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Spectral algorithms form a general framework that unifies many regularization schemes25

in learning theory. In this paper, we propose and analyze a class of thresholded spectral26

algorithms that are designed based on empirical features. Soft thresholding is adopted27

to achieve sparse approximations. Our analysis shows that without sparsity assumption28

of the regression function, the output functions of thresholded spectral algorithms are29

represented by empirical features with satisfactory sparsity, and the convergence rates30

are comparable to those of the classical spectral algorithms in the literature.31
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1. Introduction and Main Results34

Consider a regression problem modeled by an unknown probability measure ρ on35

the product space X×Y of some compact metric (input) space X and output space36

Y ⊂ R. Given a training sample z = {(xi, yi)}m
i=1 drawn independently from ρ, the37

1

http://dx.doi.org/10.1142/S0219530517500026


2nd Reading

February 16, 2017 14:58 WSPC/S0219-5305 176-AA 1750002

2 Z.-C. Guo et al.

regression problem aims at approximating the regression function defined by1

fρ(x) =
∫

Y

ydρ(y|x), x ∈ X,

where ρ(·|x) is the conditional distribution of ρ at x ∈ X . We consider approxima-2

tions provided by regularization schemes in reproducing kernel Hilbert spaces.3

A classical well understood learning algorithm is the regularized least squares,4

and there is a large literature on error analysis for this algorithm, see e.g. [24, 6,5

21, 18, 19, 17]. Recently, optimal learning rates (minimax rates of convergence)6

for this classical learning algorithm are established in [15]. The regularized least7

squares algorithm suffers from the so-called saturation phenomenon [16]. Spectral8

algorithms introduced in [9, 16] with motivations from regularization methods in9

learning theory and inverse problems can overcome the saturation phenomenon. A10

spectral algorithm is defined in terms of a Mercer kernel K : X×X → R (which is a11

continuous, symmetric, and positive semi-definite function) and a filter function gλ :12

[0, κ2] → R with a parameter λ > 0, where κ := max
{
1, supx∈X

√
K(x, x)

}
. The13

regularized least squares algorithm is included in the family of spectral algorithms14

[1, 16] with filter function gλ(σ) = 1
σ+λ . Some other members in this family include15

the Landweber iteration (or gradient descent [23]) with the filter function gλ(σ) =16 ∑t−1
i=1(1 − σ)i parameterized by λ = 1

t for an integer t ∈ N, and spectral cut-off17

with filter function gλ(σ) = 1
σ if σ ≥ λ, and gλ = 0 otherwise. Spectral algorithms18

were well studied for regression in learning theory, see e.g. [16, 1, 7, 4, 8]. Recently,19

optimal learning rates of spectral algorithms for regression are derived in [11] by a20

new error decomposition technique and a second order decomposition approach. We21

refer the reader to [1, 11] and reference therein for more details about the spectral22

algorithms.23

Along a different direction, learning algorithms producing sparse approxima-24

tions have attracted much attention within the last decade. Besides the spectral25

cut-off in the family of spectral algorithms, the �1-regularizer often leads to spar-26

sity, which has been observed in the LASSO algorithm [20, 25, 26] and in com-27

pressed sensing. Recently, empirical feature-based �1 regularization was proposed28

in [12]. Given the sample z, empirical features are a set of functions {φx
i }∞i=1 on X,29

based on x = {xi}m
i=1 (to be defined below). The output function of the empirical30

feature-based �1 regularization algorithm is represented by
∑

i∈N
czγ,iφ

z
i with the31

coefficients {czγ,i}∞i=1 given by a coefficient-based �1 regularization algorithm. The32

algorithm is a modification of the kernel projection machine (KPM) introduced in33

[2] and analyzed in [27]. Sparsity and error analysis of this algorithm for regression34

are investigated in [12]. It is valuable due to the satisfactory learning rates and35

strong sparsity under a mild condition and without any sparsity assumptions on36

the regression function. Empirical feature-based algorithms with sparse properties37

induced by concave regularizers for regression are studied in [10] recently.38

Motivated by the spectral algorithms and the empirical feature-based �1 regu-39

larization algorithm, we propose a new learning algorithm associated with a filter40



2nd Reading

February 16, 2017 14:58 WSPC/S0219-5305 176-AA 1750002

Thresholded spectral algorithms for sparse approximations 3

function gλ and soft thresholding function Gγ which provides satisfactory learning1

rates for regression and strong sparsity without any sparsity assumption about the2

regression function. We first define the filter function gλ and the soft thresholding3

function Gγ as follows.4

Definition 1.1 (Filter function). We say that gλ : [0, κ2] �→ R, with 0 < λ ≤ κ2,5

is a filter function with qualification νg ≥ 1
2 if there exists a positive constant b6

independent of λ such that7

sup
0<σ≤κ2

|gλ(σ)| ≤ b

λ
, sup

0<σ≤κ2
|gλ(σ)σ| ≤ b, ∀ 0 < λ ≤ κ2 (1)

and8

sup
0<σ≤κ2

|1 − gλ(σ)σ|σν ≤ cνλν , ∀ 0 < ν ≤ νg, 0 < λ ≤ κ2, (2)

where cν > 0 is a constant depending only on ν ∈ (0, νg].9

Definition 1.2 (Soft thresholding function). The soft thresholding function10

Gγ : R �→ R with a thresholding parameter γ > 0 is defined as11

Gγ(σ) =




0, if |σ| ≤ γ

2
,

σ − γ

2
, if σ >

γ

2
,

σ +
γ

2
, if σ < −γ

2
.

(3)

Let (HK , 〈·, ·〉) with the norm ‖ · ‖K be the reproducing kernel Hilbert space12

(RKHS) generated by the Mercer kernel. To define empirical features {φx
i }i, we13

need the empirical integral operator Lx
K on HK associated with the kernel K and14

the input data x = {x1, . . . , xm} given by15

Lx
K(f) =

1
m

m∑
i=1

f(xi)Kxi , f ∈ HK , (4)

where Kx is a function in HK defined by Kx(u) = K(x, u). Recall the reproducing16

property 〈f, Kx〉 = f(x) for any f ∈ HK . Let {(λx
i , φx

i )}i be a set of normalized17

eigenpairs of Lx
K with the eigenfunctions {φx

i }i forming an orthonormal basis of HK ,18

then the functions {φx
i }∞i=1 are called empirical features which can be computed19

explicitly [2, 12] by the eigenpairs of the Gramian matrix (K(xi, xi))m
i,j=1. Denote20

fz
ρ =

1
m

m∑
i=1

yiKxi. (5)

Definition 1.3 (Thresholded spectral algorithms). A thresholded spectral21

algorithm for sparsity associated with a filter function gλ : [0, κ2] �→ R and a soft22
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thresholding function Gγ : R �→ R is defined by1

fz = gλ(Lx
K)
∑
i∈N

Gγ(〈fz
ρ , φx

i 〉)φx
i =

∑
i∈N

ci
λ,γ,zφ

x
i , (6)

where gλ(Lx
K) is the operator on HK defined by spectral calculus as gλ(Lx

K) =2 ∑
i gλ(λx

i )φx
i ⊗ φx

i =
∑

i gλ(λx
i )〈·, φx

i 〉φx
i .3

Remark 1.4. If we replace the thresholding function Gγ by the identity function4

(which is the limit of Gγ as γ → 0+), the thresholded spectral algorithm (6) is5

reduced to the ordinary spectral algorithm fz = gλ(Lx
K)
(

1
m

∑m
i=1 yiKxi

)
that is6

studied in [1, 16].7

If we replace the filter function gλ(σ) simply by the reciprocal function 1/σ8

(which is no longer a filter function, but could be regarded as the limit of gλ if we9

push b → ∞ in (1) and cν → 0+ in (2)), the thresholded spectral algorithm (6) is10

reduced to the empirical feature-based scheme studied in [12].11

Let ρX be the marginal distribution of ρ on X and (L2
ρ

X
, ‖ · ‖ρ) the Hilbert12

space of ρX square integrable functions on X . Define the integral operator LK on13

HK associated with the Mercer kernel K by14

LK(f) =
∫

X

f(x)KxdρX , f ∈ HK .

Our error analysis is based on the following regularity condition15

fρ = Lr
K(uρ) for some r > 0 and uρ ∈ HK , (7)

where Lr
K denotes the rth power of LK on HK since LK : HK → HK is a compact16

and positive operator. The eigenvalues {λi} of LK are arranged in a nonincreasing17

order and its corresponding normalized eigenfunctions {φi}i form an orthonormal18

basis of HK . Condition (7) is equivalent to fρ = Lr
Kuρ =

∑
j∈N

λr
jdjφj with uρ =19 ∑

j∈N
djφj and ‖uρ‖K = ‖{dj}‖�2. Throughout the paper we assume |y| ≤ M20

almost surely for some constant M > 0. It would be interesting to extend our21

analysis to more general situations by assuming exponential decays for fρ(x)− y or22

some moment conditions [3, 13].23

To illustrate our general analysis (stated in Theorem 4.1 below) on sparsity24

and learning rates for the thresholded spectral algorithm (6), we state the following25

result in a special situation when the eigenvalues {λi}∞i=1 of LK decay polynomially.26

Theorem 1.5. Suppose that regularity condition (7) holds with some 0 < r ≤ νg27

and the eigenvalues {λi} of LK decay polynomially as28

D1i
−α ≤ λi ≤ D2i

−α, ∀ i ∈ N (8)

with α > 1 and 0 < D1 ≤ D2. Let 0 < δ < 1. If we choose29

γ = C0

(
D2

κ2 + 1

)r+1(
log

6m

δ

)r+1

m− r+1
max{2,2r+1} (9)
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and1

λ =




m− 1
2 + 1

4α(1+r) if 0 < r ≤ 1
2
,

m− 2α(r+1)−1
2α(2r+1)(r+1) if r >

1
2
,

(10)

then with confidence at least 1 − δ, we have2

ci
λ,γ,z = 0, ∀ i ≥ m

1
α max{2,2r+1} + 1 (11)

and3

‖fz − fρ‖ρ ≤ C

(
log

6m

δ

)max{r+2, 52}
m−θ,

where4

θ =




2r + 1
4

− 1
4α

if 0 < r ≤ 1
2
,

1
2
− 1

2α(2r + 1)
if r >

1
2
,

(12)

and the constants C0, C are independent of m or δ.5

Remark 1.6. Our learning rate index θ can be of type 1
2 − ε with an arbitrarily6

small ε > 0 when the regularity parameter r in condition (7) is large enough. Note7

that condition (8) is satisfied by Sobolev kernels on domains of Euclidean spaces8

for which α depends on the smoothness index of the Sobolev space. Theorem 1.5 is9

a corollary of Theorem 4.2 to be given in Sec. 4.10

If the eigenvalues {λi} decay exponentially, we have the following result.11

Theorem 1.7. Suppose that regularity condition (7) holds with some 0 < r ≤ νg12

and the eigenvalues {λi} of LK decay exponentially as13

D1β
−i ≤ λi ≤ D2β

−i, ∀ i ∈ N (13)

with β > 1 and 0 < D1 ≤ D2. Let 0 < δ < 1. If we choose14

γ = C0

(
D2

κ2 + 1

)r+1(
log

6m

δ

)r+1

m− r+1
max{2,2r+1} (14)

and λ = D2
log m

m , then with confidence at least 1 − δ, we have15

ci
λ,γ,z = 0, ∀ i ≥ log(m + 1)

(2r + 1) log β
+ 1 (15)

and16

‖fz − fρ‖ρ ≤ C′m−min{r, 12}
(

log
6m

δ

)r+ 5
2

, (16)

where the constants C0, C
′ are independent of m or δ.17
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Remark 1.8. We note that when r ≥ 1/2, the convergence rate in (16), subject to1

a logarithmic term, is of order O(m−1/2). This demonstrates the surprising power of2

the thresholding methods with respect to empirical features. The proof of Theorem3

1.7 will be given in Sec. 4.4

The remaining part of this paper is organized as follows. In Sec. 2, some prelim-5

inary analysis of sparsity and error for algorithm (6) is carried out. Sec. 3 develops6

some technical results which are needed to derive the general results. In Sec. 4, we7

first prove the general results of the sparsity and error analysis of algorithm (6), and8

then we establish the learning rates when the eigenvalues of LK decay polynomially9

or exponentially.10

2. Error Decomposition11

In this section, some preliminary analysis of sparsity and error for algorithm (6)12

associated with a filter function gλ and a soft thresholding function Gγ is carried13

out.14

2.1. Representation and decomposition for sparsity15

From the definition of the soft thresholding function Gγ , we have ci
λ,γ,z = 0 when16

|〈fz
ρ , φx

i 〉| ≤ γ
2 . To get sparsity, we shall choose some p = p(m) ∈ N and γ = γ(m, δ)17

such that with confidence 1 − δ,18

ci
λ,γ,z = 0, ∀ i ≥ p + 1.

To this end, we need to estimate the term |〈fz
ρ , φx

i 〉|. Recall fz
ρ = 1

m

∑m
i=1 yiKxi.19

The conditional expectation of fz
ρ given x1, . . . , xm is 1

m

∑m
i=1 fρ(xi)Kxi = Lx

Kfρ.20

It shows that 〈fz
ρ , φx

i 〉 is close to 〈Lx
Kfρ, φ

x
i 〉. So we introduce the following decom-21

position22

〈fz
ρ , φx

i 〉 = 〈fz
ρ − Lx

Kfρ, φ
x
i 〉 + 〈Lx

Kfρ, φ
x
i 〉.

It follows that for i ∈ N,23

|〈fz
ρ , φx

i 〉| ≤ |〈fz
ρ , φx

i 〈−〉Lx
Kfρ, φ

x
i 〉| + |〈Lx

Kfρ, φ
x
i 〉| := J1 + J2.

(17)

Note that the notations J1, J2 depend on i. They are used for simplicity.24

2.2. Analysis for sparsity25

In this subsection, we bound J1 and J2 respectively. The first term J1 can be26

expressed as27

J1 = |〈fz
ρ , φx

i 〉 − 〈Lx
Kfρ, φ

x
i 〉| = |〈fz

ρ , φx
i 〉 − λx

i 〈fρ, φ
x
i 〉|

= |λx
i |
∣∣∣∣
〈

1
λx

i

fz
ρ − fρ, φ

x
i

〉∣∣∣∣ .
It can be easily estimated by the following lemma proved in [10]. Denote Z = X×Y .28
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Lemma 2.1. For any δ ∈ (0, 1), there exists a subset U1 of Zm with measure at1

least 1 − δ/3 such that2

√
λx

i

∣∣∣∣
〈

1
λx

i

fz
ρ − fρ, φ

x
i

〉∣∣∣∣ ≤ 2
√

2M√
m

√
log

6m

δ
, ∀ z ∈ U1, i ∈ N. (18)

Before stating the general result about sparsity, we give the following key lemma3

[10]. Recall the Hilbert–Schmidt norm of the operator LK − Lx
K given by4

‖LK − Lx
K‖2

HS =
∞∑

i=1

‖(LK − Lx
K)φx

i ‖2
K =

∞∑
i,j=1

(λj − λx
i )2(〈φx

i , φj〉)2. (19)

Lemma 2.2. We have5

∞∑
i=1

(λi − λx
i )2 ≤ ‖LK − Lx

K‖2
HS. (20)

For any δ ∈ (0, 1), there exists a subset U2 of Zm with measure at least 1 − δ/36

such that7

‖LK − Lx
K‖HS ≤ 4κ2

√
m

log
6
δ
, ∀ z ∈ U2. (21)

Proposition 2.3. For z ∈ U1 ∩ U2 and i ∈ N, there holds8

J1 ≤ 2
√

2M√
m

(√
λi +

2κ
4
√

m

√
log

6
δ

)√
log

6m

δ
. (22)

Proof. By Lemma 2.1, for z ∈ U1, we have9

J1 = |λx
i |
∣∣∣∣
〈

1
λx

i

fz
ρ − fρ, φ

x
i

〉∣∣∣∣ =
√

λx
i

√
λx

i

∣∣∣∣
〈

1
λx

i

fz
ρ − fρ, φ

x
i

〉∣∣∣∣
≤√λx

i

2
√

2M√
m

√
log

6m

δ
.

To bound
√

λx
i , we have |λx

i − λi| ≤ ‖LK − Lx
K‖HS from (20). It follows that10 √

λx
i ≤ √

λi +
√‖LK − Lx

K‖HS, and by Lemma 2.2, for z ∈ U2, we have11

√
λx

i ≤
√

λi +
2κ
4
√

m

√
log

6
δ
,

Then our desired bound follows by combining the above two estimates.12

Estimating the second term J2 of (17) is more involved.13
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Proposition 2.4. For z ∈ U2 and i ∈ N, there holds1

J2 ≤
{

8κ2r+2

√
m

(
λ

min{r,1}
i +

(
4κ2

√
m

)min{r,1})

+ 22r

(
λ1+r

i +
(

4κ2

√
m

)1+r
)}

‖uρ‖K

(
log

6
δ

)1+r

.

Proof. Recall fρ = Lr
Kuρ =

∑
j∈N

λr
jdjφj with uρ =

∑
j∈N

djφj and ‖uρ‖K =2

‖{dj}‖�2. Now we estimate the term J2 = |〈Lx
Kfρ, φ

x
i 〉| = |λx

i 〈fρ, φ
x
i 〉|. To this end,3

we divide λx
i 〈fρ, φ

x
i 〉 into two parts4

λx
i 〈fρ, φ

x
i 〉 =


 ∑

j:λj≥2λx
i

+
∑

j:λj<2λx
i


λx

i λr
jdj〈φj , φ

x
i 〉. (23)

By Lemma 2.2 and (20), since λ1 ≤ ‖LK‖ ≤ κ2, the first sum in (23) can be5

estimated as6 ∣∣∣∣∣∣
∑

j:λj≥2λx
i

λx
i λr

jdj〈φj , φ
x
i 〉
∣∣∣∣∣∣

≤ (2λx
i )min{r,1}κ2max{0,r−1}∑

j

|dj ||λj − λx
i ||〈φj , φ

x
i 〉|

≤ (2λx
i )min{r,1}κ2r‖uρ‖K

4κ2

√
m

log
6
δ

≤ 8κ2r+2‖uρ‖K√
m

(
λ

min{r,1}
i +

(
4κ2

√
m

log
6
δ

)min{r,1})
log

6
δ
.

Note that for t ≥ 1 and a, b > 0, one has (a + b)t ≤ 2t−1(at + bt). Hence the second7

sum in (23) is bounded by8 ∣∣∣∣∣∣
∑

j:λj<2λx
i

λx
i λr

jdj〈φj , φ
x
i 〉
∣∣∣∣∣∣ ≤ 2r(λx

i )1+r
∑

j

|dj〈φj , φ
x
i 〉|

≤ 22r

(
λ1+r

i +
(

4κ2

√
m

log
6
δ

)1+r
)
‖uρ‖K .

This completes the proof.9

Putting the bounds in Propositions 2.3 and 2.4 into (17), we obtain the following10

upper bound for
∣∣〈fz

ρ , φx
i 〉
∣∣ with i ∈ N.11
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Proposition 2.5. Under regularity condition (7) with some r > 0, for z ∈ U1 ∩U21

and i ∈ N, we have2

|〈fz
ρ , φx

i 〉| ≤
C0

2

(
log

6m

δ

)1+r

×




max
{

λi

κ2
,

1√
m

}1+r

, for 0 < r ≤ 1
2
,

max

{(
λi

κ2

)r+ 1
2

,
1√
m

}
max

{
λi

κ2
,

1√
m

} 1
2

, for r >
1
2
,

where C0 is the constant independent of δ, m, or λi given by3

C0 = 64 max
{√

2κM, 8κ2r+4‖uρ‖K , 42rκ2r+2‖uρ‖K

}
. (24)

Proof. Putting the bounds for J1 and J2 in Propositions 2.3 and 2.4 back into4

(17), we know that for z ∈ U1 ∩ U2 and i ∈ N,5

∣∣〈fz
ρ , φx

i 〉
∣∣ ≤ 4

√
2κM

( √
λi

κ
√

m
+
(

1√
m

) 3
2
)

log
6m

δ

+ 32κ2r+4‖uρ‖K

(
(λi/κ2)min{r,1}

√
m

+
(

1√
m

)min{r,1}+1
)(

log
6
δ

)r+1

+ 42r+1κ2r+2‖uρ‖K

((
λi

κ2

)1+r

+
(

1√
m

)1+r
)(

log
6m

δ

)1+r

≤ C̃0




√
λi

κ
√

m
+ 3
(

1√
m

)min{ 3
2 ,r+1}

+

(
λi

κ2

)min{r,1}

√
m

+
(

λi

κ2

)1+r



(

log
6
δ

)1+r

,

where C̃0 = max{4√2κM, 32κ2r+4‖uρ‖K , 42r+1κ2r+2‖uρ‖K}.6

When 0 < r ≤ 1/2, one has min{r, 1} = r. So7

(
λi

κ2

)min{r,1}
=
(

λi

κ2

)r

≥
√

λi

κ
and

(
1√
m

)min{ 3
2 ,r+1}

=
(

1√
m

)1+r

.
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One applies Young’s inequality to obtain1

(
λi

κ2

)r 1√
m

≤

(
λi

κ2

)1+r

1 +
1
r

+

(
1√
m

)1+r

1 + r
. (25)

Therefore, for z ∈ U1 ∩ U2 and i ∈ N, we have2

∣∣〈fz
ρ , φx

i 〉
∣∣ ≤ C̃0

(
5
(

1√
m

)1+r

+ 3
(

λi

κ2

)1+r
)(

log
6m

δ

)1+r

≤ 8C̃0 max
{

1√
m

,
λi

κ2

}1+r (
log

6m

δ

)1+r

.

When r > 1/2, one has3 (
1√
m

)min{ 3
2 ,r+1}

=
(

1√
m

) 3
2

and
(

λi

κ2

)min{r,1}
≤

√
λi

κ
,

which implies that for z ∈ U1 ∩ U2 and i ∈ N,4

∣∣〈fz
ρ , φx

i 〉
∣∣ ≤ C̃0

(
3
(

1√
m

)3/2

+ 2
√

λi

κ
√

m
+
(

λi

κ2

)1+r
)(

log
6m

δ

)1+r

≤ 6C̃0 max

{(
λi

κ2

)r+ 1
2

,
1√
m

}(
max

{
λi

κ2
,

1√
m

}) 1
2
(

log
6m

δ

)1+r

.

The proof is thus completed by letting C0 = 16C̃0.5

Proposition 2.6. Assume regularity condition (7) with some 0 < r ≤ νg. If γ6

satisfies7

γ ≥




C0

(
log

6m

δ

)1+r

max
{

λp

κ2
,

1√
m

}1+r

, for 0 < r ≤ 1
2
,

C0

(
log

6m

δ

)1+r

max

{(
λp

κ2

)r+ 1
2

,
1√
m

}

max
{

λp

κ2
,

1√
m

} 1
2

, for r >
1
2
,

(26)

where C0 is the constant given by (24), then we have8

ci
γ,λ,z = 0, ∀ z ∈ U1 ∩ U2, i ≥ p + 1.

Proof. If γ satisfies condition (26), by Proposition 2.5, for z ∈ U1∩U2 and i ≥ p+1,9

we have10

|〈fz
ρ , φx

i 〉| ≤
γ

2
,

which implies ci
γ,λ,z = 0 by the definition of Gγ .11
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2.3. Representation and decomposition for error1

Now we consider how the output function fz of algorithm (6) approximates fρ.2

Convergence rates of the approximation in L2
ρX

will be established. We first make3

an error decomposition [5, 22, 14] and divide the error fz − fρ into two parts as4

fz − fρ =
(
fz − f̃x

)
+
(
f̃x − fρ

)
,

where5

f̃x = gλ(Lx
K)Lx

Kfρ.

For the first part, we see from the identity ‖f‖ρ =
∥∥L1/2

K f
∥∥

K
for f ∈ HK and the6

fact
∥∥L1/2

K (λI + LK)−1/2
∥∥ ≤ 1 that7

‖fz − f̃x‖ρ = ‖L1/2
K (fz − f̃x)‖K ≤ ‖(λI + LK)1/2(fz − f̃x)‖K .

Then we use the expression f̃x = gλ(Lx
K)Lx

Kfρ = gλ(Lx
K)
∑

i∈N
〈Lx

Kfρ, φ
x
i 〉φx

i to8

divide the term (λI + LK)1/2(fz − f̃x) further as9

(λI + LK)1/2(fz − f̃x) = (λI + LK)1/2gλ(Lx
K)
∑

i

(
Gγ(〈fz

ρ , φx
i 〉) − 〈Lx

Kfρ, φ
x
i 〉
)
φx

i

= (λI + LK)1/2(λI + Lx
K)−1/2(λI + Lx

K)1/2gλ(Lx
K)

× (λI + Lx
K)1/2(λI + Lx

K)−1/2
∑

i

(
Gγ(〈fz

ρ , φx
i 〉)

− 〈Lx
Kfρ, φ

x
i 〉)φx

i

= (λI + LK)1/2(λI + Lx
K)−1/2gλ(Lx

K)(λI + Lx
K)

× (λI + Lx
K)−1/2

∑
i

(
Gγ(〈fz

ρ , φx
i 〉) − 〈Lx

Kfρ, φ
x
i 〉
)
φx

i .

The property (1) of the filter function gλ tells us that ‖gλ(Lx
K)(λI + Lx

K)‖ ≤ 2b,10

which implies the following error decomposition.11

Proposition 2.7. We have12

‖fz − fρ‖ρ ≤ I1 + I2, (27)

where13

I1 = 2b‖(λI + LK)1/2(λI + Lx
K)−1/2‖∥∥∥∥∥(λI + Lx

K)−1/2
∑

i

(
Gγ(〈fz

ρ , φx
i 〉) − 〈Lx

Kfρ, φ
x
i 〉
)
φx

i

∥∥∥∥∥
K

and14

I2 = ‖f̃x − fρ‖ρ.
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The term
∥∥(LK + λI)1/2(Lx

K + λI)−1/2
∥∥ and I2 are well estimated in [11] as1

follows. Denote2

Bm,λ =
2κ√
m

{
κ√
mλ

+

√∑
i∈N

λi

λi + λ

}
.

Lemma 2.8. For any δ ∈ (0, 1), there exists a subset U3 of Zm with measure at3

least 1 − δ/3 such that4 ∥∥∥(LK + λI)1/2(Lx
K + λI)−1/2

∥∥∥ ≤ √
2
(Bm,λ√

λ
+ 1
)

log
6
δ
, ∀ z ∈ U3. (28)

Proposition 2.9. For z ∈ U2 ∩ U3, there holds5

I2 = ‖f̃x − fρ‖ρ

≤




C′
r

(Bm,λ√
λ

+ 1
)2r+1

λr+ 1
2

(
log

6
δ

)2r+1

, for 0 < r ≤ 1,

Cr

(Bm,λ√
λ

+ 1
)(

4κ2

√
λ

m
+ λr+ 1

2

)(
log

6
δ

)2

, for r > 1,

(29)

where Cr, C
′
r are constants independent of δ, m, or λ.6

Proof. It was shown in [11] that ‖f̃x − fρ‖ρ can be bounded by7 


2r+ 1
2 (b + 1 + cr+ 1

2
)‖uρ‖K

‖(LK + λI)1/2(Lx
K + λI)−1/2‖2r+1λr+ 1

2 , for 0 < r ≤ 1,

Cr

∥∥(LK + λI)1/2(Lx
K + λI)−1/2

∥∥(λ 1
2 ‖LK − Lx

K‖ + λr+ 1
2

)
, for r > 1,

where Cr, cr+ 1
2

are constants independent of δ, m, or λ. Then by Lemmas 2.28

and 2.8 we know that for z ∈ U2 ∩ U3, there holds9

‖f̃x − fρ‖ρ ≤




22r+1(b + 1 + cr+ 1
2
)‖uρ‖K

(Bm,λ√
λ

+ 1
)2r+1

λr+ 1
2

(
log

6
δ

)2r+1

, for 0 < r ≤ 1,

Cr

√
2
(Bm,λ√

λ
+ 1
)(

4κ2

√
λ

m
+ λr+ 1

2

)(
log

6
δ

)2

, for r > 1,

which verifies our desired result by setting C′
r = 2r+ 1

2 (b + 1 + cr+ 1
2
)‖uρ‖K .10

It remains to bound I1 in (27). The core analysis of the error is for the term11 ∥∥∥(λI + Lx
K)−1/2

∑
i

(
Gγ(〈fz

ρ , φx
i 〉) − 〈Lx

Kfρ, φ
x
i 〉
)
φx

i

∥∥∥
K

, which will be given in the12

next section.13
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3. Analysis of the Thresholding Error1

In this section, we estimate the term
∥∥(λI + Lx

K)−1/2
∑

i(Gγ(〈fz
ρ , φx

i 〉) −2

〈Lx
Kfρ〉)φx

i

∥∥
K

. To this end, we first prove that with γ chosen as in (26) and p ∈ N,3

we have4

ci
γ,λ,z = 0, ∀ z ∈ U1 ∩ U2, i ∈ N \ S, (30)

where5

S = Sp,x =
{

i = 1, . . . , p : λx
i >

λp

2

}
.

To verify this statement, we first notice from Proposition 2.6 that6

ci
γ,λ,z = 0, ∀ z ∈ U1 ∩ U2, i ≥ p + 1.

Then for i ∈ {1, . . . , p} and i �∈ S (that is, λx
i ≤ λp/2), we have from (18) and (21)7 ∣∣〈fz

ρ , φx
i 〉
∣∣ ≤ ∣∣〈fz

ρ , φx
i 〉 − 〈Lx

Kfρ, φ
x
i 〉
∣∣+ |λx

i 〈fρ, φ
x
i 〉|

≤ 2
√

2M
√

λx
i√

m

√
log

6m

δ
+

∣∣∣∣∣∣

 ∑

j:λj≥2λx
i

+
∑

j:λj<2λx
i


λx

i λr
jdj〈φj , φ

x
i 〉
∣∣∣∣∣∣

≤ 2M
√

λp√
m

√
log

6m

δ
+ λmin{r,1}

p κ2r‖uρ‖K
4κ2

√
m

log
6
δ

+
1
2
λ1+r

p ‖uρ‖K

≤ C∗
1

2




log
6m

δ
max

{
λp

κ2
,

1√
m

}1+r

, if 0 < r ≤ 1
2
,

log
6m

δ
max

{(
λp

κ2

)r+ 1
2

,
1√
m

}(
λp

κ2

) 1
2

, if r >
1
2
,

where C∗
1 = max{16κM, 32κ3+2r‖uρ‖K}. Obviously, C0 ≥ C∗

1 . Hence we have8 ∣∣〈fz
ρ , φx

i 〉
∣∣ ≤ γ

2 and thereby9

ci
γ,λ,z = 0, ∀ z ∈ U1 ∩ U2, i ∈ {1, . . . , p}, i �∈ S.

Combining the above two cases, we know that ci
γ,λ,z = 0, for z ∈ U1 ∩ U2, and10

i ∈ N \ S. which means (30) holds true.11

Since {φx
i }i form an orthogonal basis of HK , when (30) holds true, we have for12

z ∈ U1 ∩ U2,13 ∥∥∥∥∥(λI + Lx
K)−1/2

∑
i

(Gγ(〈fz
ρ , φx

i 〉) − 〈Lx
Kfρ, φ

x
i 〉)φx

i

∥∥∥∥∥
K

=

∥∥∥∥∥
∑

i

(λ + λx
i )−1/2

(
Gγ(〈fz

ρ , φx
i 〉) − 〈Lx

Kfρ, φ
x
i 〉
)
φx

i

∥∥∥∥∥
K
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=

(∑
i

(λ + λx
i )−1

(
Gγ(〈fz

ρ , φx
i 〉) − 〈Lx

Kfρ, φ
x
i 〉
)2)1/2

≤

 ∑

i∈N\S

(λx
i )2

λ + λx
i

(〈fρ, φ
x
i 〉)2




1/2

+

(∑
i∈S

(λ + λx
i )−1

(
Gγ(〈fz

ρ , φx
i 〉) − 〈Lx

Kfρ, φ
x
i 〉
)2)1/2

:= I11 + I12,

where the last inequality holds due to (30).1

We estimate I11 and I12 separately in the following. Denote2

Λm,p = max
{

λp

κ2
,

1√
m

}
. (31)

Proposition 3.1. Let p ∈ N. Under regularity condition (7) with some r > 0, we3

have for z ∈ U1 ∩ U2 ∩ U3,4 


I11 ≤ 8‖uρ‖Kκ2r+2


min

{
Λm,p√

λ
, Λ1/2

m,p

}
λr

p +
λ

min{1,r}
p λmin{r− 1

2 ,0}

(2λ + λp)min{r, 12 }
√

m

+2rλ
min{r−1,0}
p Λ1/2

m,p




 ∞∑

i=p+1

λ
max{2,2r}
i




1/2

+
8√
m





(

log
6
δ

) 3
2

.

Proof. Recall fρ = Lr
Kuρ =

∑
j∈N

λr
jdjφj with uρ =

∑
j∈N

djφj and ‖uρ‖K =5

‖{dj}‖�2. We first decompose I11 as6


 ∑

i∈N\S

(λx
i )2

λ + λx
i

〈fρ, φ
x
i 〉2



1/2

≤

 ∑

i∈N\S

(λx
i )2

λ + λx
i

〈 ∞∑
j=p+1

λr
jdjφj , φ

x
i

〉2



1/2

+




 ∑

i∈{1,...,p}\S
+

∞∑
i=p+1


 (λx

i )2‖uρ‖2
K

λ + λx
i

p∑
j=1

λ2r
j 〈φj , φ

x
i 〉2



1/2

. (32)
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For i ∈ N\S, one has λx
i ≤ λp/2 when i ≤ p, and λx

i ≤ λi + ‖LK − Lx
K‖HS ≤1

λp + 4κ2√
m

log 6
δ when i > p. So the first part in (32) can be bounded as2 

 ∑
i∈N\S

(λx
i )2

λ + λx
i

〈 ∞∑
j=p+1

λr
jdjφj , φ

x
i

〉2



1/2

≤ min

{
λ−1/2

(
λp +

4κ2

√
m

log
6
δ

)
,

(
λp +

4κ2

√
m

log
6
δ

)1/2
}

λr
p‖uρ‖K

≤ 8κ2 min
{

Λm,p√
λ

, Λ1/2
m,p

}
λr

p log
6
δ
‖uρ‖K .

Then we turn to the second part of (32).3

When r ≤ 1/2, for j = 1, . . . , p, and i ∈ {1, . . . , p}\S, the fact 2λx
i ≤ λp ≤ λj4

implies λj ≤ 2(λj − λx
i ), and that (λx

i )2−2rλ2r
j ≤ (λp/2)2−2rλ2r

j ≤ 22r−2λ2
j ≤5

22r(λj − λx
i )2. We also have6

(λx
i )2r

λ + λx
i

=
(

λx
i

λ + λx
i

)2r ( 1
λ + λx

i

)1−2r

≤
(

λp

2λ + λp

)2r

λ2r−1.

It follows that7 
 ∑

i∈{1,...,p}\S

(λx
i )2‖uρ‖2

K

λ + λx
i

p∑
j=1

λ2r
j 〈φj , φ

x
i 〉2



1/2

≤ 2r‖uρ‖K

(
λp

2λ + λp

)r

λr− 1
2


∑

i,j

(λj − λx
i )2〈φj , φ

x
i 〉2



1/2

≤ 2r‖uρ‖K

(
λp

2λ + λp

)r

λr− 1
2

4κ2

√
m

log
6
δ
.

When 1/2 < r ≤ 1, one has8

(λx
i )2λ2r

j

λ + λx
i

≤ 4−1λ2
pλ

2r
j

λ +
λp

2

≤ 4−1λ2r
p λ2

j

λ +
λp

2

≤ λ2r
p (λj − λx

i )2

λ +
λp

2

=
2λ2r

p (λj − λx
i )2

2λ + λp
.

Hence9 
 ∑

i∈{1,...,p}\S

(λx
i )2‖uρ‖2

K

λ + λx
i

p∑
j=1

λ2r
j 〈φj , φ

x
i 〉2



1/2

≤ ‖uρ‖K

√
2λr

p√
2λ + λp


∑

i,j

(λj − λx
i )2〈φj , φ

x
i 〉2



1/2

≤ ‖uρ‖K

4
√

2κ2λr
p√

2λ + λp
√

m
log

6
δ
.
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When r > 1, we have λ2r
j ≤ λ2r−2

1 λ2
j ≤ 4λ2r−2

1 (λj − λx
i )2, and then1


 ∑

i∈{1,...,p}\S

(λx
i )2‖uρ‖2

K

λ + λx
i

p∑
j=1

λ2r
j 〈φj , φ

x
i 〉2



1/2

≤ ‖uρ‖K

√
2λpλ

r−1
1√

2λ + λp


∑

i,j

(λj − λx
i )2〈φj , φ

x
i 〉2



1/2

≤ 4
√

2κ2‖uρ‖Kλr−1
1 λp√

2λ + λp
√

m
log

6
δ
.

Now we estimate the last part of (32) which restricts i ≥ p + 1 and j ≤ p.2

When r ≤ 1, we have3

λx
i λ2r

j ≤ (λi + ‖LK − Lx
K‖HS)λ2r

j ≤
(

λ2r−1
p +

4κ2

√
m

λ2r−2
p log

6
δ

)
λ2

j ,

and4

λ2
j ≤ 3(λ2

i + (λi − λx
i )2 + (λj − λx

i )2).

Hence5 
 ∞∑

i=p+1

(λx
i )2‖uρ‖2

K

λ + λx
i

p∑
j=1

λ2r
j 〈φj , φ

x
i 〉2



1/2

≤
√

sup
x>0

x

x + λ
‖uρ‖K

(
λ

r− 1
2

p +
2κ
4
√

m
λr−1

p

√
log

6
δ

)

×
√

3


 ∞∑

i=p+1

p∑
j=1

(
λ2

i + (λi − λx
i )2 + (λj − λx

i )2
) 〈φj , φ

x
i 〉2



1/2

≤
√

3‖uρ‖K

(
λ

r− 1
2

p +
2κ
4
√

m
λr−1

p

√
log

6
δ

)

 ∞∑

i=p+1

λ2
i




1/2

+
4
√

2κ2

√
m

log
6
δ


.

When r > 1, we have6

λ2r
j ≤ 22r−1(λ2r

i + (λj − λi)2r)

≤ 22r−1(λ2r
i + 2λ2r−1

j (λj − λx
i )2 + 2λ2r−1

j (λi − λx
i )2),

which yields7

λx
i λ2r

j ≤
(

λp +
4κ2

√
m

log
6
δ

)
22r−1(λ2r

i + 2λ2r−1
1 (λj − λx

i )2 + 2λ2r−1
1 (λi − λx

i )2).
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Therefore1 
 ∞∑

i=p+1

(λx
i )2‖uρ‖2

K

λ + λx
i

p∑
j=1

λ2r
j 〈φj , φ

x
i 〉2



1/2

≤
(√

λp +
2κ
4
√

m

√
log

6
δ

)
2r− 1

2 ‖uρ‖K

×

 ∞∑

i=p+1

λ2r
i + 4λ2r−1

1 ‖LK − Lx
K‖2

HS




1/2

≤ 2r− 1
2 ‖uρ‖K

(√
λp +

2κ
4
√

m

√
log

6
δ

)

×




 ∞∑

i=p+1

λ2r
i




1/2

+ 2λ
r− 1

2
1

4κ2

√
m

log
6
δ


 .

Combining all the above estimates verifies our desired bound.2

Now we turn to estimate3

I12 =

(∑
i∈S

(λ + λx
i )−1(Gγ(〈fz

ρ , φx
i 〉) − 〈Lx

Kfρ, φ
x
i 〉)2

)1/2

.

Proposition 3.2. Let p ∈ N. Under regularity condition (7) with some 0 < r ≤ νg,4

for z ∈ U1 ∩ U2 ∩ U3, we have5

I12 ≤ √
p

(
γ√

4λ + 2λp

+
2
√

2M√
m

√
log

6m

δ

)
. (33)

Proof. From the definition (3) of the soft thresholding function Gγ , we find6

|Gγ(σ) − σ| ≤ γ

2
, ∀σ ∈ R.

This together with the eigenfunction relation Lx
Kφx

i = λx
i φx

i implies7

|Gγ(〈fz
ρ , φx

i 〉) − 〈Lx
Kfρ, φ

x
i 〉〉| ≤

γ

2
+ |〈fz

ρ , φx
i 〉 − λx

i 〈fρ, φ
x
i 〉|

=
γ

2
+
√

λx
i

√
λx

i

∣∣∣∣
〈

1
λx

i

fz
ρ , φx

i

〉
− 〈fρ, φ

x
i 〉
∣∣∣∣ .

Recall that for i ∈ S, we have λx
i ≥ λp

2 . It follows that8

(λ + λx
i )−1/2|Gγ(〈fz

ρ , φx
i 〉) − 〈Lx

Kfρ, φ
x
i 〉|

≤ γ

2
√

λ + λp/2
+
√

λx
i

∣∣∣∣
〈

1
λx

i

fz
ρ , φx

i

〉
− 〈fρ, φ

x
i 〉
∣∣∣∣ .

Then our desired result follows from Lemma 2.1.9
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4. Proof of the Main Results1

In this section, we present the following general results on sparsity and error analysis2

of algorithm (6) and then derive the learning rates when the eigenvalues of the3

integral operator LK decay polynomially or exponentially.4

Theorem 4.1. Suppose that regularity condition (7) holds with some 0 < r ≤ νg.5

Let p ∈ N and δ ∈ (0, 1). If γ satisfies6

γ ≥




C0

(
log

6m

δ

)1+r

max
{

λp

κ2
,

1√
m

}1+r

, for 0 < r ≤ 1
2
,

C0

(
log

6m

δ

)1+r

max

{(
λp

κ2

)r+ 1
2

,
1√
m

}

max
{

λp

κ2
,

1√
m

} 1
2

, for r >
1
2
,

where C0 is the constant given by (24), then with confidence at least 1− δ, we have7

ci
λ,γ,z = 0, ∀ i ≥ p + 1

and the following error bound holds true: for 0 < r ≤ 1,8

‖fz − fρ‖ρ ≤ 2b

(Bm,λ√
λ

+ 1
)
8‖uρ‖Kκ2r+2


min

{
Λm,p√

λ
, Λ1/2

m,p

}
λr

p

+
λr

pλ
min{r− 1

2 ,0}

(2λ + λp)min{r,1/2}√m
+ 2rλr−1

p Λ1/2
m,p




 ∞∑

i=p+1

λ2
i




1/2

+
8√
m





(

log
6
δ

) 3
2

+
√

p

(
γ√

4λ + 2λp

+
2
√

2M√
m

√
log

6m

δ

)
 log

6
δ

+ C′
r

(Bm,λ√
λ

+ 1
)2r+1

λr+ 1
2

(
log

6
δ

)2r+1

, (34)

while for r > 1,9

‖fz − fρ‖ρ ≤ 2b

(Bm,λ√
λ

+ 1
)
8‖uρ‖Kκ2r+2


min

{
Λm,p√

λ
, Λ1/2

m,p

}
λr

p

+
λp√

2λ + λp
√

m
+ 2rΛ1/2

m,p




 ∞∑

i=p+1

λ2r
i




1/2

+
8√
m




(log

6
δ

) 3
2
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+
√

p

(
γ√

4λ + 2λp

+
2
√

2M√
m

√
log

6m

δ

)
 log

6
δ

+ Cr

(Bm,λ√
λ

+ 1
)(

4κ2

√
λ

m
+ λr+ 1

2

)(
log

6
δ

)2

. (35)

Here Λm,p = max
{

λp

κ2 , 1√
m

}
.1

Proof. Under the specified choice of γ, by Proposition 2.6, we know that2

ci
γ,λ,z = 0, ∀ z ∈ U1 ∩ U2, i ≥ p + 1.

Putting the bounds for I11 in Proposition 3.1, for I12 in Proposition 3.2, and for I23

in Proposition 2.9 into error decomposition (27) and applying Lemma 2.8, we see4

that our stated error bounds hold true for z ∈ U1 ∩ U2 ∩ U3. But the measure of5

the set U1 ∩ U2 ∩ U3 is at least 1 − δ, so our stated conclusion for the sparsity and6

error bound holds true, and the proof of the theorem is complete.7

Theorem 1.5 stated in the introduction is an immediate consequence of the8

following more general result stated for the more general case when the eigenvalues9

{λi} of LK decay polynomially with different power indices for the upper and lower10

bounds as11

D1i
−α1 ≤ λi ≤ D2i

−α2 , ∀ i ∈ N. (36)

Theorem 4.2. Assume regularity condition (7) with some 0 < r ≤ νg and condi-12

tion (36) with 1 < α2 ≤ α1, 2α1(r−1)+3α2−1 > 0 and D1, D2 > 0. Let 0 < δ < 1.13

If we choose14

γ = C0(D2/κ2 + 1)r+1

(
log

6m

δ

)r+1

m− 1+r
max{2,2r+1} (37)

and15

λ =




m
− 1

2+ 1
4α2(1+r) if 0 < r ≤ 1/2,

m
− 2α2(r+1)−1

2α2(2r+1)(r+1) if r >
1
2
,

(38)

where C0 is the constant given by (24), then with confidence at least 1 − δ we have16

ci
λ,γ,z = 0, ∀m

1
α2 max{2,2r+1} + 1 ≤ i ≤ m (39)

and17

‖fz − fρ‖ρ ≤ C∗
(

log
6m

δ

)max{r+2, 52}
m−θ,
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where1

θ =




3
4

+
2α1(r − 1) − 1

4α2
if 0 < r ≤ 1

2
,

2α1(r − 1) + 3α2 − 1
2α2(2r + 1)

if
1
2

< r ≤ 1,

1
2
− 1

2α2(2r + 1)
if r > 1,

(40)

and the constant C∗ is independent of m or δ.2

Proof. We take p = �m 1
max{2,2r+1}α2 �, which implies3

m
1

max{2,2r+1}α2 ≤ p ≤ 2m
1

max{2,2r+1}α2

and by (36) with α1 ≥ α2 > 1,4

D12−α1m
− α1

α2 max{2,2r+1} ≤ D1p
−α1 ≤ λp ≤ D2p

−α2 ≤ D2m
− 1

max{2,2r+1} . (41)

It follows that the choice (37) of γ ensures the condition in Theorem 4.1. Then we5

can apply Theorem 4.1 and know that with confidence at least 1− δ, (39) and the6

error bounds stated in Theorem 4.1 hold true. What is left is to derive learning rates7

from these error bounds by simplifying quantities included in the error bounds.8

Note that the sum
∑∞

i=p+1 λ2
i in (34) for the case r ≤ 1 and the sum

∑∞
i=p+1 λ2r

i9

in (35) for the case r > 1 can be unified as
∑∞

i=p+1 λ
max{2,2r}
i which can be10

estimated as11

∞∑
i=p+1

λ
max{2,2r}
i ≤

∞∑
i=p+1

D
max{2,2r}
2 i−α2 max{2,2r}

≤ D
max{2,2r}
2

∫ ∞

p

x−α2 max{2,2r}dx

=
D

max{2,2r}
2 p1−α2 max{2,2r}

α2 max{2, 2r} − 1

≤ D
max{2,2r}
2

α2 max{2, 2r} − 1
m

1−α2 max{2,2r}
α2 max{2,2r+1} .

Concerning the quantity Bm,λ = 2κ√
m

{
κ√
mλ

+
√∑∞

�=1
λ�

λ+λ�

}
, we apply the polyno-12

mial decay (36) of {λi}∞i=1 to get13

∞∑
�=1

λ�

λ + λ�
≤

∞∑
�=1

D2

D2 + λ�α2
≤ λ−1/α2

∫ ∞

0

D2

D2 + xα2
dx ≤ D2

α2

α2 − 1
λ−1/α2 ,

which implies14

Bm,λ√
λ

=
2κ√
mλ

(
κ√
mλ

+

√∑
i∈N

λi

λ + λi

)
≤ 2κm− 1

2 λ− 1
2− 1

2α2

(
κ +

√
D2α2

α2 − 1

)
.
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The choice (38) of λ guarantees that1

Bm,λ√
λ

+ 1 ≤ Cκ,α2,D2 ,

where Cκ,α2,D2 is a constant independent of δ or m.2

Finally we estimate the quantities Λm,p and min
{Λm,p√

λ
, Λ

1
2
m,p

}
by (41) and (38)3

and find that the stated learning rates hold true with the power index θ given by4

(40). The proof of the theorem is complete.5

We are in a position to prove our main result stated in the introduction for the6

case when the eigenvalues {λi}i decay exponentially.7

Proof of Theorem 1.7. It can be easily seen from the exponential decay (13) of8

{λi}∞i=1 that9

∞∑
�=1

λ�

λ + λ�
≤

∞∑
�=1

D2

D2 + λβ�
≤
∫ ∞

0

D2

D2 + λβx
dx.

By setting λβx = t, we have x = logβ( t
λ), and dx = 1

log β
1
t dt. It follows that10

∞∑
�=1

λ�

λ + λ�
≤ 1

log β

∫ ∞

λ

D2

(t + D2)t
dt

=
1

log β

∫ ∞

λ

(
1
t
− 1

t + D2

)
dt =

1
log β

log
(

1 +
D2

λ

)
.

Take λ = D2
log m

m . We have11

∞∑
�=1

λ�

λ + λ�
≤ 1

log β
log
(

1 +
m

log m

)
≤ 1

log β
log m

and12

Bm,λ√
λ

+ 1 =
2κ√
mλ

(
κ√
mλ

+

√∑
i∈N

λi

λ + λi

)
+ 1 ≤ 2κ√

D2

(
κ√
D2

+
1

log β

)
+ 1.

(42)

We take p = � log(m+1)
max{2,2r+1} log β � to give13

log(m + 1)
max{2, 2r + 1} logβ

≤ p ≤ 1 +
log(m + 1)

max{2, 2r + 1} logβ
. (43)

Moreover, by the eigenvalue exponential decay (13), we have14

D1

β
(2m)−

1
max{2,2r+1} ≤ λp ≤ D2m

− 1
max{2,2r+1} . (44)
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It follows that1

∞∑
i=p+1

λ
max{2r,2}
i ≤ D

max{2r,2}
2

∞∑
i=p+1

β−i max{2r,2} = D
max{2r,2}
2

β−(p+1) max{2r,2}

1 − β−max{2r,2}

= D
max{2r,2}
2

β−p max{2r,2}

βmax{2r,2} − 1
≤ D

max{2r,2}
2

βmax{2r,2} − 1
m− max{2r,2}

max{2,2r+1} .

(45)

Finally we estimate the quantities Λm,p and min
{

Λm,p√
λ

, Λ
1
2
m,p

}
by (44) and the2

choice λ = D2
log m

m as3

Λm,p = max
{

λp

κ2
,

1√
m

}
≤
(

D2

κ2 + 1

)
m− 1

max{2,2r+1} ,

min
{

Λm,p√
λ

, Λ
1
2
m,p

}
≤
(

D2

κ2 + 1

)
m− 1

2 max{2,2r+1} .

Combining the above estimates and Theorem 4.1, we find that the stated learning4

rates hold true. The proof of the theorem is complete.5
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