and ηt = η1(t− 1)−θ,346

T∑
t=2

2ηtE
{
E(ft)− E(fVρ )

}
≤ ‖f∗‖2K + Cq,κ,η1

T−1∑
t=1

t−q
∗

+ 2η1A(f∗)
T−1∑
t=1

t−θ.

Note that q∗ is given by (3.8), and that from the restriction θ ∈ [ q
q+1 , 1), q∗ satisfies 0 < q∗ < 2

and

q∗


> 1 when θ > q+2

q+3 .

= 1 when θ = q+2
q+3 ,

< 1 when θ < q+2
q+3 .

Applying347

T−1∑
t=1

t−θ
′ ≤ 1 +

∫ T−1

1
u−θ

′
du ≤


(T−1)1−θ′

1−θ′ , when θ′ < 1,

log(eT ), when θ′ = 1,
θ′

θ′−1 , when θ′ > 1,

(3.13)

to bound
∑T−1

t=1 t
−q∗ and

∑T−1
t=1 t

−θ, we get the desired result. The proof is complete.348

Lemma 3.9 (Moving weighted average). Under the assumption of Theorem 3.7, for any349

T ≥ 2,350

T−2∑
k=1

1

k(k + 1)

T∑
t=T−k+1

2ηtE {E(ft)− E(fT−k)}

≤


2Cq,κ,η1

(
2q
∗

+ q∗

q∗−1

)
(T − 1)−1, when θ > q+2

q+3 ,

4Cq,κ,η1(log T )(T − 1)−1, when θ = q+2
q+3 ,

2Cq,κ,η1

(
2q
∗

+ 1
1−q∗

)
(log T )(T − 1)−q

∗
, when θ < q+2

q+3 .

Here q∗ and Cq,κ,η1 are given by (3.8) and (3.10), respectively.351

Proof. Let k ∈ {2, . . . , T−1}. Note that fT−k depends only on z1, · · · , zT−k−1. By Proposition352

3.6, we have for t ≥ T − k,353

2ηtE [E(ft)− E(f)] ≤ E
{
‖ft − f‖2K − ‖ft+1 − f‖2K

}
+ Cq,κ,η1(t− 1)−q

∗
.

Taking summation over t = T − k, . . . , T yields354

T∑
t=T−k+1

2ηtE {E(ft)− E(fT−k)} =
T∑

t=T−k
2ηtE {E(ft)− E(fT−k)}

≤ Cq,κ,η1
T∑

t=T−k
(t− 1)−q

∗
= Cq,κ,η1

T−1∑
t=T−1−k

t−q
∗
.
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It thus follows that

T−2∑
k=1

1

k(k + 1)

T∑
t=T−k+1

2ηtE {E(ft)− E(fT−k)} ≤ Cq,κ,η1
T−2∑
k=1

1

k(k + 1)

T−1∑
t=T−1−k

t−q
∗
.

By applying the following elementary inequality from [16] (which will be proved in the ap-355

pendix for completeness)356

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k

t−q
∗ ≤


2
(

2q
∗

+ q∗

q∗−1

)
T−1, when q∗ ∈ (1, 2),

4(log T )T−1, when q∗ = 1,

2
(

2q
∗

+ 1
1−q∗

)
(log T )T−q

∗
, when q∗ ∈ (0, 1),

(3.14)

the desired estimate is verified. The proof is complete.357

With the above two lemmas, now we are ready to prove Theorem 3.7.358

Proof of Theorem 3.7. The basic idea is to bound the weighted excess generalization error359

2ηTEz1,··· ,zT−1 [E(fT ) − E(fVρ )] in terms of the weighted average and the moving weighted360

average. To do so, we need the following fact from [22, 18] which asserts that for any sequence361

{uj}j∈N in R, there holds362

uT =
1

T − 1

T∑
j=2

uj +

T−2∑
k=1

1

k(k + 1)

T∑
j=T−k+1

(uj − uT−k). (3.15)

In fact, for k ∈ {1, · · · , T − 2}, we have363

1

k

T∑
j=T−k+1

uj −
1

k + 1

T∑
j=T−k

uj

=
1

k(k + 1)

(k + 1)

T∑
j=T−k+1

uj − k
T∑

j=T−k
uj


=

1

k(k + 1)

T∑
j=T−k+1

(uj − uT−k).

Summing over k = 2, · · · , T − 1, and rearranging terms, we get (3.15). Now, for any k =364

1, . . . , T − 2, we choose ut = 2ηtE
{
E(ft)− E(fVρ )

}
in (3.15) to get365

2ηTE
{
E(fT )− E(fVρ )

}
=

1

T − 1

T∑
j=2

2ηjE
{
E(fj)− E(fVρ )

}
+
T−2∑
k=1

1

k(k + 1)

T∑
j=T−k+1

(
2ηjE

{
E(fj)− E(fVρ )

}
− 2ηT−kE

{
E(fT−k)− E(fVρ )

})
,
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which can be rewritten as366

2ηTE
{
E(fT )− E(fVρ )

}
=

1

T − 1

T∑
t=2

2ηtE
{
E(ft)− E(fVρ )

}
+
T−2∑
k=1

1

k(k + 1)

T∑
t=T−k+1

2ηtE {E(ft)− E(fT−k)}

+

T−2∑
k=1

1

k + 1

[
1

k

T∑
t=T−k+1

2ηt − 2ηT−k

]
E
{
E(fT−k)− E(fVρ )

}
. (3.16)

Since, E(fT−k)−E(fVρ ) ≥ 0 and that {ηt}t∈N is a non-increasing sequence, we know that the367

last term of the above inequality is at most zero. Therefore, we get368

2ηTE
{
E(fT )− E(fVρ )

}
≤ 1

T − 1

T∑
t=2

2ηtE
{
E(ft)− E(fVρ )

}
+
T−2∑
k=1

1

k(k + 1)

T∑
t=T−k+1

2ηtE {E(ft)− E(fT−k)} .

(3.17)

Applying lemmas 3.8 and 3.9 to bound the last two terms, we get the desired bound (3.12)
with C̃1 given explicitly by

C̃1 =


Cq,κ,η1 (3q

∗+2q
∗+1(q∗−1))

2η1(q∗−1) , when θ > q+2
q+3 ,

3Cq,κ,η1
η1

, when θ = q+2
q+3 ,

Cq,κ,η1

(
2q
∗+1+ 3

1−q∗

)
2η1

, when θ < q+2
q+3 .

The proof of Theorem 3.7 is complete.369

4 Conclusion370

This paper presents learning rates of the last iterate for online pairwise learning algorithms371

involving general convex loss functions which are better than the existing results under cer-372

tain circumstances. Our idea is to use an error decomposition from [16, 23] to decompose373

the weighted excess generalization error into weighted average errors and moving weighted374

average errors. We apply some tools from Rademacher complexity to overcome the difficulty375

with the bias of the randomized gradients as estimators of the true gradients in the online376

pairwise learning setting. It is interesting to discuss here the connection between classifi-377

cation/regression tasks and pairwise learning problems. For the specific pairwise learning378

problem with V (y, f) = (y − f)2 and r(y, y′) = y − y′, it was proved in [32, 10] that the379

optimal predictor is fVρ (x, x′) =
∫
X ydρ(y|x) −

∫
X ydρ(y|x′), where ρ(y|x) is the conditional380

measure at x. This shows that the pairwise learning based on the least squares loss is es-381

sentially a pointwise learning problem since f̃ρ(x) :=
∫
X ydρ(y|x) is the regression function382

19



minimizing
∫
Z(y−f(x))2dρ. Characterizing fVρ and the approximation error assumption (2.8)383

for a general pairwise learning loss function in terms of function space properties, such as for384

metric and similarity learning, is a challenging problem for further study.385
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A Appendix for Proving (3.14)465

First note that

T∑
t=T−k+1

t−q
∗ ≤

∫ T

T−k
x−q

∗
dx ≤ T 1−q∗ − (T − k)1−q

∗

1− q∗
, when q∗ 6= 1.

When 0 < q∗ < 1, for k ≤ T
2 ,

T∑
t=T−k

t−q
∗ ≤ (T − k)−q

∗
(k + 1) ≤ 2q

∗
T−q

∗
(k + 1),

and for k > T
2

T∑
t=T−k

t−q
∗ ≤ T 1−q∗ − (T − k)1−q

∗

1− q∗
+ (T − k)−q

∗ ≤ T 1−q∗

1− q∗
.

It thus follows that466

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k

t−q
∗
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≤
∑
k≤T/2

1

k(k + 1)
2q
∗
T−q

∗
(k + 1) +

∑
T−1≥k>T/2

1

k(k + 1)

T 1−q∗

1− q∗

≤
(

2q
∗+1 +

2

1− q∗

)
(log T )T−q

∗
.

When q∗ = 1, we have467

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k

t−q
∗ ≤

T−1∑
k=1

1

k(k + 1)

k + 1

T − k
=

1

T

T−1∑
k=1

{
1

k
+

1

T − k

}
≤ 4(log T )T−1.

When 2 > q∗ > 1, for k ≤ T
2 ,

T∑
t=T−k

t−q
∗ ≤ (T − k)−q

∗
(k + 1) ≤ 2q

∗
T−q

∗
(k + 1),

and for k > T
2

T∑
t=T−k

t−q
∗ ≤ (T − k)1−q

∗ − T 1−q∗

q∗ − 1
+ (T − k)−q

∗ ≤ q∗

q∗ − 1
.

Therefore, we have468

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k

t−q
∗

≤ 2q
∗
T−q

∗ ∑
k≤T/2

1

k
+

q∗

q∗ − 1

∑
T−1≥k>T/2

1

k(k + 1)

≤ 2q
∗+1T−q

∗
log T +

2q∗

q∗ − 1
T−1

≤ 2q
∗+1 + 2q∗

q∗ − 1
T−1.
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