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Abstract

This paper aims at approximation of functions by linear integral operators on vari-

able exponent spaces associated with a general exponent function on a domain of a

Euclidean space. Under a log-Hölder continuity assumption of the exponent function,

we present quantitative estimates for the approximation and solve an open problem

raised in our earlier work. As applications of our key estimates, we provide high order-

s of approximation by quasi-interpolation type and linear combinations of Bernstein

type integral operators on variable exponent spaces. We also introduce K-functionals

and moduli of smoothness on variable exponent spaces and discuss their relationships

and applications.
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1 Introduction

Approximation of functions by positive linear operators is a classical topic in approxima-

tion theory starting with the Bernstein operators [7], for approximating functions in the
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space C[0, 1] of continuous functions on [0, 1], defined by Bn(f, x) =
∑n

k=0 f( k
n
)pn,k(x) for

x ∈ [0, 1] with the Bernstein basis pn,k(x) =
(
n
k

)
xk(1 − x)n−k. The Bernstein operators

have been extended in various forms for the purpose of approximating discontinuous func-

tions, by replacing the point evaluation functionals by some integrals. Classical examples

for approximation in Lp[0, 1] (1 ≤ p < ∞) with the norm ‖f‖Lp =
(∫ 1

0
|f(x)|pdx

)1/p

are

Bernstein-Kantorovich operators [27]

Kn(f, x) =
n∑
k=0

(n+ 1)

∫ k+1
n+1

k
n+1

f(t)dt pn,k(x), x ∈ [0, 1] (1.1)

and Bernstein-Durrmeyer operators [20]

Dn(f, x) =
n∑
k=0

(n+ 1)

∫ 1

0

pn,k(t)f(t)dt pn,k(x), x ∈ [0, 1]. (1.2)

Quantitative estimates for approximation by Bernstein type positive linear operators of

functions in C[0, 1] or Lp[0, 1] have been presented in a large literature (e.g., [5, 4]). See [19]

and references therein for details and extensions to infinite intervals and linear combinations

of positive operators for achieving high orders of approximation.

In this paper we study the approximation of functions by quasi-interpolation type linear

integral operators on variable Lp(·) spaces. The functions are defined on a connected open

subset Ω of Rd. The variable Lp(·) space, Lp(·)(Ω), is associated with a measurable function

p : Ω → [1,∞) called the exponent function. The space Lp(·) consists of all measurable

functions f on Ω such that
∫

Ω

(
|f(x)|
λ

)p(x)

dx ≤ 1 for some λ > 0. This space is a generalization

of the Lebesgue Lp space with constant p ∈ [1,∞), but its norm cannot be defined by

replacing the constant p by exponent function p(·). Its norm is defined by scaling as

‖f‖p(·) := ‖f‖Lp(·) = inf

{
λ > 0 :

∫
Ω

(
|f(x)|
λ

)p(x)

dx ≤ 1

}
. (1.3)

With this norm, Lp(·) becomes a Banach space.

The idea of variable Lp(·) spaces was introduced by Orlicz [35]. Motivated by connections

to variational integrals with non-standard growth related to modeling of electrorheological

fluids [1], image processing (e.g., [8, 9, 13]) and learning theory [32], there has been much

interest in the approximation by linear operators on the variable Lp(·) spaces recently (e.g.,

[16, 32, 42]). On the other hand, these function spaces have been developed in analysis, and

research topics include boundedness of maximal operators and denseness of smooth functions.

We shall not go into details which can be found in [28], [18] and references therein. Instead,
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we only mention the following core condition on the log-Hölder continuity of the exponent

function which leads to boundedness of Hardy-Littlewood maximal operators and the rich

theory of the variable Lp(·)(Ω) spaces.

Definition 1. We say that the exponent function p : Ω→ [1,∞) is log-Hölder continuous if

there exists a positive constants Ãp > 0 such that

|p(x)− p(y)| ≤ Ãp
− log |x− y|

, x, y ∈ Ω, |x− y| < 1/2. (1.4)

We say that p is log-Hölder continuous at infinity (when Ω is unbounded) if there holds

|p(x)− p(y)| ≤ Ãp
log(e+ |x|)

, x, y ∈ Ω, |y| ≥ |x|. (1.5)

Denote

p− = inf
x∈Ω

p(x), p+ = sup
x∈Ω

p(x).

It is obvious that 1 ≤ p− ≤ p+ <∞.

Regularity of approximated functions on the variable space Lp(·) may be described by the

variable Sobolev space W r,p(·)(Ω) (e.g., [22, 18]) with a regularity index r ∈ N which is the

Banach space of measurable functions f such that for every multi-index α = (α1, . . . , αd) ∈
Zd+ with |α|1 :=

∑d
i=1 αi ≤ r, the partial derivative Dαf = ∂|α|1

∂x
α1
1 ...∂x

αd
d

f is in Lp(·)(Ω). We

define the norm on the space W r,p(·) by

‖f‖r,p(·) := ‖f‖W r,p(·)(Ω) =
∑
|α|1≤r

‖Dαf‖p(·).

It is obvious thatW 0,p(·)(Ω) = Lp(·)(Ω). Denote the seminorm |f |r,p(·) =
∑
|α|1=r ‖Dαf(x)‖p(·).

We shall measure the regularity of approximated functions by the K-functional Kr(f, t)p(·)

defined by

Kr(f, t)p(·) = inf
g∈W r,p(·)

{
‖f − g‖p(·) + t‖g‖r,p(·)

}
, t > 0. (1.6)

When r = 1, we denote Kr(f, t)p(·) by K(f, t)p(·).

Denote by C∞0 (Ω) the space of all compactly supported C∞ functions on Ω. From [18],

we know that when p+ < ∞, C∞0 (Ω) is dense in Lp(·)(Ω). Hence for any f ∈ Lp(·)(Ω), there

holds Kr(f, t)p(·) → 0 as t→ 0.

The first motivation of this paper is an open problem raised in our earlier work [32]. It

is associated with quasi-interpolation type linear operators starting with the classical work
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of Schoenberg on cardinal interpolation by B-splines and developed well due to applications

in the areas of finite element methods, cardinal interpolation for multivariate approximation

and wavelet analysis. A large class of linear operators for approximating functions on Rd

take the form

T (f, x) =

∫
Rd

Φ(x, t)f(t)dt, x ∈ Rd, (1.7)

where Φ : Rd × Rd → R is a window function satisfying
∫
Rd Φ(x, t)dt ≡ 1 and some con-

ditions for decays of Φ(x, t) as |x − t| increases. Quantitative estimates for approxima-

tion in C(Rd) ∩ L∞(Rd) or Lp(Rd) with 1 ≤ p < ∞ (p being constant) can be found

in a large literature of multivariate approximation (see e.g. [10, 30, 26]). Establishing

analysis for approximation by quasi-interpolation type linear operators on the variable

Lp(·) spaces is a new and interesting topic. The barrier we met in [32] is the assumption

that a measure ρ satisfies ρ(Ω) < ∞. This assumption is not satisfied for most quasi-

interpolation type linear operators or the classical Weierstrass (or Gaussian convolution)

operators Gn(f) =
(√

n
2π

)d ∫
Rd exp

{
−n|t−·|2

2

}
f(t)dt, for which ρ is often the Lebesgue mea-

sure on Rd. It is desirable to overcome the technical difficulty and establish error analysis

for linear operators with respect to unbounded measures. The first purpose of this paper is

to solve this problem. We shall present a general framework of approximation in Lp(·)(Rd)

associated with variable exponent Sobolev space W r,p(·)(Rd) and provide approximation the-

orems (Theorem 1 and Theorem 2 in Section 2) for a class of linear integral operators on Rd

under mild conditions for decays of Φ(x, t) as |x− t| increases.

The issue of approximation by Bernstein type positive linear operators on variable Lp(·)(Ω)

spaces with Ω = (0, 1) was raised by the third author in [42]. It turned out that the

variety of the exponent function p creates technical difficulty in the study of approximation.

In particular, the uniform boundedness of the Bernstein-Kantorovich operators (1.1) and

Bernstein-Durrmeyer operators (1.2) is already a difficult problem. The key analysis in [42]

is to show that the Bernstein-Kantorovich operators and Bernstein-Durrmeyer operators are

uniformly bounded when the exponent function p is Lipschitz α for some α ∈ (0, 1]. It was

conjectured there that the uniform boundedness still holds when p is log-Hölder continuous.

This conjecture was solved by the first and third authors ([32]) who also gave approximation

theorems in the Hölder space W r,∞
p(·) defined by

W r,∞
p(·) =

{
g ∈ Lp(·) : ‖g‖p,r,∞ <∞

}
with the norm ‖g‖p,r,∞ = ‖g‖p(·) +

∑
|α|1≤r ‖D

αg‖∞ and presented some applications to

learning theory such as error analysis for some learning algorithms for classification [40] and
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quantile regression [39] in variable Lp(·)(Ω) spaces. It would be interesting to apply our

approximation theorems to analysis of some other learning schemes [25, 21, 24, 37].

The second purpose of this paper is to provide quantitative estimates for high orders of

approximation by linear combinations of Bernstein type operators on variable Lp(·)(S) spaces

with a simplex S ⊆ Rd. We shall improve the approximation order in the previous work [32]

and extend the approximation theorems in the univariate case [42] to the multivariate case.

The last purpose of this paper is to introduce moduli of smoothness ωr(f, t)p(·) on variable

Lp(·)(Ω) spaces and provide some relationships between Kr(f, t)p(·) and ωr(f, t)p(·). This is a

very difficult problem on variable Lp(·)(Ω) spaces. The main essential difficulty is that the

variable Lp(·)(Ω) spaces are no longer translation-invariant (even not shift-invariant) in gener-

al. This leads to the difficulty in defining moduli of smoothness on variable Lp(·)(Ω) spaces.

We overcome this difficulty by means of integral means and define moduli of smoothness

ωr(f, t)p(·) as follows.

For h > 0, denote

Ω(h) = {x ∈ Ω : B(x, h) ⊆ Ω} ,

where B(x, h) is the ball defined by B(x, h) =
{
y ∈ Rd : |y − x| < h

}
. Denote the integral

mean of a locally integrable function f on Ω by

Mhf(x) =
1

|B(x, h)|

∫
B(x,h)

f(y)dy, x ∈ Ω(h), (1.8)

where |E| denotes the Lebesgue measure of a subset E of Ω. Then for r ∈ Z+, the rth

modulus of smoothness is defined for f ∈ Lp(·)(Ω) by

ωr(f, t)p(·) := sup
0<hi≤t
i=1,...,r

∥∥∥∥∥
r∏
i=1

(I −Mhi)fχΩ(h1+···+hr)

∥∥∥∥∥
p(·)

, t > 0, (1.9)

where I is the identity operator and χΩ(h1+···+hr) is the indicator function of the set Ω(h1 +

· · ·+ hr). When r = 0, we denote ω0(f, t)p(·) = ‖f‖p(·).

The paper is organized as follows. In Section 2, we give quantitative approximation

theorems and a converse theorem for a general class of integral operators on variable Lp(·)(Rd)

spaces under the assumption of log-Hölder continuity of the exponent function p(·). These

theorems are proved in Section 3 based on two key local estimations. As an application, we

provide in Section 4 high orders of approximation by linear combinations of Bernstein type

operators on variable Lp(·)(S) spaces. In Section 5, we present some properties of the moduli

of smoothness ωr(f, t)p(·) on the variable Lp(·)(Ω) spaces and some relationships between

Kr(f, t)p(·) and ωr(f, t)p(·). In the last section, we give some further discussion.
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2 Main Approximation Theorems on Lp(·)(Rd)

We consider the integral operator defined by (1.7) with the kernel function Φ on Rd × Rd

satisfying ∫
Rd

Φ(x, t)dt ≡ 1. (2.1)

We also assume that the integral operator decays polynomially fast in the sense that for

some nonnegative integer m and a constant Cm there holds

|Φ(x, t)| ≤ Cm
(1 + |x− t|)m

, ∀x, t ∈ Rd, (2.2)

Below are some typical examples.

Example 2.1. If Φ : Rd × Rd → R satisfies (2.1) and (2.2), is continuous, symmetric

such that the matrix (Φ(xi, xj))
l
i,j=1 is positive semidefinite for any {x1, · · · , xl} ⊂ Rd, then

Φ generates a reproducing kernel Hilbert space (RKHS) for regression and classification in

learning theory analysis [36]. Such a kernel is often called a basic windowing function in

statistics.

Example 2.2. Suppose that for some nonnegative integer q, there exists a constant cq such

that a function ϕ : Rd → R satisfies∫
Rd
ϕ(x)dx = 1, |ϕ(x)| ≤ cq

(1 + |x|)q
, (2.3)

then the kernel function Φ : Rd × Rd → R defined by Φ(x, t) = ϕ(x− t) satisfies conditions

(2.1) and (2.2) with m = q. As a special case, consider the Gaussian density function

ϕα(x) =

(
1√
2πα

)d
exp

{
−|x|

2

2α2

}
, x ∈ Rd

with a parameter α > 0. It is easy to see that ϕα satisfies (2.3) for any q ∈ N. Set

Φα(x, t) = ϕα(x−t). Then the operator T defined by (1.7) becomes the Weierstrass operator

[19, 36] with the parameter α > 0, taking the form

Gα(f, x) =

(
1√
2πα

)d ∫
Rd
f(t) exp

{
−|x− t|

2

2α2

}
dt, x ∈ Rd. (2.4)

Example 2.3. Take a kernel function Φ : Rd × Rd → R defined by

Φ(x, t) =
∑
τ∈Zd

ϕ(x− τ)ϕ(t− τ),
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where for some nonnegative integer m, there exists a positive constant Cm such that the

function ϕ : Rd → R satisfies∫
Rd
ϕ(x)dx = 1, |ϕ(x)| ≤ Cm

(1 + |x|)m
,

∑
τ∈Zd

ϕ(x+ τ) ≡ 1.

Then conditions (2.1) and (2.2) are satisfied [33]. The function ϕ can be a refinable function

in wavelet analysis.

Multivariate approximation in Lp(Rd) with p being constant was motivated by finite

element methods [23]. Lei, Jia and Cheney [30] investigated the approximation from shift-

invariant spaces by integral operators (1.7). They gave a characterization of the approxima-

tion order provided by these operators and unified some approximation schemes in cardinal

interpolation (see, e.g., [12, 15]), quasi-interpolation (see, e.g., [11, 14]) and wavelet analysis

(see, e.g., [29, 33, 34]). They also showed that under some decay conditions, the integral

operator T provides approximation order m if and only if it reproduces all polynomials of

degree at most m− 1.

Definition 2. Given a positive integer m, we say that an integral operator T on Lp(·)(Rd)

defined by (1.7) provides approximation order m ∈ N if for every sufficiently smooth function

f in Lp(·)(Rd),

‖Thf − f‖p(·) ≤ C̃hm, as h→ 0, (2.5)

where the constant C̃ is independent of h. Here with the scaling operator with a scaling

parameter h > 0 defined by

σhf = f(·/h),

Th is the linear operator σhTσ1/h.

Our first theorem provides the uniform boundedness of the scaled operators Th on the

variable Lp(·)(Rd) space and gives the order of approximation by these linear operators when

the approximated function has some smoothness stated in terms of a K-functional (1.6) with

r = 1.

Theorem 1. Suppose the exponent function p : Rd → (1,∞) satisfies 1 < p− ≤ p+ < ∞
and the log-Hölder continuity condition (1.4) and (1.5). If the kernel Φ satisfies conditions

(2.1) and (2.2) with m > d + p−
p−−1

, then the operators {Th}h>0 on Lp(·)(Rn) are uniformly

bounded by a positive constant M̂p as

‖Th‖ ≤ M̂p, ∀h > 0. (2.6)
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Moreover, we have

‖Th(f)− f‖p(·) ≤ C̃pK (f, h)p(·) , ∀h > 0. (2.7)

Here M̂p and C̃p are constants depending on p(·), d,m,Cm, to be given explicitly in the proof.

We devote our second theorem to high order estimates of approximation by operators

{Th} when the approximated function has high order smoothness stated in terms of the

K-functional Kr(f, t)p(·) with r > 1.

Theorem 2. Let r ∈ N. Under the same assumption on p as in Theorem 1 with the

extra requirement p− > d, if the kernel Φ satisfies conditions (2.1), (2.2) with m > d +

max{r, p−
p−−1
} and∫

Ω

Φ(x, t)(t− x)αdt = δα,0, ∀x ∈ Ω, α ∈ Zd+ with |α|1 < r, (2.8)

then for any f ∈ Lp(·), we have

‖Th(f)− f‖p(·) ≤ Âp,dKr (f, hr)p(·) , ∀h > 0, (2.9)

where the constant Âp,d is independent of f ∈ Lp(·) and h (given explicitly in the proof).

Remark 1. The vanishing moment assumption (2.8) corresponds to the Strang-Fix type

conditions in the literature of shift-invariant spaces (e.g., [30, 26]).

In fact, from the proof of Theorem 2 given in Section 3, we have the following extension of

the Bramble-Hilbert Lemma and a result in [30] with constant p to the variable Lp(·) spaces.

Proposition 1. Let r ∈ N. Under the same assumption on p and Φ as in Theorem 2, let T

be the integral operator defined by (1.7). If Tq = q for all q ∈ Πr−1, then

‖Thf − f‖p(·) ≤ C̃|f |r,p(·)hr, f ∈ W r,p(·), (2.10)

where C̃ is a constant independent of f and h, and Πr = Πr(Rn) denotes the linear space of

all polynomials of degree at most r on Rn.

The following theorem gives a converse of Proposition 1. It gives an upper bound for the

approximation order.

Theorem 3. Let r ∈ N. Suppose the exponent function p : Rd → [1,∞) satisfies 1 ≤ p− ≤
p+ <∞. Let the kernel Φ satisfy (2.1), (2.2) with m > d, and

Φ(x− v, t) = Φ(x, t+ v), ∀v ∈ Zd, x, t ∈ Rd. (2.11)
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Define the integral operator T by (1.7). If for every f ∈ C∞0 (Rd), there holds

‖Thf − f‖Lp(·)((0,1)d) = o(hr−1), as h→ 0, (2.12)

then Tq = q for all q ∈ Πr−1.

Remark 2. Condition (2.11) described in Theorem 3 is equivalent to the commutativity of

T with all shift operators Sv with v ∈ Zd defined by Sv(f) = f(· − v). This condition is

satisfied by many integral operators such as convolution operators, quasi-interpolants, and

cardinal interpolants.

Remark 3. Proposition 1 and Theorem 3 together characterize the approximation order

of an integral operator with its kernel satisfying (2.1) and (2.2) by means of the degree of

polynomial reproductions in the variable Lp(·) spaces. From [30], we also see that Theorem

3 remains true if the cube J = (0, 1)d in (2.12) is replaced by any nonempty open subset of

Rd.

3 Proving Approximation Theorems

In this section we give detailed proofs of our approximation theorems stated in Section 2.

Denote by L1
loc(Rd) the space of locally integrable functions on Rd. We need the following

two lemmas to estimate regularity of differential functions by the centered Hardy-Littlewood

maximal operator M defined for locally integrable functions on Ω by

M(f)(x) = sup
h>0

1

|B(x, h)|

∫
B(x,h)

⋂
Ω

|f(t)|dt, x ∈ Ω. (3.1)

Lemma 1. If g ∈ L1
loc(Rd) satisfies |∇g| ∈ L1

loc(Rd), then for any x, t ∈ Rd, there holds

|g(x)− g(t)| ≤ 6d

d

(
M(|∇g|)(x) +M(|∇g|)(t)

)
|x− t|. (3.2)

Proof. Denote x0 = x+t
2

and δ = |x−t|
4

. For y ∈ B(x0, δ), we denote w = y−x
|y−x| when y 6= x

and have

g(x)− g(y) = −
∫ |y−x|

0

Dρ

(
g(x+ ρw)

)
dρ = −

∫ |y−x|
0

∇g(x+ ρw) · wdρ, (3.3)
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where Dρ

(
g(x + ρw)

)
is the derivative of g(x + ρw) with respect to ρ. Integrating both

sides of (3.3) about y ∈ B(x0, δ), we have∫
B(x0,δ)

(g(x)− g(y))dy = |B(x0, δ)|
(
g(x)− 1

|B(x0, δ)|

∫
B(x0,δ)

g(y)dy

)
= −

∫
B(x0,δ)

∫ |y−x|
0

∇g(x+ ρw) · wdρdy. (3.4)

Define

G(u) =

|∇g(u)|, if u ∈ B(x, 3δ),

0, otherwise.

Since |y − x| ≤ 3δ for y ∈ B(x0, δ), we see B(x0, δ) ⊂ B(x, 3δ) and from (3.4),∣∣∣∣g(x)− 1

|B(x0, δ)|

∫
B(x0,δ)

g(y)dy

∣∣∣∣ ≤ 1

|B(x0, δ)|

∫
B(x0,δ)

∫ |y−x|
0

|∇g(x+ ρw)|dρdy

≤ 1

|B(x0, δ)|

∫ 3δ

0

∫
B(x,3δ)

G(x+ ρw)dydρ

=
1

|B(x0, δ)|

∫ 3δ

0

∫ 3δ

0

∫
∂B(x,τ)

G

(
x+ ρ

y − x
|y − x|

)
dS(y)dτdρ,

where ∂B(x, τ) denotes the spherical surface {y ∈ Rd : |y − x| = τ}. Setting y = x+ τv, we

find ∫ 3δ

0

∫
∂B(x,τ)

G

(
x+ ρ

y − x
|y − x|

)
dS(y)dτ =

(3δ)d

d

∫
∂B(0,1)

G(x+ ρv)dS(v).

Setting u = x+ ρv yields∣∣∣∣g(x)− 1

|B(x0, δ)|

∫
B(x0,δ)

g(y)dy

∣∣∣∣ ≤ (3δ)d

d|B(x0, δ)|

∫ 3δ

0

∫
∂B(0,1)

G(x+ ρv)dS(v)dρ

=
(3δ)d

d|B(x0, δ)|

∫ 3δ

0

∫
∂B(x,ρ)

G(u)ρ1−ddS(u)dρ =
(3δ)d

d|B(x0, δ)|

∫ 3δ

0

∫
∂B(x,ρ)

G(u)

|u− x|d−1
dS(u)dρ

=
(3δ)d

d|B(x0, δ)|

∫
B(x,3δ)

G(u)

|u− x|d−1
du. (3.5)

Since |B(x0, δ)| = ϑ(d)δd, where ϑ(d) = π
d
2

Γ( d
2

+1)
is the volume of the unit ball in Rd, we have∣∣∣∣g(x)− 1

|B(x0, δ)|

∫
B(x0,δ)

g(y)dy

∣∣∣∣ ≤ 3d

dϑ(d)

∫
B(x,3δ)

G(u)

|u− x|d−1
du. (3.6)
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Since G(u) ≥ 0, we have∫
B(x,3δ)

G(u)

|u− x|d−1
du =

∞∑
k=1

∫
{u∈Rd: 3δ

2k
≤|u−x|≤ 3δ

2k−1}
G(u)

|u− x|d−1
du

≤
∞∑
k=1

(
2k

3δ

)d−1 ∫
{u∈Rd:|u−x|< 3δ

2k−1}
G(u)du =

∞∑
k=1

(
2k

3δ

)d−1 ∫
B(x, 3δ

2k−1 )
G(u)du

=
∞∑
k=1

(
2k

3δ

)d−1 ϑ(d)
(

3δ
2k−1

)d∣∣B (x, 3δ
2k−1

)∣∣ ∫
B(x, 3δ

2k−1 )
|∇g(u)|du

≤ 3δϑ(d)
∞∑
k=1

2d−kM(|∇g|)(x) = 2d3δϑ(d)M(|∇g|)(x). (3.7)

Combining (3.7) with (3.6), we obtain∣∣∣∣g(x)− 1

|B(x0, δ)|

∫
B(x0,δ)

g(y)dy

∣∣∣∣ ≤ 3d

dϑ(d)
2d3δϑ(d)M(|∇g|)(x)

≤ 6d

d
M(|∇g|)(x)3δ ≤ 6d

d
M(|∇g|)(x)|x− t|. (3.8)

By symmetry, we also have∣∣∣∣g(t)− 1

|B(x0, δ)|

∫
B(x0,δ)

g(y)dy

∣∣∣∣ ≤ 6d

d
M(|∇g|)(t)|x− t|. (3.9)

From the estimates (3.8) and (3.9), we immediately get the desired estimate (3.2). The

lemma is proved.

Lemma 2. Let s > d. If g ∈ L1
loc(Rd) satisfies |∇g| ∈ L1

loc(Rd), then

|g(x)− g(t)| ≤ cs,d [M(|∇g|s)(x)]
1
s |x− t|, ∀x, t ∈ Rd, (3.10)

where cs,d is a constant depending only on s, d (given explicitly in the proof).

Proof. We continue the proof of Lemma 1. Applying the Hölder inequality to (3.8), we have∣∣∣∣g(x)− 1

|B(x0, δ)|

∫
B(x0,δ)

g(y)dy

∣∣∣∣ ≤ 6d

d
[M (|∇g|s) (x)]

1
s |x− t|. (3.11)

Define

G(u) =

|∇g(u)|, if u ∈ B(x, 4δ),

0, otherwise.
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Since B(x0, δ) ⊂ B(t, 3δ), by the method used in the proof of Lemma 1, with w := y−t
|y−t| ,

we obtain ∣∣∣∣g(t)− 1

|B(x0, δ)|

∫
B(x0,δ)

g(y)dy

∣∣∣∣ ≤ 1

|B(x0, δ)|

∫
B(x0,δ)

∫ |y−t|
0

|∇g(t+ ρw)|dρdy

≤ 1

|B(x0, δ)|

∫ 8δ

0

∫
B(t,3δ)

G(t+ ρw)dydρ

=
1

|B(x0, δ)|

∫ 8δ

0

∫ 3δ

0

∫
∂B(t,τ)

G

(
t+ ρ

y − t
|y − t|

)
dS(y)dτdρ.

Setting y = t+ τv, we have∫ 3δ

0

∫
∂B(t,τ)

G

(
t+ ρ

y − t
|y − t|

)
dS(y)dτ =

(3δ)d

d

∫
∂B(0,1)

G(t+ ρv)dS(v).

Thus ∣∣∣∣g(t)− 1

|B(x0, δ)|

∫
B(x0,δ)

g(y)dy

∣∣∣∣ ≤ 3d

dϑ(d)

∫ 8δ

0

∫
∂B(0,1)

G(t+ ρv)dS(v)dρ.

Let u = t+ ρv. We have∣∣∣∣g(t)− 1

|B(x0, δ)|

∫
B(x0,δ)

g(y)dy

∣∣∣∣ ≤ 3d

dϑ(d)

∫
B(t,8δ)

G(u)

|u− t|d−1
du

=
3d

dϑ(d)

∫
B(t,8δ)∩B(x,4δ)

|∇g(u)|
|u− t|d−1

du. (3.12)

Since s > d, by the Hölder inequality, we have∣∣∣∣g(t)− 1

|B(x0, δ)|

∫
B(x0,δ)

g(y)dy

∣∣∣∣
≤ 3d

dϑ(d)

[∫
B(x,4δ)

|∇g(u)|sdu
] 1
s

[∫
B(t,8δ)

(
1

|u− t|d−1

) s
s−1

du

] s−1
s

≤ 3dd−
1
s

(
s− 1

s− d

) s−1
s

8δ [M(|∇g|s)(x)]
1
s ≤ 3d+1d−

1
s

(
s− 1

s− d

) s−1
s

[M(|∇g|s)(x)]
1
s |x− t|.

Here in the second inequality, we have used the estimate[∫
B(x,4δ)

|∇g(u)|sdu
] 1
s

≤ [M(|∇g|s)(x)]
1
s (4δ)

d
s (ϑ(d))

1
s

and the integral formula[∫
B(t,8δ)

(
1

|u− t|d−1

) s
s−1

du

] s−1
s

=

[
dϑ(d)

∫ 8δ

0

r(1−d) s
s−1

+d−1dr

] s−1
s

≤
(
s− 1

s− d

) s−1
s

(8δ)
s−d
s (dϑ(d))

s−1
s .

12



Combining this estimate with (3.11), we finally have

|g(x)− g(t)| ≤ cs,d[M(|∇g|s)(x)]
1
s |x− t|

with the constant cs,d given by

cs,d =
6d

d
+ 3d+1d−

1
s

(
s− 1

s− d

) s−1
s

.

This proves the lemma.

For proving our approximation theorems, we also need the following lemmas. The first

two can be found in [18] and the last in [16].

Lemma 3. If Ω is an open subset of Rd and p : Ω → [1,∞) satisfies 1 < p− ≤ p+ < ∞
and the log-Hölder conditions (1.4) and (1.5), then there exists a constant Ap > 0 depending

only on p such that

‖M(f)‖p(·) ≤ Ap‖f‖p(·), ∀f ∈ Lp(·)(Ω). (3.13)

Lemma 4. If Ω is an open subset of Rd and p : Ω → [1,∞) satisfies 1 < p− ≤ p+ < ∞,

then for any r > 0 with rp− ≥ 1 and f ∈ Lrp(·)(Ω), there holds

‖|f |r‖p(·) = ‖f‖rrp(·). (3.14)

Lemma 5. If Ω is an open subset of Rd and p : Ω → [1,∞) satisfies 1 ≤ p− ≤ p+ < ∞,

then for any sequence {fn}n ⊂ Lp(·)(Ω), we have limn→∞ ‖fn − f‖p(·) = 0 if and only if

limn→∞
∫

Ω
|fn(x)− f(x)|p(x)dx = 0.

Now we are in the position to prove our approximation theorems.

Proof of Theorem 1. First we prove the uniform boundedness of the operators {Th} on

Lp(·)(Rd). Rewrite Th(f) as

Th(f)(x) = h−d
∫
Rd

Φ(
x

h
,
t

h
)f(t)dt, x ∈ Rd. (3.15)

By the decay condition (2.2), we have

|Th(f)(x)| ≤ Cmh
−d
∫
Rd

1

(1 + |x−t
h
|)m
|f(t)|dt = CmΦ̃h ∗ |f |(x), x ∈ Rd, (3.16)

where Φ̃h(x, t) = h−d(1 + |x−t|
h

)
−m

and we have abused the convolution notation Φ̃h ∗ |f |.
From [38], we know that there exists a constant A depending on d and m such that

Φ̃h ∗ |f |(x) ≤ AM(f)(x), ∀x ∈ Rd, h > 0. (3.17)

13



So from Lemma 3 we have

‖Th(f)‖p(·) ≤ CmA‖M(f)‖p(·) ≤ CmAAp‖f‖p(·). (3.18)

This verified the uniform boundedness of the operators {Th} with ‖Th‖ ≤ CmAAp for any

h > 0.

As for the second part of the theorem, from
∫
Rd Φ(x, t)dt ≡ 1, we have Th(1, x) ≡ 1. So

for any f ∈ Lp(·)(Rd) and g ∈ W 1,p(·), by the uniform boundedness of {Th}, we have

‖Th(f − g)‖p(·) ≤ ‖Th‖‖f − g‖p(·).

Thus for any g ∈ W 1,p(·),

‖Th(f)− f‖p(·) = ‖Th(f − g) + Th(g)− g + g − f‖p(·)
≤ (‖Th‖+ 1)‖f − g‖p(·) + ‖Th(g)− g‖p(·).

By taking the infimum over the space W 1,p(·), we only need to estimate the term ‖Th(g) −
g‖Lp(·) for g ∈ W 1,p(·). By Lemma 1, for any x ∈ Rd, we have

|Th(g, x)− g(x)| =
∣∣∣∣∫

Rd
h−dΦ(

x

h
,
t

h
)[f(t)− f(x)]dt

∣∣∣∣
≤ 6d

d

(∫
Rd

Φ̃h(x, t)M(|∇g|)(x)|t− x|dt+

∫
Rd

Φ̃h(x, t)M(|∇g|)(t)|t− x|dt
)

=:
6d

d
(J1,h(x) + J2,h(x)) .

Consequently,

‖Th(g)− g‖Lp(·) ≤
6d

d

(
‖J1,h‖p(·) + ‖J2,h‖p(·)

)
. (3.19)

What is left is to estimate ‖J1,h‖p(·) and ‖J2,h‖p(·).

We first estimate ‖J2,h‖p(·). Since m > d + p−
p−−1

, we take a positive number γ′ > p−
p−−1

such that m > d + γ′. Take the conjugate number γ of γ′ satisfying 1
γ

+ 1
γ′

= 1. Then

1 < γ < p−. Then there hold γ
p−

< 1 and γp− > 1. By the Hölder inequality, J2,h(x) is

bounded by (∫
Rd

Φ̃h(x, t)[M(|∇g|)(t)]γdt
) 1

γ
(∫

Rd
Φ̃h(x, t)|t− x|γ

′
dt

) 1
γ′

. (3.20)

Since m > d+ γ′, we set the constant Ĉm =
∫
Rd

1
(1+|t|)m−γ′ dt, and get(∫

Rd
Φ̃h(x, t)|t− x|γ

′
dt

) 1
γ′

≤ h

(∫
Rd

h−d

(1 + |x−t
h
|)m−γ′

dt

) 1
γ′

= Ĉ
1
γ′
m h, ∀x ∈ Rd. (3.21)

14



By Lemma 3 and Lemma 4, from estimates (3.17) and (3.18), we have∥∥∥∥∥
(∫

Rd
Φ̃h(x, t)[M(|∇g|)(t)]γdt

) 1
γ

∥∥∥∥∥
p(·)

=

∥∥∥∥∫
Rd

Φ̃h(x, t)[M(| 5 g|)(t)]γdt
∥∥∥∥ 1
γ

p(·)
γ

≤ (AA p
γ
)1/γ ‖[M(| 5 g|)]γ‖

1
γ

p(·)
γ

= (AA p
γ
)1/γ ‖M(| 5 g|)‖p(·) ≤ (AA p

γ
)1/γAp ‖| 5 g|‖p(·) .

Combining this estimate with (3.21) and (3.20), we get

‖J2,h‖p(·) ≤ (AA p
γ
)1/γApĈ

1
γ′
m h ‖|∇g‖p(·) . (3.22)

The first term ‖J1,h‖p(·) is easier to estimate. Notice that

J1,h(x) = h−d
∫
Rd

|t− x|
(1 + |x−t

h
|)m

dtM(|∇g|)(x)

≤ h−d+1

∫
Rd

1

(1 + |x−t
h
|)m−1

dtM(|∇g|)(x) = h

∫
Rd

1

(1 + |t|)m−1
dtM(|∇g|)(x).

Hence

J1,h(x) ≤ ĈmhM(|∇g|)(x), ∀x ∈ Rd.

Thus, with the boundedness of the maximal operator stated in Lemma 3, we have

‖J1,h‖p(·) ≤ Ĉmh‖M(|∇g|)‖p(·) ≤ ĈmAph‖|∇g|‖p(·). (3.23)

Putting (3.23) and (3.22) into (3.19), we finally conclude

‖Th(g)− g‖p(·) ≤
6d

d

(
ĈmAp + (AA p

γ
)1/γApĈ

1
γ′
m

)
h ‖∇g‖p(·) .

By taking infimum over the space W 1,p(·), for any f ∈ Lp(·)(Rd), we have

‖Th(f)− f‖p(·) ≤
6d

d

(
ĈmAp + (AA p

γ
)1/γApĈ

1

γ
′

m + ‖Th‖+ 1

)
K(f, h)p(·) ≤ C̃pK(f, h)p(·)

with the constant C̃p = 6d

d

(
ĈmAp + (AA p

γ
)1/γApĈ

1

γ
′

m + CmAAp + 1

)
depending only on

p(·), d,m, and Cm. The proof of Theorem 1 is complete.

Proof of Theorem 2. We follow the standard procedure in approximation theory and consider

the error Th(g, x)− g(x) for g ∈ W r,p(·). Apply the Taylor expansion

g(t) = g(x) +
∑

1≤|α|1≤r−2

Dαg(x)

α!
(t− x)α +Rg,r−1(x, t), x, t ∈ Ω,
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where the remainder term Rg,r−1(x, t) is given by

Rg,r−1(x, t) =

∫ 1

0

(1− u)r−2
∑

|α|1=r−1

Dαg(x+ u(t− x))

α!
(t− x)αdu.

We see from the vanishing moment condition (2.8) and the condition (2.1) that

Th(g, x)− g(x) =

∫
Rd

Φh(x, t)

g(x) +
∑

1≤|α|1≤r−2

Dαg(x)

α!
(t− x)α +Rg,r(x, t)

 dt− g(x)

=

∫
Rd

Φh(x, t)


∫ 1

0

(1− u)r−2
∑

|α|1=r−1

Dαg(x+ u(t− x))

α!
(t− x)αdu

 dt.

By the inequalities |b|1 ≤
√
d|b| and |b1|α1 |b2|α2 · · · |bd|αd ≤ |b||α|11 for α ∈ Zd+ and b =

(b1, b2, · · · , bd) ∈ Rd, it is easy to verify that |Th(g, x)− g(x)| can be bounded by

d
r−1
2

∫
Rd
|Φh(x, t)|


∫ 1

0

(1− u)r−2
∑

|α|1=r−1

|Dαg(x+ u(t− x))−Dαg(x)|
α!

|t− x||α|1du

 dt.

Take a positive number s satisfying d < s ≤ p−. By Lemma 2 we obtain

|Th(g, x)− g(x)|

≤ d
r−1
2

∫
Rd
|Φh(x, t)|


∫ 1

0

(1− u)r−2
∑

|α|1=r−1

cs,d[M |∇Dαg|s)(x)]
1
s |t− x|rdu

 dt

≤ cs,dd
r−1
2

∑
|α|1=r−1

[M(|∇Dαg|s)(x)]
1
s

∫
Rd
|Φh(x, t)||t− x|rdt.

We need to estimate the term
∫
Rd |Φh(x, t)||t− x|rdt. By the assumption (2.2) we have∫

Rd
|Φh(x, t)||t− x|rdt ≤ Cmh

−d
∫
Rd

|t− x|r

(1 + | t−x
h
|)m

dt = Cmh
−d+r

∫
Rd

1

(1 + | t−x
h
|)m−r

dt.

Since m > d+ r, we set the constant Cm =
∫
Rd

1
(1+|t|)m−r dt and obtain∫

Rd
|Φh(x, t)||t− x|rdt ≤ CmCmh

r. (3.24)

By the method in estimating ‖J2,h‖p(·) in the proof of Theorem 1, since s ≤ p−, we get∑
|α|1=r−1

∥∥∥[M(|∇Dαg|s)(x)]
1
s

∥∥∥
p(·)
≤ Cp

∑
|α|1=r−1

‖|∇Dαg|‖p(·) ≤ Cp
∑
|β|1≤r

‖|Dβ(g)|‖p(·)
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with a constant Cp depending on p(·) and s. Combing this estimate with (3.24), we have

‖Th(g)− g‖p(·) ≤ cs,dd
r−1
2 CpCmCmh

r‖g‖W r,p(·) .

Thus by taking infimum over g ∈ W r,p(·), we have

‖Th(f)− f‖p(·) ≤ inf
g∈W r,p(·)

{
‖Th(f − g)‖p(·) + ‖Th(g)− g‖p(·) + ‖g − f‖p(·)

}
≤ inf

g∈W r,p(·)

{
(‖Th‖+ 1) ‖f − g‖p(·) + cs,dd

r−1
2 CpCmCmh

r‖g‖W r,p(·)

}
≤ Âp,dKr(f, h

r)p(·),

where Âp,d = CmAAp + 1 + cs,dd
r−1
2 CpCmCm. This complete the proof of the theorem.

Proof of Theorem 3. By the linearity of Th, for f ∈ C∞0 (Rd) and J = (0, 1)d, we can write

(2.12) as

lim
h→0
‖Th(h−(r−1)f)− h−(r−1)f‖Lp(·)(J) = 0 (3.25)

which is equivalent to

lim
h→0

∫
J

|Th(h−(r−1)f)(x)− h−(r−1)f(x)|p(x)dx = 0 (3.26)

according to Lemma 5.

Denote J1 = {x ∈ J : |Th(h−(r−1)f)(x)− h−(r−1)f(x)| ≥ 1} and J2 = J \ J1. Then∫
J

∣∣Th(h−(r−1)f)(x)− h−(r−1)f(x)
∣∣p(x)

dx ≥
∫
J1

∣∣Th(h−(r−1)f)(x)− h−(r−1)f(x)
∣∣ dx

+

∫
J2

∣∣Th(h−(r−1)f)(x)− h−(r−1)f(x)
∣∣p+ dx.

By the Hölder inequality and |J2| ≤ 1, since p+ > 1, we have∫
J2

∣∣Th(h−(r−1)f)(x)− h−(r−1)f(x)
∣∣p+ dx ≥ (∫

J2

∣∣Th(h−(r−1)f)(x)− h−(r−1)f(x)
∣∣ dx)p+ .

Thus

lim
h→0

∫
J1

∣∣Th(h−(r−1)f)(x)− h−(r−1)f(x)
∣∣ dx = 0

and

lim
h→0

∫
J2

∣∣Th(h−(r−1)f)(x)− h−(r−1)f(x)
∣∣ dx = 0.

It follows that ∫
J

|Th(f)(x)− f(x)| dx = o(hr−1) as h→ 0.

From Theorem 3.1 of [30], we know that our conclusion holds true.
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4 Approximation by Bernstein Type Operators

In this section, we apply our main approximation theorems to high orders of approximation

by linear operators on variable Lp(·)(Ω) spaces when the approximated function has high

orders of smoothness. The smoothness is stated in terms of the K-functional (1.6).

We consider a class of more general integral operators taking the form

Ln(f, x) =

∫
Ω

Kn(x, t)f(t)dt, x ∈ Ω, f ∈ Lp(·)(Ω) (4.1)

in terms of their kernels {Kn(x, t)}∞n=1 defined on Ω × Ω with
∫

Ω
Kn(x, t)dt ≡ 1 on Ω. We

assume that the kernels satisfy the following three conditions with some positive constants

C0 ≥ 1, b, C̄b and Cr (depending on r ∈ N)

sup
t∈Ω

∫
Ω

|Kn(x, t)| dx ≤ C0 and sup
x∈Ω

∫
Ω

|Kn(x, t)| dt ≤ C0, (4.2)

sup
x,t∈Ω

|Kn(x, t)| ≤ C̄bn
b, ∀n ∈ N, (4.3)∫

Ω

|Kn(x, t)| |t− x|2rdt ≤ Crn
−r, ∀n ∈ N, r ∈ N. (4.4)

The uniform boundedness of these operators can be proved by means of the method in [32].

Here we state the following estimates for approximation by the linear operators {Ln} and

omit the detailed proof.

Theorem 4. Let Ω ⊆ Rd be an open set with finite measure and an exponent function

p : Ω → (1,∞) satisfy d < p− ≤ p+ < ∞ and the log-Hölder continuity condition (1.4).

If the kernels {Kn(x, t)}∞n=1 satisfy conditions (4.2), (4.3) and (4.4), then the operators

{Ln}∞n=1 on Lp(·)(Ω) defined by (4.1) are uniformly bounded by a positive constant Mp,b as

‖Ln‖ ≤Mp,b, ∀n ∈ N. (4.5)

Furthermore, if Ω is convex, r ∈ N and∫
Ω

Kn(x, t)(t− x)αdt = δα,0, ∀x ∈ Ω, α ∈ Zd+ with |α| < r, (4.6)

then for any f ∈ Lp(·) and n ∈ N we have

‖Ln(f)− f‖p(·) ≤ Ap,b,dKr

(
f, n−

r
2

)
p(·) , (4.7)

where the constant Ap,b,d is independent of f ∈ Lp(·)(Ω) and n ∈ N.
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Remark 4. Theorem 4 improves our earlier result in [32] which states under the assumption

of Theorem 4 that there exists a constant Ãp,b,d such that for any f ∈ Lp(·),

‖Ln(f)− f‖p(·) ≤ Ãp,b,dKr
(
f, n

− r−
p+

)
p(·)

, (4.8)

where r− is the integer part of rp−/2 and the K-functional Kr (f, t)p(·) associated with the

Hölder space W r,∞
p(·) is defined by

Kr(f, t)p(·) = inf
g∈W r,∞

p(·)

{‖f − g‖Lp(·) + t‖g‖p,r,∞} , t > 0.

As a special case, we consider multivariate Bernstein type positive linear operators and

give high orders of approximation by these operators on variable Lp(·)(S) spaces with S being

a simplex of Rd.

First we briefly describe two kinds of Bernstein type operators: multivariate Bernstein-

Durrmeyer operators and Bernstein-Kantorovich operators on S.

The Bernstein-Durrmeyer operators on an open simplex

Ω = S = {x ∈ (0,∞)d : |x|1 < 1} ⊂ Rd

are defined as

Dn(f, x) =
∑
|α|1≤n

∫
S
f(t)pn,α(t)dt∫
S
pn,α(t)dt

pn,α(x), f ∈ L1(S), x ∈ S, (4.9)

where for x = (x1, . . . , xd) ∈ S, α = (α1, . . . , αd) ∈ Zd+,

pn,α(x) =
n!

Πd
j=1αj!(n− |α|1)!

Πd
j=1x

αj
j (1− |x|1)n−|α|1 .

The classical Bernstein-Durrmeyer operators (1.2) on Ω = (0, 1) (d = 1) with dρ(x) = dx

have been well studied (e.g., [20, 19] ) and extended to multivariate forms with dρ(x) = dx

in [17] or with Jacobi weights dρ(x) = Πd
j=1x

qj
j dx in [6]. Bernstein-Durrmeyer operators

on Ω = (0, 1) with an arbitrary Borel probability measure were introduced in [43] and

applied to error analysis of learning algorithms for support vector machine classifications.

A multidimensional version of such linear operators was considered by [2, 3, 31]. In [31],

the first author gave orders of approximation on S ⊆ Rd and applied the result to error

analysis of some learning algorithms for regression. Here we consider the case with a general

exponent function p(·) satisfying 1 < p− ≤ p+ <∞ and the log-Hölder continuity condition

(1.4) or (1.5).
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The multivariate Bernstein-Kantorovich operators on S is defined in [41] as

K̃n(f, x) =
∑
|α|1≤n

∫
Sn,α

f(t)dt

|Sn,α|
pn,α(x), f ∈ L1(S), x ∈ S, (4.10)

where |Sn,α| is the Lebesgue measure of Sn,α and {Sn,α}α are subdomains of S defined by

Sn,α =

{
x ∈ S : x ∈ Πd

i=1

[
αi

n+ 1
,
αi

n+ 1

)
, |x|1 ≤

|α|1 + 1

n+ 1

}
, |α|1 ≤ n.

Set a sequence of kernels {Ψn} on S × S by

Ψn(x, t) =
∑
|α|1≤n

pn,α(t)pn,α(x)∫
S
pn,α(t)dt

.

Then the Bernstein-Durrmeyer operators (4.9) can be written as

Dn(f, x) =

∫
S

Ψn(x, t)f(t)dt.

Similarly, if we define a sequence of kernels {Ψ∗n} on S × S by

Ψ∗n(x, t) =
∑
|α|1≤n

pn,α(x)χSn,α(t)

|Sn,α|
,

where χSn,α is the indicator function of Sn,α, then the multivariate Bernstein-Kantorovich

operators defined by (4.10) can be expressed as

K̃n(f, x) =

∫
S

Ψ∗n(x, t)f(t)dt.

With the properties of Bernstein-Durrmeyer operators Dn and Bernstein-Kantorovich

operators K̃n found in [19, 6, 41], all the three conditions (4.2), (4.3) and (4.4) can be verified

for the kernels Ψn(x, t) and Ψ∗n(x, t), so the desired uniform boundedness and approximation

orders for the operators Dn and K̃n follow from Theorem 4.

The Bernstein-Durrmeyer operators Dn and Bernstein-Kantorovich operators K̃n are pos-

itive, which prevent them from achieving high orders of approximation due to a saturation

phenomenon. Linear combinations of such operators can be used to get high orders of ap-

proximation. The idea and literature review of this method can be found in [19] and [32].

Some further developments have been made in Hölder spaces in [32]. Let Ln be the Bernstein-

Durrmeyer operators Dn or Bernstein-Kantorovich operators K̃n defined respectively by (4.9)

and (4.10). The linear combinations of Ln are defined as

Ln,r(f, x) =

md,r∑
i=0

Ci(n)Lni(f, x), (4.11)
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where md,r = (d+r−1)!
d!(r−1)!

is the dimension of the space of polynomials of degree at most r − 1,

and with two positive constants B̃1, B̃2 independent of n, we have

n = n0 < n1 < . . . < nmd,r ≤ B̃1n,

md,r∑
i=0

|Ci(n)| ≤ B̃2, (4.12)

and
md,r∑
i=0

Ci(n)Lni ((· − x)α, x) = δα,0, ∀0 ≤ |α|1 ≤ r − 1. (4.13)

We have the following high orders of approximation by linear combinations of Dn and

K̃n. We omit the detailed proof.

Proposition 2. Let the exponent function p : S → (1,∞) satisfy d < p− ≤ p+ <∞ and the

log-Hölder continuity condition (1.4). Let Ln be the Bernstein-Durrmeyer operators Dn or

Bernstein-Kantorovich operators K̃n defined respectively by (4.9) and (4.10). If 2 ≤ r ∈ N
and the operators {Ln,r}n∈N defined by (4.11) satisfy (4.12) and (4.13), then for any f ∈
Lp(·)(S) and n ∈ N, we have

‖Ln,r(f)− f‖p(·) ≤ Ar,p,dKr

(
f, n−

r
2

)
p(·) , (4.14)

where the constant Ar,p,d is independent of f ∈ Lp(·) and n ∈ N.

Remark 5. We can give characterization theorems for approximation orders provided by

{Ln} or {Ln,r} in the same way as Proposition 1 and Theorem 3.

5 Discussion about K-functionals and Moduli of S-

moothness on Variable Lp(·) Spaces

In this section, we turn to the general setting with an open subset Ω of Rd. We give some

fundamental properties of the modulus of smoothness ωr(f, t)p(·) defined by (1.9) and estab-

lish some relationships between the K-functional Kr(f, t)p(·) and the modulus of smoothness

ωr(f, t)p(·) on variable Lp(·)(Ω) spaces. The following basic properties can be seen directly

from the definition of ωr(f, t)p(·).

Proposition 3. Let r ∈ N and t > 0. The following statements hold.

(i) For f ∈ Lp(·), ωr(f, t)p(·) is a nondecreasing function about t.
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(ii) For f1, f2 ∈ Lp(·)(Ω), there holds ωr(f1 + f2, t)p(·) ≤ ωr(f1, t)p(·) + ωr(f2, t)p(·).

(iii) For f ∈ Lp(·), we have lim
t→0

ωr(f, t)p(·) = 0.

(iv) If p : Ω → [1,∞) satisfies 1 < p− ≤ p+ < ∞ and the log-Hölder continuity condition

(1.4) and (1.5), then ωr(f, t)p(·) ≤ (1+Ap)
jωr−j(f, t)p(·) for any j ∈ {0, 1, . . . , r}, where

Ap is the constant given in (3.13).

The following properties give some relationships between moduli of smoothness with

various orders r and the K-functional.

Theorem 5. Let Ω be an open subset of Rd, the exponential function p : Ω→ [1,∞) satisfies

1 < p− ≤ p+ <∞ and the log-Hölder continuity condition (1.4) and (1.5). Then for r ∈ N
and j ∈ {0, 1, . . . , r}, there exist a constant c∗p,d > 0 depending only on p(·) and d such that

for f ∈ W j,p(·),

ωr(f, t)p(·) ≤ c∗p,dt
j sup
|β|=j

ωr−j(D
βf, t)p(·), t > 0. (5.1)

Theorem 6. Let r ∈ N and Ω be an open subset of Rd, the exponential function p : Ω →
[1,∞) satisfies 1 < p− ≤ p+ < ∞ and the log-Hölder continuity condition (1.4) and (1.5).

Then for any f ∈ Lp(·)(Ω) and t > 0, we have

ωr(f, t)p(·) ≤ max
{

(1 + Ap)
r, c∗p,d

}
Kr(f, t

r)p(·), (5.2)

where the constant Ap is given in (3.13) and c∗p,d > 0 given in Theorem 5.

Proof of Theorem 5. We first prove that for any f ∈ W 1,p(·) and t > 0,

ωr(f, t)p(·) ≤
2dAp√
d
t sup
|β|=1

ωr−1(Dβf, t)p(·). (5.3)

In fact, for any 0 < hi ≤ t, i = 1, . . . , r, denote

ĝ(x) =
r−1∏
i=1

(I −Mhi)f(x), x ∈ Ω, (5.4)

then
r∏
i=1

(I −Mhi)f(x)χΩ(h1+···+hr)(x) = (I −Mhr)ĝ(x)χΩ(h1+···+hr)(x), x ∈ Ω.

For any fixed x ∈ Ω(h1 + · · ·+ hr), and y ∈ B(x, hr), set w = y−x
|y−x| (set w = 0 when y = x),

then

ĝ(x)− ĝ(y) = −
∫ |y−x|

0

Dρĝ(x+ ρw)dρ = −
∫ |y−x|

0

∇ĝ(x+ ρw) · wdρ.
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Integrating both sides of this equation about y ∈ B(x, hr) yields∫
B(x,hr)

(ĝ(x)− ĝ(y))dy = |B(x, hr)|
(
ĝ(x)− 1

|B(x, hr)|

∫
B(x,hr)

ĝ(y)dy

)
= −

∫
B(x,hr)

∫ |y−x|
0

∇ĝ(x+ ρw) · wdρdy.

So we have

|(I −Mhr)ĝ(x)| =
∣∣∣∣ĝ(x)− 1

|B(x, hr)|

∫
B(x,hr)

ĝ(y)dy

∣∣∣∣
≤ 1

|B(x, hr)|

∫
B(x,hr)

∫ |y−x|
0

|∇ĝ(x+ ρw)|dρdy ≤ 1

|B(x, hr)|

∫ hr

0

∫
B(x,hr)

|∇ĝ(x+ ρw)|dydρ

=
1

|B(x, hr)|

∫ hr

0

∫ hr

0

∫
∂B(x,τ)

∣∣∣∣∇ĝ(x+ ρ
y − x
|y − x|

)∣∣∣∣ dS(y)dτdρ.

Let y = x+ τu, then∫ hr

0

∫
∂B(x,τ)

∣∣∣∣∇ĝ(x+ ρ
y − x
|y − x|

)∣∣∣∣ dS(y)dτ =
hdr
d

∫
∂B(0,1)

|∇ĝ(x+ ρu)|dS(u).

Take v = x+ ρu. Then we have

|(I −Mhr)ĝ(x)| ≤ hdr
d|B(x, hr)|

∫ hr

0

∫
∂B(0,1)

|∇ĝ(x+ ρu)|dS(u)dρ

=
1

dϑ(d)

∫ hr

0

∫
∂B(x,ρ)

|∇ĝ(v)|
|v − x|d−1

dS(v)dρ =
1

dϑ(d)

∫
B(x,hr)

|∇ĝ(v)|
|v − x|d−1

dv.

Notice that∫
B(x,hr)

|∇ĝ(v)|
|v − x|d−1

dv =
∞∑
k=1

∫
{v∈Rd:hr

2k
≤|v−x|< hr

2k−1}
|∇ĝ(v)|
|v − x|d−1

dv

≤
∞∑
k=1

(
2k

hr

)d−1 ∫
B(x, hr

2k−1 )
|∇ĝ(v)|dv =

∞∑
k=1

(
2k

hr

)d−1 ϑ(d)
(

hr
2k−1

)d∣∣B (x, hr
2k−1

)∣∣ ∫
B(x, hr

2k−1 )
|∇ĝ(v)|dv

≤ hrϑ(d)
∞∑
k=1

2d−kM(|∇ĝ|)(x) = 2dhrϑ(d)M(|∇ĝ|)(x).

Thus we have

|(I −Mhr)ĝ(x)| ≤ 2dhr
d

M(|∇ĝ|)(x).
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By Lemma 3, we have∥∥∥∥∥
r∏
i=1

(I −Mhi)fχΩ(h1+···+hr)

∥∥∥∥∥
p(·)

= ‖(I −Mhr)ĝχΩ(h1+···+hr)‖p(·)

= ‖(I −Mhr)ĝ‖p(·),Ω(h1+···+hr) ≤
2dhr
d
‖M(|∇ĝ|)‖p(·),Ω(h1+···+hr)

≤ 2dAp
d

hr ‖|∇ĝ|‖p(·),Ω(h1+···+hr) ≤
2dAp√
d
hr sup
|β|1=1

‖Dβ ĝ‖p(·),Ω(h1+···+hr). (5.5)

Notice from the definition (5.4) of ĝ that for β ∈ Zd with |β|1 = 1,

Dβ ĝ(x) =
r−1∏
i=1

(I −Mhi)D
βf(x)χΩ(h1+···+hr−1)(x), x ∈ Ω(h1 + · · ·+ hr).

It follows that

‖Dβ ĝ‖p(·),Ω(h1+···+hr) ≤

∥∥∥∥∥
r−1∏
i=1

(I −Mhi)D
βfχΩ(h1+···+hr−1)

∥∥∥∥∥
p(·)

. (5.6)

Putting (5.5) into (5.6), we get

ωr(f, t)p(·) = sup
0<hi≤t
i=1,...,r

∥∥∥∥∥
r∏
i=1

(I −Mhi)fχΩ(h1+···+hr)

∥∥∥∥∥
p(·)

≤ sup
0<hi≤t
i=1,...,r

2dAp√
d
hr sup
|β|1=1

‖Dβ ĝ‖p(·),Ω(h1+···+hr)

≤ 2dAp√
d
t sup
|β|1=1

sup
0<hi≤t

i=1,...,r−1

∥∥∥∥∥
r−1∏
i=1

(I −Mhi)D
βfχΩ(h1+···+hr−1)

∥∥∥∥∥
p(·)

=
2dAp√
d
t sup
|β|1=1

ωr−1(Dβf, t)p(·).

The case j = 2, . . . , r of the theorem can be proved by induction. The theorem is proved.

Proof of Theorem 6. From the proof of Theorem 5, we see that there exists a constant

c∗p,d > 0 depending only on p and d such that for f ∈ W r,p(·),

ωr(f, t)p(·) ≤ c∗p,dt
r sup
|β|1=r

‖Dβf‖p(·), t > 0.

For g ∈ W r,p(·), by (ii) of Proposition 3, we have

ωr(f, t)p(·) = ωr((f − g) + g, t)p(·) ≤ ωr(f − g, t)p(·) + ωr(g, t)p(·)

≤ (1 + Ap)
r‖f − g‖p(·) + c∗p,dt

r sup
|β|1=r

‖Dβg‖p(·)

≤ max{(1 + Ap)
r, c∗p,d}(‖f − g‖p(·) + tr‖g‖r,p(·)).
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By taking infimum over g ∈ W r,p(·), we finally obtain

ωr(f, t)p(·) ≤ max{(1 + Ap)
r, c∗p,d}Kr(f, t

r)p(·).

The proof of the theorem is complete.

We end our discussion by giving the following conjecture concerning the K-functional

Kr(f, t
r)p(·) and the modulus of smoothness ωr(f, t)p(·).

Conjecture. Under the assumption of Theorem 6, there exist positive constants C1 and C2

independent of f and t such that

C1Kr(f, t
r)p(·) ≤ ωr(f, t)p(·) ≤ C2Kr(f, t

r)p(·), ∀f ∈ Lp(·)(Ω), 0 < t ≤ 1.
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[12] C. de Boor, K. Höllig and S. D. Riemenschneider, Bivariate cardinal interpolation by

spines on a threeidirection mesh, Illinois J. Math. 29 (1985), 533-566.

[13] Y. Chen, S. Levine, and M. Rao, Variable exponent, linear growth functionals in image

restoration, SIAM J. Appl. Math. 66 (2006), 1383-1406.

[14] C. K. Chui and H. Diamond, A natural formulation of quasi-interpolation by multivari-

ate spline, Proc. Amer. Math. Soc. 99 (1987), 643-646.

[15] C. K. Chui, K. Jetter and J. D. Ward, Cardinal interpolation by multivariate spline,

Math. Comp. 48 (1987), 711-724.

[16] D. Cruz-Uribe, SFO and A. Fiorenza, Approximate identities in variable Lp spaces,

Math. Nachr. 280 (2007), 256-270.

[17] M. -M. Derriennic, On multivariate approximation by Bernstein-type polynomials, J.

Approx. Theory 45 (1985), 155-166.
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