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Abstract

We study the convergence of the online composite mirror descent algorithm which in-
volves a mirror map to reflect the geometry of the data and a convex objective function
consisting of a loss and a regularizer possibly inducing sparsity. Our error analysis
provides convergence rates in terms of properties of the strongly convex differentiable
mirror map and the objective function. For a class of objective functions with Hölder
continuous gradients, the convergence rates of the excess (regularized) risk under poly-
nomially decaying step sizes have the order O(T−

1
2 log T ) after T iterates. Our results

improve the existing error analysis for the online composite mirror descent algorithm by
avoiding averaging and removing boundedness assumptions, and sharpen the existing
convergence rates of the last iterate for online gradient descent without any bounded-
ness assumptions. Our methodology mainly depends on a novel error decomposition
in terms of an excess Bregman distance, refined analysis of self-bounding properties of
the objective function, and the resulted one-step progress bounds.

1 Introduction

Gradient descent is a classical powerful method for optimization and numerical
computation. To approximate a minimizer of a convex function f on the Euclidean
space Rd, it defines a sequence {wt}t∈N of points iteratively by wt+1 = wt − ηtf ′(wt),
where f ′(wt) is a subgradient of f at wt and ηt is a step size. Gradient descent is even
more powerful in the era of big data and has been extended along different directions in
various ways. Mirror descent is such an extension by relaxing the Hilbert space struc-
ture (Nemirovsky & Yudin, 1983; Beck & Teboulle, 2003) and allowing a Banach space



norm on Rd such as the `p-norm with 1 ≤ p ≤ 2, where f ′(wt) is used for performing
the gradient descent in the dual of the primal space (Rd, ‖ · ‖p).

As a first-order optimization procedure, mirror descent provides an efficient way to
solve large-scale optimization problems in a Banach space (W , ‖ · ‖) by introducing a
sequence of primal-dual variables {(wt, vt)}∞t=1 in the primal-dual space to replace the
sequence {wt} in the gradient descent algorithm, and it is induced by a mirror map Ψ :

W → R. We assume Ψ to be Fréchet differentiable meaning that at every w ∈ W , there
exists a bounded linear operator Aw : W → R such that limw̃→0

|Ψ(w+w̃)−Ψ(w)−Aww̃|
‖w̃‖ =

0. Denote the operator Aw as the gradient ∇Ψ(w) of Ψ at w ∈ W which lies in the
dual space (W∗, ‖ · ‖∗). So ∇Ψ : W → W∗ is a map from the primal spaceW to the
dual spaceW∗ and is used to express the relationship vt = ∇Ψ(wt) for the primal-dual
pair (wt, vt). We also assume that Ψ is σ-strongly convex with respect to ‖ · ‖ for some
σ > 0 meaning that

DΨ(w, w̃) := Ψ(w)−Ψ(w̃)− 〈w − w̃,∇Ψ(w̃)〉 ≥ σ

2
‖w − w̃‖2, ∀w, w̃ ∈ W ,

where 〈w−w̃,∇Ψ(w̃)〉 is the dual element∇Ψ(w̃) ∈ W∗ acting on the elementw−w̃ ∈
W . We callDΨ(w, w̃) the Bregman distance between w and w̃. Then the mirror descent
algorithm applied to minw∈D f(w) with a convex function f , an initial point w1 ∈ D
and a convex set D ⊂ W produces a sequence {wt}∞t=1 of points iteratively as{

∇Ψ(wt+ 1
2
) := ∇Ψ(wt)− ηtf ′(wt),

wt+1 = arg minw∈DDΨ(w,wt+ 1
2
), t ∈ N,

(1.1)

where {ηt}∞t=1 is a sequence of step sizes. The strong convexity of Ψ implies the in-
vertibility of the map ∇Ψ : W → W∗ making the point wt+ 1

2
∈ W and the Bregman

distance DΨ(w, w̃) well defined. An important property of the mirror descent algo-
rithm rests on its flexibility in choosing a mirror map to capture the geometry of the
problem at hand, which is appealing to solve problems of high dimensions. Below we
provide a class of specific mirror maps to illustrate their influence on the behavior of
the algorithm.

Example 1. Let 1 < p ≤ 2 and (W , ‖ · ‖) = (Rd, ‖ · ‖p) with the `p-norm ‖ · ‖ = ‖ · ‖p
defined by ‖w‖p = [

∑d
i=1 |w(i)|p]

1
p for w = (w(i))di=1 ∈ W . Then its dual space is

(Rd, ‖ · ‖ p
p−1

). Take the p-norm divergence Ψp(x) = 1
2
‖x‖2

p as the mirror map. This
mirror map, as shown in (Ball et al., 1994), is (p − 1)-strongly convex over W with
respect to the norm ‖ · ‖p. Take D = W . When p = 2, the primal and dual spaces
coincide and the mirror descent reduces to the gradient descent. When a minimizer
w∗ = arg minw∈W f(w) of a convex function f is sparse, the mirror descent method
with the mirror map Ψp and the specific choice of p = 1 + 1

log d
yields a convergence

bound with a logarithmic dependence on d as proved in (Duchi et al., 2010).

In many machine learning problems, the objective function f often takes a compos-
ite form: f(w) = `(w) + r(w) with a data fitting convex (loss) function `(w) and a
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regularization term r(w), which arises naturally in regularization schemes. For these
composite optimization problems, the mirror descent directly applied to f , involving
subgradients of r, would destroy some desirable effects suggested by the regularizer
r (Duchi & Singer, 2009), such as the `1-norm for promoting sparsity. Instead, a vari-
ant of mirror descent called the composite mirror descent was introduced in (Lions &
Mercier, 1979; Duchi et al., 2010). At the t-th iteration, composite mirror descent up-
dates wt+1 by approximating f with, instead of its first-order approximation at wt used
in the mirror descent scheme, the first-order approximation of `(w) at wt plus r(w)

wt+1 = arg min
w∈D

ηt〈w − wt, `′(wt)〉+ ηtr(w) +DΨ(w,wt), t ∈ N. (1.2)

When the term r(w) vanishes, the above composite mirror descent method coincides
with the mirror descent method (1.1), which can be seen from a reformulation of
(1.2) in terms of two steps similar to (1.1) (Duchi et al., 2010). Another motiva-
tion to keep r(w) intact in (1.2) is that the first-order approximation of r(w) would
slow down the convergence rate since r(w) can be non-smooth while `(w) can be s-
mooth. If we take the specific mirror map Ψ = Ψ2 andW = D = Rd, the composite
mirror descent recovers the proximal gradient method or forward-backward splitting
wt+1 = Proxηtr(wt − ηt`′(wt)) dated back to (Lions & Mercier, 1979; Duchi & Singer,
2009), where Proxr(w) = arg minw̃[r(w̃) + 1

2
‖w − w̃‖2

2] is the proximal operator. A
typical choice of `(w) in machine learning is `(w) = 1

T

∑T
t=1 φ(yt, 〈w, xt〉), where

{(xt, yt)}Tt=1 is a training sample and φ(y, 〈w, x〉) is a loss function used to measure the
performance of the linear model x → 〈w, x〉 on the example (x, y). When the sample
size T is large, composite mirror descent in online and stochastic settings is studied in
Duchi et al. (2010), where the fixed objective function f(w) = `(w) + r(w) is replaced
by a sequence ft(w) = `t(w)+r(w) with `t(w) being either an instantaneous loss in the
online setting or a stochastic estimate of the objective function in the stochastic setting.

In this paper, we study the online composite mirror descent algorithm with the aim
of error analysis. Throughout the paper, the primal space isW = Rd with the norm ‖·‖,
the dual space isW∗ = Rd with the dual norm ‖ · ‖∗, and 〈w, x〉 denotes the action of
the dual element x ∈ W∗ on w ∈ W . Take D =W to be Rd. We assume a sequence of
examples (xt, yt), t ∈ N, to be independently drawn from a Borel probability measure
ρ defined over X × Y ⊂ W∗ × R. We assume that φ : R × R → R+

0 is convex in
the second argument, and r : W → R+

0 is convex. Then the online composite mirror
descent updates the sequence {wt}t∈N with w1 = 0 by

wt+1 = arg min
w∈D

ηt〈w−wt, φ′−(yt, 〈wt, xt〉)xt〉+ ηtr(w) +DΨ(w,wt), t ∈ N, (1.3)

where φ′−(y, ·) denotes the left-side derivative of φ with respect to the second argument.
This strategy of processing each observation per iteration enjoys a great computational
advantage when compared to the composite mirror descent (1.2). For example, for the
typical choice `(w) = 1

T

∑T
t=1 φ(yt, 〈w, xt〉) in a machine learning setting, evaluating
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one single gradient in (1.2) requires going through the whole data set. This gradient
evaluation becomes prohibitively expensive in the big data era when faced with large
amounts of data (Bach & Moulines, 2013). Below we list some examples covered in
the framework of online composite mirror descent (1.3).

Example 2. If we take Ψ = Ψ2 and r(w) = 0 in (1.3), the online composite mirror
descent recovers the online gradient descent learning with the linear kernel

wt+1 = wt − ηtφ′−(yt, 〈wt, xt〉)xt.

For the least squares loss φ(y, a) = 1
2
(y − a)2, it further translates to the Kaczmarz

algorithm.

Example 3. If we take Ψ = Ψ2, the online composite mirror descent (1.3) recovers the
online proximal gradient descent algorithm

wt+1 = Proxηtr
(
wt − ηtφ′−(yt, 〈wt, xt〉)xt

)
.

Example 4. If we take Ψ = Ψp, 1 < p ≤ 2 and r(w) = λ‖w‖1, the online com-
posite mirror descent recovers the stochastic mirror descent algorithm made sparse
(SMIDAS) proposed in (Shalev-Shwartz & Tewari, 2011)

∇Ψp(wt+ 1
2
) = ∇Ψp(wt)−ηtφ′−(yt, 〈wt, xt〉)xt, ∇Ψp(wt+1) = Proxηtλ‖·‖1

(
∇Ψp(wt+ 1

2
)
)
.

Actually (Duchi et al., 2010), the iterate wt+1 defined above is equivalent to wt+1 =

arg minw∈DDΨp(w,wt+ 1
2
) + ηtλ‖w‖1. Different realizations of online composite mir-

ror descent with the sparsity-inducing regularizer r(w) = λ‖w‖1 have also been pro-
posed and theoretically studied in (Langford et al., 2009) and (Shalev-Shwartz & Tewar-
i, 2011).

Our error analysis is carried out in terms of the generalization error (risk) of the
linear function x→ 〈w, x〉 associated with the vector w ∈ W defined by

Eφ(w) =

∫
X×Y

φ(y, 〈w, x〉)dρ.

We estimate the excess risk E[Eφ(wT )] − Eφ(w∗) for the last iterate wT produced by
(1.3), where w∗ ∈ W is a vector attaining the minimal risk

w∗ = arg min
w∈W
Eφ(w).

The algorithm and our analysis include three main ingredients: the loss function φ,
the regularizer r, and the mirror map Ψ. Our results are stated in terms of properties
of the loss functions φ and the regularizer r in addition to the strong convexity of the
differentiable mirror map Ψ and the boundedness of the probability measure ρ. To
illustrate our ideas, we state learning rates, to be proved in Section 4, for the case when
r(w) = λ‖w‖1 is the (scaled) 1-norm.
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Assumption 1. We assume that the input data are uniformly bounded in the sense R :=

supx∈X ‖x‖∗ <∞ and |φ|0 := supy∈Y φ(y, 0) <∞, |φ|′0 := supy∈Y |φ′−(y, 0)| <∞.

The involved properties of φ is measured by the Hölder continuity of φ′−.

Assumption 2. We assume that the loss function φ is convex in the second argument
and its (sub)gradient is q-Hölder continuous for some 0 ≤ q ≤ 1, meaning that there
exists a constant Lq ≥ 0 such that

|φ′−(y, a)− φ′−(y, ã)| ≤ Lq|a− ã|q, ∀a, ã ∈ R, y ∈ Y . (1.4)

Example 5. In the two extreme cases q = 0 and q = 1, convex loss functions satisfying
the condition (1.4) include the hinge loss φ(y, a) = max(0, 1− ya) with Y = {1,−1}
for classification with q = 0, the least square loss φ(y, a) = 1

2
(y − a)2 and the logistic

function φ(y, a) = log(1 + exp(−ya)) with q = 1. The intermediate case include q̃-
norm hinge loss φ(y, a) = max(0, 1 − ya)q̃ for classification (Chen et al., 2004) and
the q̃-th power absolute distance loss φ(y, a) = |y − a|q̃ for regression (Steinwart &
Christmann, 2008) with q̃ ∈ (1, 2] and q = q̃ − 1.

Denote 1 the vector in Rd with all components being 1. A norm Ω on Rd is said to be
monotonic if Ω(x) ≤ Ω(x̃) whenever x, x̃ ∈ Rd satisfy |x(i)| ≤ |x̃(i)| for i = 1, . . . , d.

Theorem 1. Assume that the mirror map Ψ is differentiable and σ-strongly convex
for some σ > 0 and the norm ‖ · ‖∗ is monotonic. Suppose that Assumption 1 and
Assumption 2 hold. Consider the regularizer r(w) = λ‖w‖1 with 0 ≤ λ ≤ λ0 for some
λ0 > 0. If the step size is ηt = η1t

− 1
2 with

0 < η1 ≤

4−1σmin
(
(R|φ|′0)−2, (RLq)

−2, (λ‖1‖∗)−2
)
, if q = 0,

4−1σmin
(
R−2L

− 2
q+1

q , (λ‖1‖∗)−2
)
, if 0 < q ≤ 1,

(1.5)

then we have
E[Eφ(wT )− Eφ(w∗)] ≤ cT−

1
2 log(eT ) + ‖w∗‖1λ,

where c is a constant independent of T or λ, and the expectation E is taken with respect
to the sample {(xt, yt)}Tt=1.

2 Main Results

This section presents our main results on error analysis of the online composite mir-
ror descent algorithm (1.3) given in terms of the following properties of the regularizer
r :W → R+

0 in addition to those of the loss function φ.

Assumption 3. We assume that the convex regularizer r :W → R+
0 satisfies r(0) = 0

and its (sub)gradient r′ is p-Hölder continuous for some 0 ≤ p ≤ 1, meaning that there
exists a constant Lp ≥ 0 such that

‖r′(w)− r′(w̃)‖∗ ≤ Lp‖w − w̃‖p, ∀w 6= w̃ ∈ W . (2.1)
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Example 6. The (scaled) regularizer λ‖w‖p̃p̃ with λ ≥ 0 and 1 ≤ p̃ ≤ 2 satisfies the
condition (2.1) with p = p̃−1 and norm ‖·‖ = ‖·‖p̃ (see Lemma C.3 in Appendix C). In
particular, the classical `1-regularizer with p̃ = 1 satisfies (2.1) with p = 0, ‖ · ‖ = ‖ · ‖1

and Lp = 2λ.

Now we can state our main results, to be proved in Section 4, on convergence rates
of the excess regularized risk E[Eφ,r(wT )−Eφ,r(w∗r)] for the last iterate of (1.3), where
Eφ,r(w) denotes the regularized risk of the linear function associated to w with the
minimizer w∗r defined by

Eφ,r(w) =

∫
X×Y

φ(y, 〈w, x〉)dρ+ r(w), w∗r = arg min
w∈W
Eφ,r(w).

Theorem 2. Assume that the mirror map Ψ : W → R is differentiable and σ-strongly
convex for some σ > 0. Suppose that Assumptions 1, 2, 3 hold with 0 ≤ p, q ≤ 1.
Consider the step size ηt = η1t

−θ with max(p,q)
1+max(p,q)

≤ θ < 1 and

ηt ≤

4−1σmin
(
R−2L

− 2
q+1

q , L
− 2
p+1

p

)
, if q > 0,

4−1σmin
(
R−2[max(|φ|′0, Lq)]−2, L

− 2
p+1

p

)
, if q = 0.

(2.2)

Then we have

E[Eφ,r(wT )− Eφ,r(w∗r)] ≤ cmax
(
T−θ log(eT ), T θ−1

)
, (2.3)

where c is a constant depending on η1, Eφ,r(w∗r), DΨ(w∗r , 0), σ−1, Lp, Lq, p, q, θ, R, |φ|0, |φ|′0
(explicitly given in the proof). Specifically, if θ = 1

2
we get

E[Eφ,r(wT )− Eφ,r(w∗r)] = O
(
T−

1
2 log T

)
. (2.4)

The existing research work on the online (stochastic) composite mirror descent al-
gorithm (1.3) gives bounds on the regularized regret defined by

R(T,w) =
T∑
t=1

[
φ(yt, 〈wt, xt〉) + r(wt)− φ(yt, 〈w, xt〉)− r(w)

]
or the closely related excess regularized risk for the average of the iterates w̄T :=
1
T

∑T
t=1 wt (Cesa-Bianchi et al., 2004; Duchi et al., 2010; Langford et al., 2009; Shalev-

Shwartz & Tewari, 2011; Duchi & Singer, 2009; Srebro et al., 2011). However, as
shown in (Rosasco et al., 2014; Shamir & Zhang, 2013; Rakhlin et al., 2012), averag-
ing can have a detrimental effect in the sense that it can slow down the convergence
rates when the objective function is strongly convex, or destroy the sparsity of the so-
lution which is often crucial for proper interpretations in many applications. Instead of
studying regret bounds or the associated convergence rates for the average of iterates,
we consider here the more challenging problem of the convergence of the last iterate,
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which would imply the convergence of the averaging scheme and would not destroy the
sparsity. Our main results show that the excess regularized risk enjoys the convergence
rate O(T−

1
2 log T ) with the step size ηt = η1t

− 1
2 , matching (up to a logarithmic factor)

the minimax rates of order O(T−
1
2 ) for stochastic approximation in the non-strongly

convex case (Agarwal et al., 2012). These results are established for a general class of
objective functions with Hölder continuous (sub)gradients including Lipschitz objective
functions and smooth objective functions.

Furthermore, our analysis does not need any boundedness assumption on ‖wt‖
or E[‖φ′−(yt, 〈wt, xt〉)xt‖2

∗] as imposed in the literature (Duchi et al., 2010; Shamir
& Zhang, 2013). For example, stochastic projected gradient descent is studied in
(Shamir & Zhang, 2013) for non-smooth optimization which gives the convergence
rate O(T−

1
2 log T ) for the last iterate. But their discussion requires the assumption

of the existence of a constant G such that ‖φ′−(yt, 〈wt, xt〉)xt‖2 ≤ G for all t ∈ N
and supw,w̃∈D ‖w − w̃‖2 ≤ G for points on the projected domain D, which only
holds when D is compact and thereby their algorithm requires an additional projec-
tion onto D per iteration. More recently, convergence of the last iterate for stochastic
proximal gradient algorithms with Ψ = Ψ2 is studied in (Rosasco et al., 2014) pre-
senting a non-asymptotic bound in expectation in the strongly convex case and the
almost sure convergence in the general case, but their discussion still needs the as-
sumption of the existence of a sequence {αt}t∈N and a constant β > 0 satisfying
E[‖`′t(wt)−`′(wt)‖2] ≤ β2(1+αt‖`′(wt)‖2) for all t ∈ N, where `t(w) = φ(yt, 〈w, xt〉)
and `(w) = E[φ(y, 〈w, x〉)].

In deriving the almost optimal convergence rates, we also get the following conver-
gence rate for E[‖∇Eφ,r(wT )‖∗], to be proved in Appendix C.

Corollary 3. Under the conditions of Theorem 2 with 0 < p, q ≤ 1, with the step size
ηt = η1t

− 1
2 satisfying (2.2), we have

E[‖∇Eφ,r(wT )‖∗] = O
(
(T−

1
2 log T )min( p

p+1
, q
q+1

)
)
.

To demonstrate our main results stated in Theorem 2, we present explicit learning
rates for some special cases in the following subsections. It would be interesting to
extend our results to non-convex loss functions including those from the minimum error
entropy principle (Hu et al., 2015).

2.1 Online gradient descent learning

The first special case corresponds to Ψ = Ψ2 and r(w) = 0. In this case, the online
composite mirror descent algorithm (1.3) recovers the unregularized online gradient
descent algorithms for regression and classification by selecting concrete loss functions
such as the q̃-norm hinge loss φ(y, a) = max(0, 1−ya)q̃, the logistic function φ(y, a) =

log(1 + exp(−ya)) and the q̃-th power absolute distance loss φ(y, a) = |y − a|q̃.
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Convergence for the last iterate has been extensively studied for the online gradi-
ent descent algorithm in reproducing kernel Hilbert spaces in (Smale & Yao, 2006;
Ying & Zhou, 2006; Smale & Zhou, 2009; Tarres & Yao, 2014; Ying & Zhou, 2016)
where the regularizer is approximated by its first-order approximation when updating
{wt}. The unregularized least squares online gradient descent algorithm in reproduc-
ing kernel Hilbert spaces is studied in (Ying & Pontil, 2008) and convergence rates
of order O(T−

1
2 log T ) are derived. For a class of loss functions with q-Hölder con-

tinuous gradients with 0 < q ≤ 1, the unregularized online gradient descent learning
with r(w) = 0,Ψ = Ψ2 is considered in (Ying & Zhou, 2015) which establishes the
convergence rate

E[Eφ(wT )− Eφ(w∗)] ≤ O(T−min(2−1qθ,1−θ))

with the step size ηt = η1t
−θ, which would be O(T−

q
q+2 ) by taking θ = 2/(q+ 2). This

convergence rate can at most attainO(T−
1
3 ) when the loss function is smooth. Theorem

2 immediately implies the following convergence rate O(T−
1
2 log T ) of the excess risk

E[Eφ(wT )]− Eφ(w∗) for unregularized online gradient descent algorithms. It is a great
improvement and thereby solves the open question whether the rateO(T−

1
3 ) without the

boundedness assumption can be improved for the unregularized online gradient descent
algorithm applied to general loss functions (Ying & Zhou, 2015).

Corollary 4. Consider the mirror map Ψ = Ψ2 and r(w) = 0. Suppose Assumptions 1
and 2 hold. Take ‖ · ‖ = ‖ · ‖2 and σ = 1. For the step size ηt = η1t

− 1
2 satisfying (2.2)

with Lp = 0, we have E[Eφ(wT )− Eφ(w∗)] = O(T−
1
2 log T ).

2.2 Online learning with sparsity-inducing regularizer

The second special case is given by Ψ = Ψp̃ with 1 < p̃ ≤ 2 and r(w) = λ‖w‖1.
In this case, the online composite mirror descent algorithm (1.3) recovers the SMIDAS
proposed in (Shalev-Shwartz & Tewari, 2011), whose convergence follows as a direct
corollary of Theorem 2 by noting the identity DΨp̃(w

∗
r , 0) = 1

2
‖w∗r‖2

p̃ and the (p̃ − 1)-
strong convexity of Ψp̃ w.r.t. ‖ · ‖p̃. Note that the dual norm of ‖ · ‖p̃ is ‖ · ‖ p̃

p̃−1
.

Corollary 5. Consider the mirror map Ψp̃ with 1 < p̃ ≤ 2 and r(w) = λ‖w‖1 with
λ ≥ 0. Suppose Assumptions 1 and 2 hold. Take ‖ · ‖ = ‖ · ‖p̃ and σ = p̃− 1. Then for
the step size ηt = η1t

− 1
2 satisfying (1.5), we have

E[Eφ,r(wT )− Eφ,r(w∗r)] = O
(
T−

1
2 log T

)
. (2.5)

Remark 1. Consider the case 0 ≤ q < 1. If we choose Ψ = Ψp̃, r(w) = λ‖w‖1 and

η1 = c′(p̃− 1) min
{[

sup
x∈X
‖x‖ p̃

p̃−1

]−2
, λ−2‖1‖−2

p̃
p̃−1

}
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with c′ depending only on Lq and |φ|′0, the constant c hidden in the big O notation in
(2.5) takes the form

c = c̄
[
(p̃− 1)−1 max

{
sup
x∈X
‖x‖2

p̃
p̃−1

, λ2‖1‖2
p̃
p̃−1

}
‖w∗r‖2

p̃ + Eφ,r(w∗r)
]
, (2.6)

where c̄ is a constant depending only on q, Lq, |φ|0 and |φ|′0. For the choice p̃ = 1+ 1
log d

,
the constant c defined by (2.6) satisfies (note that ‖x‖1+log d ≤ e‖x‖∞ for x ∈ W∗)

c ≤ c̄e2
[

max
{

sup
x∈X
‖x‖2

∞, λ
2‖1‖2

∞
}
‖w∗r‖2

1+log d
log d

log d+ Eφ,r(w∗r)
]
.

For the choice p̃ = 2, the constant c in (2.6) translates to

c = c̄
[

max
{

sup
x∈X
‖x‖2

2, λ
2‖1‖2

2

}
‖w∗r‖2

2 + Eφ,r(w∗r)
]
.

Therefore, for learning problems where the features are dense (i.e., ‖x‖2 closed to
d

1
2‖x‖∞) and w∗r is very spare (i.e., ‖w∗r‖1 closed to ‖w∗r‖2), the online composite mir-

ror descent with Ψ = Ψ1+ 1
log d

would enjoy a faster convergence rate compared to that
for Ψ = Ψ2, especially in high dimensional problems (Duchi et al., 2010).

2.3 Online smoothed linearized Bregman iteration

The last special case corresponds to the least squares loss φ(y, a) = 1
2
(y − a)2,

r(w) = 0, and the mirror map Ψε, with a parameter ε > 0, defined by Ψε(w) =

λJε(w) + 1
2
‖w‖2

2, where Jε is a componentwise regularizer for robustness smoothing
the 1-norm given by

Jε(w) =
d∑
i=1

Fε(w(i)) and Fε(ξ) =

{
ξ2

2ε
, if |ξ| ≤ ε,

|ξ| − ε
2
, otherwise.

In this case, with w1 = v1 = 0, the online composite mirror descent algorithm (1.3) can
be reformulated as

vt+1 = vt − ηt(〈wt, xt〉 − yt)xt = ∇Ψε(wt+1),

wt+1 = arg min
w∈D

ηt
〈
w − wt, (〈wt, xt〉 − yt)xt

〉
+ λJε(w) +

1

2
‖w‖2

2 −
〈
w − wt, vt

〉
= arg min

w∈D
λJε(w) +

1

2
‖w‖2

2 − 〈w, vt+1〉 = arg min
w∈D

λJε(w) +
1

2
‖w − vt+1‖2

2.

(2.7)
This is the online version of the linearized Bregman iteration (Cai et al., 2009) modified
by smoothing the 1-norm in a ε-neighborhood of the origin: the online version of the
original linearized Bregman iteration proposed in (Yin et al., 2008) corresponds to ε = 0

with vt+1 ∈ ∂Ψε(wt+1) and Jε(w) = ‖w‖1. The convergence of the iterates (2.7) is
established in the following direct corollary of Theorem 2.
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Corollary 6. Let φ(y, a) = 1
2
(y − a)2, r(w) = 0, ‖ · ‖ = ‖ · ‖2, Ψ = Ψε with ε > 0

and σ = 1. Under Assumption 1, with the step size ηt = η1t
− 1

2 satisfying (2.2) with
Lq = 1, Lp = 0, we have E[Eφ(wT )− Eφ(w∗)] = O(T−

1
2 log T ).

It would be interesting to extend the above result to the convergence of the original
online linearized Bregman iteration without smoothing.

3 Ideas and Novelty in the Analysis

This section outlines the ideas and novelty in the proof of our main results. Our first
novel point is a one-step progress bound established in (3.1) below to be proved in the
next section, showing that the excess regularized error ηt[Eφ,r(wt) − Eφ,r(w)] can be
controlled by the excess Bregman distance Et[DΨ(w,wt)−DΨ(w,wt+1)] plus the term
Et[Eφ,r(wt)]. Here Et = E[X|At] denotes the conditional expectation given At, the
σ-algebra generated by {(x1, y1), . . . , (xt−1, yt−1)}. A notable property of the one-step
progress bound (3.1) is that it involves the regularized error Et[Eφ,r(wt)], rather than
the dual norm of gradients encountered during the iterations, whose “boundedness”
in expectation is established in (3.2). This “boundedness” of E[Eφ,r(wt)] allows us to
avoid assumptions on the boundedness of gradients imposed in the literature (Shamir &
Zhang, 2013; Duchi et al., 2010), and demonstrates the novelty of our analysis.

Lemma 7. Under Assumptions 1, 2, 3, the sequence {wt}∞t=1 generated by (1.3) satisfies

ηt[Eφ,r(wt)−Eφ,r(w)] ≤ Et[DΨ(w,wt)−DΨ(w,wt+1)]+η2
t

[
c1Et[Eφ,r(wt)]+c2

]
, ∀w ∈ W ,

(3.1)
where c1 and c2 are two constants independent of t or w (explicitly given in the proof).
If we take the step size ηt = η1t

−θ satisfying (2.2) with max(p,q)
1+max(p,q)

≤ θ < 1, then for any
T ∈ N we have

E[Eφ,r(wT )] ≤

{
c3 log(eT ), if θ = max(p,q)

1+max(p,q)
,

c3, otherwise,
(3.2)

where c3 is a constant independent of T (explicitly given in the proof).

Our second novel point is to derive error bounds and convergence rates for the last
iterate from the one-step progress measured by Bregman distance in Lemma 8. It re-
fines the recent error decomposition method for gradient descent schemes in (Lin et al.,
2015b,a; Shamir & Zhang, 2013) reformulating ηTE[Eφ,r(wT ) − Eφ,r(w∗r)] as a sum-
mation of the weighted average errors and moving weighted average errors (see (B.1)),
and is proved in Appendix B.

Lemma 8. Let {ηt} be a non-increasing sequence. Let {At}t∈N be a sequence of ran-
dom variables such that At is measurable with respect to At. If

ηt[Eφ,r(wt)− Eφ,r(w)] ≤ Et[DΨ(w,wt)−DΨ(w,wt+1)] + At, ∀w ∈ W (3.3)
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for every t ∈ N, then we have

ηTE[Eφ,r(wT )− Eφ,r(w∗r)] ≤
1

T
DΨ(w∗r , 0) +

T−1∑
t=1

E[At]

T − t
+ E[AT ]. (3.4)

Our last novel point is to get the “boundedness” of E[Eφ,r(wt)] stated in (3.2) by
applying Lemma 8 to the following one-step progress bound in terms of the excess
Bregman distance and the dual norms of gradients, which can be controlled in terms
of step sizes (Lemma 13). Lemma 9 improves Lemma 1 in (Duchi et al., 2010) in our
situation. Unlike Lemma 1 in (Duchi et al., 2010) involving −φ(yt, 〈wt, xt〉)− r(wt+1)

in the associated one-step progress bound, (3.6) in Lemma 9 involves−φ(yt, 〈wt, xt〉)−
r(wt) instead, which matches the form of (3.3) in Lemma 8 and is thereby crucial for
applying Lemma 8 to get (3.2). As a comparison, Lemma 1 in (Duchi et al., 2010) could
not yield a one-step progress bound of the form (3.3). The proof of Lemma 9 is given
in the Appendix A.

Lemma 9. For any w ∈ W , the sequence {wt}∞t=1 generated by (1.3) satisfies

ηt[Eφ,r(wt)− Eφ,r(w)] ≤ Et[DΨ(w,wt)−DΨ(w,wt+1)]+

σ−1η2
tEt[‖r′(wt)‖2

∗ + ‖φ′−(yt, 〈wt, xt〉)xt‖2
∗], (3.5)

and

DΨ(w,wt+1)−DΨ(w,wt) ≤ ηt
[
φ(yt, 〈w, xt〉) + r(w)− φ(yt, 〈wt, xt〉)− r(wt)

]
+ σ−1η2

t [‖r′(wt)‖2
∗ + ‖φ′−(yt, 〈wt, xt〉)xt‖2

∗]. (3.6)

Remark 2. It should be emphasized that, a single application of Lemma 8 with the one-
step progress bound given in (3.5) can only yield the convergence rateO(T

−1
max(p,q)+2 log T )

with the step size ηt = η1t
−max(p,q)+1

max(p,q)+2 . For the specific case r(w) = 0 and q = 1, this
convergence rate translates to O(T−

1
3 log T ), matching the rate O(T−

1
3 ) established in

(Ying & Zhou, 2015) within a logarithmic factor. The way we achieve the improvement
from O(T−

1
3 ) to O(T−

1
2 log T ) rests on the following key observation due to a self-

bounding property (see Lemmas 10, 11 below): although the iterates wt can only be
shown to lie in a ball with the asymptotically diverging radius O([

∑t
t̃=1 ηt̃]

1
2 ) (see Lem-

ma 13 below), the expected norm of the associated gradient is always bounded since it
is dominated by the regularized risk.

4 Proving Main Results

This section presents the proof of Theorem 2, which yields the conclusion of Theo-
rem 1. Our proof consists of two parts. The first part applies Lemma 8 and the one-step
progress bound (3.5) to establish a crude bound on the regularized risk (3.2), based on
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which the second part applies Lemma 8 and the one-step progress bound (3.1) to derive
the convergence rate (2.3) for the last iterate of the online composite mirror descent.

We first provide some technical lemmas and inequalities used throughout the proof.
It is clear that loss functions satisfying Assumption 2 always enjoy the following growth
behavior

|φ′−(y, a)| ≤ |φ′−(y, 0)|+Lq|a|q ≤ c̄q(1+|a|q), c̄q := max(|φ|′0, Lq), ∀a ∈ R, y ∈ Y .
(4.1)

Also, the regularizer r(w) satisfying Assumption 3 meets the following growth condi-
tion

‖r′(w)‖∗ = ‖r′(w)− 0‖∗ ≤ Lp‖w − 0‖p = Lp‖w‖p, ∀w ∈ W , (4.2)

where we have used the fact 0 ∈ ∂r(0) followed from the convexity of r and 0 ∈
arg minw∈W r(w). For q ∈ (0, 1], denote cq = 2L

1
q+1
q and τq = 4(1− q)−1 if q < 1 and

τq = 4 if q = 1. Denote p ∨ q = max(p, q) and θ∗ = 2θ − (1− θ)(p ∨ q).
The following two lemmas establish the self-bounding property for functions with

Hölder continuous gradients (Srebro et al., 2010; Ying & Zhou, 2015), meaning that the
gradients can be controlled by the function values. This self-bounding property allows
us to transfer the one-step progress bound (3.5) in terms of gradients to the one-step
progress bound (3.1) in terms of the regularized risk, and is essential for us to avoid
the boundedness assumptions imposed in the literature (Shamir & Zhang, 2013; Duchi
et al., 2010). Lemma 10 can be found in (Ying & Zhou, 2015), while Lemma 11 will
be proved as a consequence of Lemma C.2 in Appendix C.

Lemma 10. If the non-negative loss function φ(y, a) satisfies (1.4) with q ∈ (0, 1], then

for cq = 2L
1
q+1
q we have

|φ′−(y, a)| ≤ cqφ(y, a)
q

1+q , ∀y, a ∈ R. (4.3)

Lemma 11. If the gradient of the non-negative regularizer r(w) satisfies (2.1) with

p ∈ (0, 1], then for cp = 2L
1
p+1
p we have

‖r′(w)‖∗ ≤ cpr(w)
p

1+p , ∀w ∈ W . (4.4)

Lemma 12. For any λ ∈ (0, 2], we have the following inequalities

T∑
t=1

t−λ ≤ 1 +
T∑
t=2

∫ t

t−1

x−λdx =


T 1−λ−λ

1−λ , if λ < 1,

log(eT ), if λ = 1,
λ
λ−1

, if λ > 1,

(4.5)

and

T−1∑
t=1

t−λ

T − t
≤

{
τλT

−λ log(eT ), if λ ≤ 1,

8(λ− 1)−1T−1, if λ > 1.
(4.6)
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To apply Lemmas 8 and 9, we need to estimate the growth behavior of ‖r′(wt)‖∗
and ‖φ′−(yt, 〈wt, xt〉)xt‖∗. This is achieved in the following lemma by showing that
{wt}t∈N always lie inside a ball, under the Bregman divergence, with a controllable
radius. The proof of Lemma 13 is given in Appendix D.

Lemma 13. Suppose that Assumptions 1, 2 and 3 hold. If the step sizes satisfy (2.2),
then the sequence {wt}∞t=1 generated by (1.3) satisfies

DΨ(0, wt) ≤ cp,q

t−1∑
k=1

ηk, (4.7)

and

‖r′(wt)‖2
∗ + ‖φ′−(yt, 〈wt, xt〉)xt‖2

∗ ≤ c4σmax
(
1, [

t−1∑
k=1

ηk]
p∨q), (4.8)

where cp,q and c4 are constants given by

cp,q = |φ|0 + (1− p)(1 + p)−1 + (1− q)(1 + q)−1,

c4 = σ−1
[
2R2c̄2

q + 2c̄2
qR

2q+2[2cp,qσ
−1]q + L2

p[2cp,qσ
−1]p

]
.

We are now in a position to prove Lemma 7. The proof of (3.1) requires the one-
step progress bound (3.5) and the self-bounding property established in Lemmas 10, 11,
while the proof of (3.2) requires to apply Lemma 8 with the one-step progress bound
(3.5) coupled with the bounds on the gradients established in Lemma 13.

Proof of Lemma 7. We first use the self-bounding property established in Lemmas 10,
11 to control σ−1η2

t [‖r′(wt)‖2
∗ + ‖φ′−(yt, 〈wt, xt〉)xt‖2

∗].
For the case 0 < q < 1, by q+1

2q
> 1 and (4.3) the term σ−1η2

t ‖φ′−(yt, 〈wt, xt〉)xt‖2
∗

can be controlled as

σ−1η2
t ‖φ′−(yt, 〈wt, xt〉)xt‖2

∗ ≤ σ−1η2
tR

2|φ′−(yt, 〈wt, xt〉)|2 ≤ σ−1η2
tR

2c2
qφ(yt, 〈wt, xt〉)

2q
q+1

≤ σ−1η2
tR

2c2
q

[
[φ(yt, 〈wt, xt〉)

2q
q+1 ]

q+1
2q

q+1
2q

+
1
q+1
1−q

]
≤ σ−1η2

tR
2c2
q(q + 1)−1

[
2qφ(yt, 〈wt, xt〉) + 1− q

]
,

where we have used the Young’s inequality

ab ≤ as

s
+
bs̃

s̃
, ∀a, b, s, s̃ > 0 with

1

s
+

1

s̃
= 1. (4.9)

The above inequality holds obviously when q = 1. Moreover, according to (4.1) we
have

σ−1η2
tR

2|φ′−(yt, 〈wt, xt〉)|2 ≤ σ−1η2
tR

24c̄2
q, if q = 0.
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For the case 0 < p < 1, by 1+p
2p

> 1 and (4.4) the term σ−1η2
t ‖r′(wt)‖2

∗ can be
controlled similarly by

σ−1η2
t ‖r′(wt)‖2

∗ ≤ σ−1η2
t c

2
pr(wt)

2p
1+p ≤ σ−1η2

t c
2
p

[
[r(wt)

2p
1+p ]

1+p
2p

1+p
2p

+
1

1+p
1−p

]
≤ σ−1η2

t c
2
p(1 + p)−1[2pr(wt) + 1− p].

The above inequality holds obviously when p = 1. From (4.2) we also have that
σ−1η2

t ‖r′(wt)‖2
∗ ≤ σ−1η2

tL
2
p if p = 0.

Putting the above discussions together, we derive the following inequality

σ−1η2
t

[
‖r′(wt)‖2

∗ + ‖φ′−(yt, 〈wt, xt〉)xt‖2
∗
]

≤ η2
t σ
−1
[
R2c2

q(2q)(q + 1)−1φ(yt, 〈wt, xt〉) + 2pc2
p(1 + p)−1r(wt)

]
+ σ−1η2

t

[
R2c2

q(1− q)(1 + q)−1 + c2
p(1− p)(1 + p)−1

+ 4(1− q)R2c̄2
q + (1− p)L2

p

]
.

Plugging the above inequality into (3.5) yields the following one-step progress bound
for the online composite mirror descent

ηt[Eφ,r(wt)−Eφ,r(w)] ≤ Et[DΨ(w,wt)−DΨ(w,wt+1)]+η2
t

[
c1Et[Eφ,r(wt)]+c2

]
, ∀w ∈ W ,

where the constants c1 and c2 are given explicitly as

c1 = σ−1 max(R2c2
q(2q)(q + 1)−1, 2pc2

p(1 + p)−1),

c2 = σ−1
[
R2c2

q(1− q)(1 + q)−1 + c2
p(1− p)(1 + p)−1 + 4(1− q)R2c̄2

q + (1− p)L2
p

]
.

This proves the first desired estimate (3.1).
We turn to the second desired estimate (3.2). Plugging (4.8) into (3.5) immediately

yields that

ηt[Eφ,r(wt)−Eφ,r(w)] ≤ Et[DΨ(w,wt)−DΨ(w,wt+1)] + c4η
2
t max

{
1,
[ t−1∑
k=1

ηk
]p∨q}

,

which implies (3.3) with At = c4η
2
t max

{
1,
[∑t−1

k=1 ηk
]p∨q}. Therefore, we can apply

Lemma 8 to obtain

E[Eφ,r(wT )− Eφ,r(w∗r)] ≤
1

TηT
DΨ(w∗r , 0) + c4η

−1
T

T−1∑
t=1

η2
t max

{
1,
[∑t−1

k=1 ηk
]p∨q}

T − t

+ c4ηT max
{

1,
[ T−1∑
k=1

ηk
]p∨q}

. (4.10)
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According to Lemma 12, the definition of θ∗ and the step size ηt = η1t
−θ with (p ∨

q)(1 + p ∨ q)−1 ≤ θ < 1 we have

η−1
T

T−1∑
t=1

η2
t max

(
1,
[∑t−1

k=1 ηk
]p∨q)

T − t
≤ η−1

T

T−1∑
t=1

η2
t max

(
1, [η1(1− θ)−1]p∨qt(1−θ)(p∨q)

)
T − t

≤ η2
1η
−1
T

(
1 ∨ [η1(1− θ)−1]p∨q

) T−1∑
t=1

t(1−θ)(p∨q)−2θ

T − t

= η2
1η
−1
T

(
1 ∨ [η1(1− θ)−1]p∨q

) T−1∑
t=1

t−θ
∗

T − t

≤ η1

(
1 ∨ [η1(1− θ)−1]p∨q

){τθ∗T θ−θ∗ log(eT ), if θ∗ ≤ 1,

8(θ∗ − 1)−1T θ−1, if θ∗ > 1.

Furthermore, it follows from (4.5) that

ηT max
{

1,
[ T−1∑
k=1

ηk
]p∨q} ≤ η1T

−θ max
{

1, [η1(1− θ)−1]p∨qT (1−θ)(p∨q)
}

≤ η1

(
1 ∨ [η1(1− θ)−1]p∨q

)
T θ−θ

∗
.

Plugging the above two bounds into (4.10), we see

E[Eφ,r(wT )− Eφ,r(w∗r)] ≤ η−1
1 T θ−1DΨ(w∗r , 0) + c4η1

(
1 ∨ [η1(1− θ)−1]p∨q

)
T θ−θ

∗

+ c4η1

(
1 ∨ [η1(1− θ)−1]p∨q

){τθ∗T θ−θ∗ log(eT ), if θ ≤ 1+p∨q
2+p∨q ,

8(θ∗ − 1)−1T θ−1, if θ > 1+p∨q
2+p∨q ,

where we observe that θ∗ ≤ 1 if and only if θ ≤ [1 + (p∨ q)]
[
2 + (p∨ q)

]−1. Note that
θ ≤ θ∗ can be equivalently written as θ ≥ (p ∨ q)

(
1 + p ∨ q

)−1.
When θ = (p ∨ q)(1 + p ∨ q)−1, we have T θ−θ∗ log(eT ) = log(eT ).
When (p ∨ q)(1 + p ∨ q)−1 < θ ≤ (1 + p ∨ q)(2 + p ∨ q)−1, then θ − θ∗ < 0 and

the elementary inequality

max
x>0

{
x−τ log x

}
≤ 1

eτ
, ∀τ > 0 (4.11)

imply that

T θ−θ
∗

log(eT ) = (eT )θ−θ
∗

log(eT )eθ
∗−θ ≤ e−1(θ∗ − θ)−1eθ

∗−θ

= [(1 + p ∨ q)θ − p ∨ q]−1eθ+(p∨q)θ−p∨q−1 ≤ [(1 + p ∨ q)θ − p ∨ q]−1.

When θ > (1 + p ∨ q)(2 + p ∨ q)−1, T θ−1 is bounded by 1.
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Combining the above three cases together, we know that

E[Eφ,r(wT )− Eφ,r(w∗r)] ≤ η−1
1 DΨ(w∗r , 0)+

c4η1

(
1 ∨ [η1(1− θ)−1]p∨q

)
×


[1 + τθ∗ log(eT )], if θ = p∨q

1+p∨q ,

[1 + 8(θ∗ − 1)−1], if θ > 1+p∨q
2+p∨q ,[

1 + τθ∗ [(1 + p ∨ q)θ − p ∨ q]−1
]
, otherwise.

The above inequality verifies the desired estimate (3.2) with the constant c3 given by

c3 = Eφ,r(w∗r) + η−1
1 DΨ(w∗r , 0) + c5,

where

c5 = c4η1

(
1∨ [η1(1−θ)−1]p∨q

)
×


[1 + τθ∗ ], if θ = p∨q

1+p∨q ,

[1 + 8(θ∗ − 1)−1], if θ > 1+p∨q
2+p∨q ,[

1 + τθ∗ [(1 + p ∨ q)θ − p ∨ q]−1
]
, otherwise.

The proof of Lemma 7 is complete.

We are in a position to prove our main results.

Proof of Theorem 2. We prove our conclusion in two cases according to different values
of θ.

If θ > (p ∨ q)(1 + p ∨ q)−1, then (3.2) implies E[Eφ,r(wt)] ≤ c3. According to
(3.1), we can apply Lemma 8 with At = (c1Et[Eφ,r(wt)] + c2)η2

t and use the inequality
E[At] ≤ (c1c3 + c2)η2

t to obtain

E[Eφ,r(wT )− Eφ,r(w∗r)] ≤ (TηT )−1DΨ(w∗r , 0) + (c1c3 + c2)η−1
T

T−1∑
t=1

η2
t

T − t
+ (c1c3 + c2)ηT

= η−1
1 T θ−1DΨ(w∗r , 0) + (c1c3 + c2)η1T

θ

T−1∑
t=1

t−2θ

T − t
+ (c1c3 + c2)η1T

−θ

≤ η−1
1 T θ−1DΨ(w∗r , 0) + (c1c3 + c2)η1T

−θ + (c1c3 + c2)η1

{
τ2θT

−θ log(eT ), if θ ≤ 1
2
,

8(2θ − 1)−1T θ−1, if θ > 1
2
,

where we have used (4.6) in the last inequality.
If θ = (p ∨ q)(1 + p ∨ q)−1, then (3.2) implies

E[Eφ,r(wt)] ≤ c3 log(eT ), ∀t ≤ T.

Analyzing analogously to the case θ > (p ∨ q)(1 + p ∨ q)−1 yields

E[Eφ,r(wT )−Eφ,r(w∗r)] ≤ η−1
1 T θ−1DΨ(w∗r , 0) + (c1c3 log(eT ) + c2)η1

[
T θ

T−1∑
t=1

t−2θ

T − t
+ T−θ

]
≤ η−1

1 T θ−1DΨ(w∗r , 0) + (c1c3 log(eT ) + c2)η1

[
τ2θT

−θ log(eT ) + T−θ
]

≤ η−1
1 T θ−1DΨ(w∗r , 0) + (c1c3 + c2)η1

[
τ2θT

−θ log2(eT ) + T−θ log(eT )
]

≤ η−1
1 T θ−1DΨ(w∗r , 0) + (c1c3 + c2)η1

[
4τ2θe

θ−2θ−2 + eθ−1θ−1
]
,
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where we have used the fact that 2θ = 2(p∨q)(1+p∨q)−1 ≤ 1 followed from p∨q ≤ 1,
and the last step uses the following inequalities due to (4.11)

T−θ log2(eT ) = [(eT )−
θ
2 log(eT )]2eθ ≤ 4eθ−2θ−2, T−θ log(eT ) ≤ eθ−1θ−1.

The following inequality follows for any T ∈ N

E[Eφ,r(wT )] ≤ c6 := Eφ,r(w∗r)+η−1
1 DΨ(w∗r , 0)+(c1c3 +c2)η1

[
4τ2θe

θ−2θ−2 +eθ−1θ−1
]
.

Analyzing analogously to the case θ > (p ∨ q)(1 + p ∨ q)−1 by applying Lemma 8 and
(3.1) with E[Eφ,r(wT )] bounded above and noting θ ≤ 1

2
yields

E[Eφ,r(wT )−Eφ,r(w∗r)] ≤ η−1
1 T θ−1DΨ(w∗r , 0)+(c1c6+c2)η1T

−θ+(c1c6+c2)η1τ2θT
−θ log(eT ).

Combining the above discussions in two different cases together, we get

E[Eφ,r(wT )−Eφ,r(w∗r)] ≤

{
η−1

1 T θ−1DΨ(w∗r , 0) + c7T
−θ[1 + τ2θ log(eT )], if θ ≤ 1

2
,

[η−1
1 DΨ(w∗r , 0) + 8c7(2θ − 1)−1]T θ−1 + c7T

−θ, if θ > 1
2
,

(4.12)
where c7 is the constant defined by

c7 :=

{
(c1c6 + c2)η1, if θ = p∨q

1+p∨q ,

(c1c3 + c2)η1, otherwise.

This verifies the desired error bound (2.3) with the constant

c =

{
η−1

1 DΨ(w∗r , 0) + c7(1 + τ2θ), if θ ≤ 1
2
,

η−1
1 DΨ(w∗r , 0) + 8c7(2θ − 1)−1 + c7, otherwise.

The proof of Theorem 2 is complete.

Proof of Theorem 1. According to the definition of w∗r we have

Eφ(w∗r) + λ‖w∗r‖1 ≤ Eφ(w∗) + λ‖w∗‖1. (4.13)

For any w ∈ W , the monotonic property of ‖ · ‖∗ implies ‖r′(w)‖∗ ≤ λ‖1‖∗ and
therefore r(w) = λ‖w‖1 satisfies (2.1) with p = 0, ‖ · ‖ = ‖ · ‖1 and Lp = 2λ‖1‖∗. It
then follows from Theorem 2 and (4.13) that

E[Eφ(wT ) + λ‖wT‖1] ≤ Eφ(w∗r) + λ‖w∗r‖1 + cT−
1
2 log(eT )

≤ Eφ(w∗) + λ‖w∗‖1 + cT−
1
2 log(eT ),

(4.14)

where c is a constant depending on η1, Eφ,r(w∗r), DΨ(w∗r , 0), σ−1, q, Lq, R, |φ|0, |φ|′0. E-
q. (4.13), together with the inequality Eφ(w∗) ≤ Eφ(w∗r) due to the definition of w∗,
implies ‖w∗r‖1 ≤ ‖w∗‖1 and then DΨ(w∗r , 0) ≤ sup‖w‖1≤‖w∗‖1 DΨ(w, 0). Furthermore,
(4.13) and the assumption λ ≤ λ0 imply

Eφ(w∗r) ≤ Eφ(w∗) + λ‖w∗‖1 ≤ Eφ(w∗) + λ0‖w∗‖1.

That is, both DΨ(w∗r , 0) and Eφ(w∗r) can be upper bounded by constants independent
of λ or T . Therefore, the constant c in (4.14) is independent of T or λ. The proof of
Theorem 1 is complete.
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Appendix

In this appendix, we prove our claimed technical lemmas.

A Proof of Lemma 9

Proof of Lemma 9. The first-order optimality condition for the minimization problem
(1.3) implies the existence of an r′(wt+1) ∈ ∂r(wt+1) such that

ηtφ
′
−(yt, 〈wt, xt〉)xt + ηtr

′(wt+1) +∇Ψ(wt+1)−∇Ψ(wt) = 0.

Combining this with

DΨ(u, v) +DΨ(v, w)−DΨ(u,w) = 〈u− v,∇Ψ(w)−∇Ψ(v)〉

yields

DΨ(w,wt+1)−DΨ(w,wt) = DΨ(w,wt+1) +DΨ(wt+1, wt)−DΨ(w,wt)−DΨ(wt+1, wt)

= 〈w − wt+1,∇Ψ(wt)−∇Ψ(wt+1)〉 −DΨ(wt+1, wt)

= 〈w − wt+1, ηtφ
′
−(yt, 〈wt, xt〉)xt + ηtr

′(wt+1)〉 −DΨ(wt+1, wt)

= ηt〈w − wt, φ′−(yt, 〈wt, xt〉)xt〉+ ηt〈wt − wt+1, φ
′
−(yt, 〈wt, xt〉)xt〉

+ ηt〈w − wt+1, r
′(wt+1)〉 −DΨ(wt+1, wt).

This together with the convexity of φ and r, and the σ-strong convexity of Ψ gives

DΨ(w,wt+1)−DΨ(w,wt) ≤ ηt
[
φ(yt, 〈w, xt〉)− φ(yt, 〈wt, xt〉)

]
+ ηt[r(w)− r(wt+1)] + ηt〈wt − wt+1, φ

′
−(yt, 〈wt, xt〉)xt〉 − 2−1σ‖wt+1 − wt‖2

≤ ηt
[
φ(yt, 〈w, xt〉)− φ(yt, 〈wt, xt〉)

]
+ ηt[r(w)− r(wt)]

+ ηt[r(wt)− r(wt+1)] + ηt‖wt − wt+1‖‖φ′−(yt, 〈wt, xt〉)xt‖∗ − 2−1σ‖wt+1 − wt‖2.

(A.1)

The convexity of r yields

ηt[r(wt)− r(wt+1)] ≤ ηt〈wt − wt+1, r
′(wt)〉 ≤ ηt‖wt − wt+1‖‖r′(wt)‖∗.
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This together with the elementary inequality ab ≤ a2

2
+ b2

2
gives

ηt[r(wt)− r(wt+1)] + ηt‖wt − wt+1‖‖φ′−(yt, 〈wt, xt〉)xt‖∗ − 2−1σ‖wt+1 − wt‖2

≤ ηt‖wt − wt+1‖
[
‖r′(wt)‖∗ + ‖φ′−(yt, 〈wt, xt〉)xt‖∗

]
− 2−1σ‖wt+1 − wt‖2

≤ σ

2
‖wt+1 − wt‖2 +

η2
t

2σ
[‖r′(wt)‖∗ + ‖φ′−(yt, 〈wt, xt〉)xt‖∗]2 − 2−1σ‖wt+1 − wt‖2

≤ σ−1η2
t [‖r′(wt)‖2

∗ + ‖φ′−(yt, 〈wt, xt〉)xt‖2
∗].

Plugging this estimate into (A.1) gives

DΨ(w,wt+1)−DΨ(w,wt) ≤ ηt
[
φ(yt, 〈w, xt〉) + r(w)− φ(yt, 〈wt, xt〉)− r(wt)

]
+ σ−1η2

t [‖r′(wt)‖2
∗ + ‖φ′−(yt, 〈wt, xt〉)xt‖2

∗].

This establishes (3.6). Reformulation followed with conditional expectation with given
At (note that wt is measurable w.r.t At) on both sides yields

ηt[Eφ,r(wt)− Eφ,r(w)] ≤ Et[DΨ(w,wt)−DΨ(w,wt+1)]+

σ−1η2
tEt[‖r′(wt)‖2

∗ + ‖φ′−(yt, 〈wt, xt〉)xt‖2
∗].

The proof of Lemma 9 is complete.

B Proof of Lemma 8

We use our ideas from (Lin & Zhou, 2015; Lin et al., 2015b,a) to prove Lemma 8.

Proof of Lemma 8. We proceed with the proof in four steps.
Step 1: Error decomposition. The following identity (Shamir & Zhang, 2013; Lin

et al., 2015b) holds for any sequence {st}t∈N

sT =
1

T

T∑
t=1

st +
T−1∑
k=1

1

k(k + 1)

T∑
t=T−k+1

(st − sT−k).

Applying this to st = ηtE[Eφ,r(wt)− Eφ,r(w∗r)] yields

ηTE[Eφ,r(wT )− Eφ,r(w∗r)] =
1

T

T∑
t=1

ηtE[Eφ,r(wt)− Eφ,r(w∗r)]+

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k+1

(
ηtE[Eφ,r(wt)−Eφ,r(w∗r)]− ηT−kE[Eφ,r(wT−k)−Eφ,r(w∗r)]

)
,

from which we derive

ηTE[Eφ,r(wT )− Eφ,r(w∗r)] =
1

T

T∑
t=1

ηtE[Eφ,r(wt)− Eφ,r(w∗r)]+

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k+1

(
ηtE[Eφ,r(wt)−Eφ,r(wT−k)]+(ηt−ηT−k)E[Eφ,r(wT−k)−Eφ,r(w∗r)]

)
.
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The definition of w∗r implies E[Eφ,r(wT−k)] ≥ E[Eφ,r(w∗r)], which, coupled with the
fact that {ηt}t∈N is non-increasing, guarantees the non-positivity of the last term in the
above inequality and thereby implies

ηTE[Eφ,r(wT )− Eφ,r(w∗r)] ≤
1

T

T∑
t=1

ηtE[Eφ,r(wt)− Eφ,r(w∗r)]

+
T−1∑
k=1

1

k(k + 1)

T∑
t=T−k+1

ηtE[Eφ,r(wt)− Eφ,r(wT−k)]. (B.1)

The first and second term in the right-hand side of the above inequality are called the
weighted average errors and moving weighted average errors, respectively.

Step 2: Controlling Weighted Average Errors. Applying the assumption (3.3) with
w = w∗r and taking expectation over remaining random variables imply

1

T

T∑
t=1

ηtE[Eφ,r(wt)− Eφ,r(w∗r)] ≤
1

T

T∑
t=1

E[DΨ(w∗r , wt)−DΨ(w∗r , wt+1)] +
1

T

T∑
t=1

E[At]

=
1

T
E[DΨ(w∗r , w1)−DΨ(w∗r , wT+1)] +

1

T

T∑
t=1

E[At]

≤ 1

T
DΨ(w∗r , 0) +

1

T

T∑
t=1

E[At].

Step 3: Controlling Moving Weighted Average Errors. Applying (3.3) with w =

wT−k (note wT−k is measurable with respect to At for any t ≥ T − k) followed with
expectations over remaining random variables implies

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k+1

ηtE[Eφ,r(wt)− Eφ,r(wT−k)]

=
T−1∑
k=1

1

k(k + 1)

T∑
t=T−k

ηtE[Eφ,r(wt)− Eφ,r(wT−k)]

≤
T−1∑
k=1

1

k(k + 1)

[ T∑
t=T−k

E
[
DΨ(wT−k, wt)−DΨ(wT−k, wt+1)

]
+

T∑
t=T−k

E[At]
]

≤
T−1∑
k=1

1

k(k + 1)

[
E[DΨ(wT−k, wT−k)−DΨ(wT−k, wT+1)] +

T∑
t=T−k

E[At]
]

≤
T−1∑
k=1

1

k(k + 1)

T∑
t=T−k

E[At].

Step 4: Combining the above results. Plugging the error bounds in the above two
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steps into (B.1) yields

ηTE[Eφ,r(wT )− Eφ,r(w∗r)] ≤
1

T
DΨ(w∗r , 0) +

1

T

T∑
t=1

E[At] +
T−1∑
k=1

1

k(k + 1)

T∑
t=T−k

E[At]

=
1

T
DΨ(w∗r , 0) +

T−1∑
t=1

E[At]

T − t
+ E[AT ],

where the last inequality uses the following identity

1

T

T∑
t=1

At +
T−1∑
k=1

1

k(k + 1)

T∑
t=T−k

At =
1

T

T∑
t=1

At +
T−1∑
t=1

At

T−1∑
k=T−t

1

k(k + 1)
+ AT

T−1∑
k=1

1

k(k + 1)

=
1

T

T∑
t=1

At +
T−1∑
t=1

At

( 1

T − t
− 1

T

)
+ [1− T−1]AT

=
T−1∑
t=1

At
T − t

+ AT .

The proof of Lemma 8 is complete.

C Proving Self-bounding Properties

The following lemma is an extension of Proposition 1 in (Ying & Zhou, 2015),
which considers the case α = β.

Lemma C.1. Let φ : R → R+
0 be a differentiable function. Suppose that there exist

constants 0 < α ≤ β ≤ 1 and L > 0 such that

|φ′(s)− φ′(s̃)| ≤ Lmax(|s− s̃|α, |s− s̃|β), ∀s, s̃ ∈ R. (C.1)

Then, for any s ∈ R we have

|φ′(s)| ≤ 2 max
(
L

1
α+1φ(s)

α
α+1 , L

1
β+1φ(s)

β
β+1
)
. (C.2)

Proof. Let s ∈ R be any real number. It suffices to consider the case φ′(s) 6= 0. We
proceed with the discussion by considering two cases according to the value of φ′(s).

If |φ′(s)| ≤ 2L, we take r = s − (2−1L−1|φ′(s)|) 1
α
φ′(s)
|φ′(s)| . Then |r − s| ≤ 1.

According to the mean-value theorem, there exists ξ between s and r such that φ(r) =

φ(s) + φ′(ξ)(r − s). Therefore, by (C.1) and the condition 0 < α ≤ β,

0 ≤ φ(r) = φ(s) + φ′(s)(r − s) + (φ′(ξ)− φ′(s))(r − s)
≤ φ(s) + φ′(s)(r − s) + L|r − s|max(|ξ − s|α, |ξ − s|β)

≤ φ(s) + φ′(s)(r − s) + L|r − s|max(|r − s|α, |r − s|β)

= φ(s) + φ′(s)(r − s) + L|r − s|α+1

= φ(s)− (2−1L−1)
1
α |φ′(s)|

1
α

+1 + L2−
α+1
α L−

α+1
α |φ′(s)|

α+1
α

= φ(s)− 2−
α+1
α L−

1
α |φ′(s)|

1
α

+1.
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Hence
|φ′(s)| ≤ 2L

1
α+1φ(s)

α
α+1 .

If |φ′(s)| > 2L, we take r = s − (2−1L−1|φ′(s)|)
1
β
φ′(s)
|φ′(s)| . Then |r − s| > 1.

Analyzing analogously to the first case we get

0 ≤ φ(s) + φ′(s)(r − s) + Lmax(|r − s|α+1, |r − s|β+1)

= φ(s) + φ′(s)(r − s) + L|r − s|β+1

= φ(s)− |φ′(s)|
1
β

+1(2−1L−1)
1
β + L(2−1L−1)

β+1
β |φ′(s)|

β+1
β

= φ(s)− 2−
β+1
β L−

1
β |φ′(s)|

1
β

+1.

Hence,
|φ′(s)| ≤ 2L

1
β+1φ(s)

β
β+1 .

Combining the above discussion together yields the inequality (C.2).

Lemma C.2 with the case α = β = 1 was considered in (Srebro et al., 2010).

Lemma C.2. Let r : W → R+
0 be differentiable. Suppose that there exists constants

0 < α ≤ β ≤ 1 and L > 0 such that

‖r′(w)− r′(w̃)‖∗ ≤ Lmax(‖w − w̃‖α, ‖w − w̃‖β), ∀w, w̃ ∈ W . (C.3)

Then we have

‖r′(w)‖∗ ≤ 2 max(L
1

α+1 r(w)
α
α+1 , L

1
β+1 r(w)

β
β+1 ), ∀w ∈ W .

Proof. Fixw ∈ W . For any w̄ such that ‖w−w̄‖ ≤ 1 we define a function fw̄ : R→ R+
0

by
fw̄(t) = r(w̄ + t(w − w̄)).

It can be directly checked that

f ′w̄(t) = 〈w − w̄, r′(w̄ + t(w − w̄))〉

and by (C.3)

|f ′w̄(t)− f ′w̄(t̃)| =
∣∣〈w − w̄, r′(w̄ + t(w − w̄))− r′(w̄ + t̃(w − w̄))

〉∣∣
≤
∥∥r′(w̄ + t(w − w̄))− r′(w̄ + t̃(w − w̄))

∥∥
∗‖w − w̄‖

≤ Lmax
(
‖w − w̃‖α|t− t̃|α, ‖w − w̃‖β|t− t̃|β

)
‖w − w̃‖

≤ Lmax(|t− t̃|α, |t− t̃|β).

where in the last inequality we have used the inequality ‖w − w̄‖ ≤ 1. So the function
fw̄ satisfies the condition (C.1) and thereby Lemma C.1 can be applied here to obtain

|f ′w̄(t)| ≤ 2 max
(
L

1
α+1fw̄(t)

α
α+1 , L

1
β+1fw̄(t)

β
β+1
)
, ∀t ∈ R,
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from which it immediately follows that

‖r′(w)‖∗ = sup
w̄:‖w−w̄‖≤1

〈w − w̄, r′(w)〉 = sup
w̄:‖w−w̄‖≤1

f ′w̄(1)

≤ 2 max
(
L

1
α+1fw̄(1)

α
α+1 , L

1
β+1fw̄(1)

β
β+1
)

= 2 max
(
L

1
α+1 r(w)

α
α+1 , L

1
β+1 r(w)

β
β+1
)
.

The proof of Lemma C.2 is complete.

Proof of Corollary 3. Define a map g : W → R by g(w) = Eφ,r(w) − Eφ,r(w∗r). The
definition of w∗r implies g(w) ≥ 0. For any w, w̃ ∈ W , we have

g(w)− g(w̃) = E[φ(y, 〈w, x〉)− φ(y, 〈w̃, x〉)] + r(w)− r(w̃),

from which it follows that

‖∇g(w)−∇g(w̃)‖ =
∥∥E[φ′(y, 〈w, x〉)x− φ′(y, 〈w̃, x〉)x]+ r′(w)− r′(w̃)

∥∥
∗

≤ E
[∥∥φ′(y, 〈w, x〉)x− φ′(y, 〈w̃, x〉)x∥∥∗]+ ‖r′(w)− r′(w̃)‖∗

= E
[
|φ′(y, 〈w, x〉)− φ′(y, 〈w̃, x〉)|‖x‖∗

]
+ ‖r′(w)− r′(w̃)‖∗.

Applying (1.4), (2.1) yields

‖∇g(w)−∇g(w̃)‖ ≤ LqE[|〈w − w̃, x〉|q‖x‖∗] + Lp‖w − w̃‖p

≤ LqE[‖w − w̃‖q‖x‖q+1
∗ ] + Lp‖w − w̃‖p

≤ Lmax(‖w − w̃‖p, ‖w − w̃‖q),

where L := Lp + LqE[‖x‖q+1
∗ ]. So the condition (C.3) is satisfied and we can apply

Lemma C.2 to get

‖∇g(w)‖∗ ≤ 2 max
(
L

1
p+1 g(w)

p
p+1 , L

1
q+1 g(w)

q
q+1
)
, ∀w ∈ W .

Setting w = wT and taking expectations on both sides we find

E[‖∇Eφ,r(wT )‖∗] = E[‖∇g(wT )‖∗] ≤ 2 max
(
L

1
p+1E[g(wT )

p
p+1 ], L

1
q+1E[g(wT )

q
q+1 ]
)

≤ 2 max
(
L

1
p+1
[
E[g(wT )]

] p
p+1 , L

1
q+1
[
E[g(wT )]

] q
q+1
)
,

where we have used the Jensen inequality. Applying (2.4) of Theorem 2 gives

E[g(wT )] = E[Eφ,r(wT )− Eφ,r(w∗r)] = O(T−
1
2 log T )

and thereby
E[‖∇Eφ,r(wT )‖∗] = O

(
(T−

1
2 log T )min( p

p+1
, q
q+1

)
)
.

The proof of Corollary 3 is complete.
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The following lemma provides a class of regularizers satisfying the condition (2.1).
For a ∈ R, denote by sgn(a) the sign of a, i.e., sgn(a) = 1 if a > 0, sgn(a) = −1 if
a < 0 and sgn(a) = 0 if a = 0.

Lemma C.3. The function rq(w) = ‖w‖qq with 1 ≤ q ≤ 2 defined onW satisfies

‖r′q(w)− r′q(w̃)‖q∗ ≤ 2q‖w − w̃‖q−1
q , ∀w, w̃ ∈ W ,

where q∗ = q
q−1

is the conjugate exponent of q.

Proof. If q = 1, then for any w ∈ W the associated subgradient r′1(w) would satisfy
‖r′1(w)‖∞ ≤ 1, from which we immediately derive

‖r′1(w)− r′1(w̃)‖∞ ≤ 2‖w − w̃‖0
1.

If q > 1, then the gradient of rq atw can be calculated by∇rq(w) = q
(
sgn(w(i))|w(i)|q−1

)d
i=1

,
from which we have

‖∇rq(w)−∇rq(w̃)‖q∗ = q
[ d∑
i=1

∣∣sgn(w(i))|w(i)|q−1 − sgn(w̃(i))|w̃(i)|q−1
∣∣q∗] 1

q∗

≤ q
[ d∑
i=1

2|w(i)− w̃(i)|(q−1)q∗
] 1
q∗

= q
[ d∑
i=1

2|w(i)− w̃(i)|q
] 1
q∗ = q2

q−1
q ‖w − w̃‖q−1

q ,

where we use the following inequality stated in (Lei et al., 2015)

|sgn(a)|a|α − sgn(b)|b|α| ≤ 2|a− b|α, ∀a, b ∈ R, α ∈ (0, 1].

The proof of Lemma C.3 is complete.

D Proof of Lemma 13

Proof of Lemma 13. We first prove (4.7). Applying (3.6) of Lemma 9 with w = 0

shows

DΨ(0, wt+1)−DΨ(0, wt) ≤ ηt
[
φ(yt, 〈0, xt〉)− φ(yt, 〈wt, xt〉) + r(0)− r(wt)

]
+ σ−1η2

t

[
‖r′(wt)‖2

∗ + ‖xt‖2
∗|φ′−(yt, 〈wt, xt〉)|2

]
≤ ηt

[
φ(yt, 〈0, xt〉)− φ(yt, 〈wt, xt〉)− r(wt)

]
+ σ−1η2

t

[
‖r′(wt)‖2

∗ +R2|φ′−(yt, 〈wt, xt〉)|2
]
. (D.1)

We now tackle the terms−ηtφ(yt, 〈wt, xt〉)+σ−1η2
tR

2|φ′−(yt, 〈wt, xt〉)|2 and−ηtr(wt)+
σ−1η2

t ‖r′(wt)‖2
∗, separately. We perform the deduction in three steps.
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Step 1. We first bound −ηtφ(yt, 〈wt, xt〉) + σ−1η2
tR

2|φ′−(yt, 〈wt, xt〉)|2 according
to different values of q.

If q = 1, applying Lemma 10 shows that

− ηtφ(yt, 〈wt, xt〉) + σ−1η2
tR

2|φ′−(yt, 〈wt, xt〉)|2

≤ −ηtφ(yt, 〈wt, xt〉) + σ−1η2
tR

2c2
qφ(yt, 〈wt, xt〉)

= −ηtφ(yt, 〈wt, xt〉)
[
1− σ−1ηtR

2c2
q

]
≤ 0,

where in the last step we have used (2.2).
If 0 < q < 1, applying Lemma 10 and Young’s inequality (4.9) implies

− ηtφ(yt, 〈wt, xt〉) + σ−1η2
tR

2|φ′−(yt, 〈wt, xt〉)|2

≤ −ηtφ(yt, 〈wt, xt〉) + σ−1η2
tR

2c2
qφ(yt, 〈wt, xt〉)

2q
q+1

≤ −ηtφ(yt, 〈wt, xt〉) + ηt(1 + q)−1
[
2qφ(yt, 〈wt, xt〉) + (1− q)[σ−1R2c2

qηt]
1+q
1−q

]
= −ηt(1− 2q(1 + q)−1)φ(yt, 〈wt, xt〉) + ηt(1− q)(1 + q)−1[σ−1R2c2

qηt]
1+q
1−q .

Since 2q(1 + q)−1 < 1, this is bounded by

ηt(1− q)(1 + q)−1[σ−1R2c2
qηt]

1+q
1−q ≤ ηt

[
(1− q)(1 + q)−1

]
,

where in the last step we have used (2.2) and cq = 2L
1
q+1
q .

If q = 0, then from (4.1) we have

−ηtφ(yt, 〈wt, xt〉) + σ−1η2
tR

2|φ′−(yt, 〈wt, xt〉)|2 ≤ σ−1η2
tR

24c̄2
q ≤ ηt,

where the last inequality follows from the assumption ηt ≤ σ(2Rc̄q)
−2.

Combining the above discussions together we have that for any q ∈ [0, 1]

−ηtφ(yt, 〈wt, xt〉) + σ−1η2
tR

2|φ′−(yt, 〈wt, xt〉)|2 ≤ (1− q)(1 + q)−1ηt. (D.2)

Step 2. We now bound −ηtr(wt) + σ−1η2
t ‖r′(wt)‖2

∗ in three cases according to the
value of p.

If p = 1, from Lemma 11 and the assumption (2.2) we have

−ηtr(wt) + σ−1η2
t ‖r′(wt)‖2

∗ ≤ −ηtr(wt) + σ−1η2
t c

2
pr(wt)

= −ηtr(wt)[1− σ−1ηtc
2
p] ≤ 0.

If 0 < p < 1, Lemma 11 and Young’s inequality imply

−ηtr(wt)+σ−1η2
t ‖r′(wt)‖2

∗ ≤ ηt[−r(wt) + σ−1ηtc
2
pr(wt)

2p
p+1 ]

≤ ηt

[
− r(wt) + (1 + p)−1

[
2pr(wt) + (1− p)[σ−1ηtc

2
p]
p+1
1−p
]]

≤ ηtr(wt)[−1 + 2p(1 + p)−1] + (1 + p)−1(1− p)[σ−1ηtc
2
p]
p+1
1−pηt

≤ (1− p)(1 + p)−1ηt,
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where in the last step we have used (2.2).
If p = 0, the assumption ηt ≤ σL−2

p implies

−ηtr(wt) + σ−1η2
t ‖r′(wt)‖2

∗ ≤ −ηtr(wt) + σ−1η2
tL

2
p ≤ ηt.

According to the above deductions we derive for any p ∈ [0, 1]

−ηtr(wt) + σ−1η2
t ‖r′(wt)‖2

∗ ≤ (1− p)(1 + p)−1ηt. (D.3)

Step 3. Plugging (D.2) and (D.3) back into (D.1) we get

DΨ(0, wt+1)−DΨ(0, wt) ≤ ηt
[
φ(yt, 〈0, xt〉) + (1− p)(1 + p)−1 + (1− q)(1 + q)−1

]
.

Taking a summation from t = 1 to T yields (4.7) as

DΨ(0, wT+1) =
T∑
t=1

[DΨ(0, wt+1)−DΨ(0, wt)] +DΨ(0, 0)

≤
T∑
t=1

ηt
[
|φ|0 + (1− p)(1 + p)−1 + (1− q)(1 + q)−1

]
.

We then prove (4.8). The σ-strong convexity of Ψ, coupled with the inequality
DΨ(0, wt) ≤ cp,q

∑t−1
k=1 ηk given by (4.7), implies

σ

2
‖wt‖2 ≤ DΨ(0, wt) ≤ cp,q

t−1∑
k=1

ηk,

from which we have

‖wt‖2q ≤
[
2cp,qσ

−1

t−1∑
k=1

ηk

]q
, ‖wt‖2p ≤

[
2cp,qσ

−1

t−1∑
k=1

ηk

]p
(D.4)

and by (4.1)

‖φ′−(yt, 〈wt, xt〉)xt‖2
∗ ≤ ‖xt‖2

∗c̄
2
q[1 + |〈wt, xt〉|q]2 ≤ 2R2c̄2

q[1 + ‖wt‖2qR2q]

≤ 2R2c̄2
q

[
1 +

[
2cp,qσ

−1

t−1∑
k=1

ηk

]q
R2q
]
.

(D.5)

Also, it follows from the growth condition (4.2) and (D.4) that

‖r′(wt)‖2
∗ ≤ L2

p‖wt‖2p ≤ L2
p

[
2cp,qσ

−1

t−1∑
k=1

ηk

]p
. (D.6)

Combining (D.5) and (D.6) together yields

‖r′(wt)‖2
∗ + ‖φ′−(yt, 〈wt, xt〉)xt‖2

∗

≤ 2R2c̄2
q + 2c̄2

qR
2q+2

[
2cp,qσ

−1
]q[ t−1∑

k=1

ηk

]q
+ L2

p

[
2cp,qσ

−1
]p[ t−1∑

k=1

ηk

]p
≤ c4σmax

{
1,
[ t−1∑
k=1

ηk

]p∨q}
.

This proves (4.8) and completes the proof of Lemma 13.
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E Proof of Lemma 12

The inequality (4.5) is obvious. The inequality (4.6) is a slight modification of
Lemma 2.6 in (Lin et al., 2015a).

Proof of Lemma 12. We only prove (4.6) here. We split the sum in two parts as follows
(we denote by bac the largest integer not larger than a)

T−1∑
t=1

t−λ

T − t
=

bT
2
c∑

t=1

t−λ

T − t
+

T−1∑
t=bT

2
c+1

t−λ

T − t
≤ 2T−1

bT
2
c∑

t=1

t−λ +
(
2T−1

)λ T−1∑
t=bT

2
c+1

(T − t)−1

≤ 2T−1

bT
2
c∑

t=1

t−λ + (2T−1)λ
bT
2
c∑

t=1

t−1 ≤ 2T−1

bT
2
c∑

t=1

t−λ + (2T−1)λ log(eT ).

If λ < 1, we have

2T−1

bT
2
c∑

t=1

t−λ + (2T−1)λ log(eT ) ≤ 2T−1(1− λ)−1(2−1T )1−λ + (2T−1)λ log(eT )

≤ 2λT−λ(1− λ)−1 + 2λT−λ log(eT )

≤ 2λT−λ log(eT )
[
1 + (1− λ)−1

]
≤ 2λ+1(1− λ)−1T−λ log(eT ).

If λ = 1, we have

2T−1

bT
2
c∑

t=1

t−λ + (2T−1)λ log(eT ) ≤ 2T−1 log(eT ) + 2T−1 log(eT ) = 4T−1 log(eT ).

If 1 < λ ≤ 2, we have

2T−1

bT
2
c∑

t=1

t−λ + (2T−1)λ log(eT ) ≤ 2T−1λ(λ− 1)−1 + (2T−1)λ log(eT )

= 2T−1λ(λ− 1)−1 + 2λeλ−1T−1(eT )1−λ log(eT )

≤ 2T−1λ(λ− 1)−1 + 2λeλ−2T−1(λ− 1)−1

≤ 8(λ− 1)−1T−1,

where we have used (4.11) in the second inequality.
The above bounds together can be written as (4.6). This proves Lemma 12.
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