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◦DIBRIS, Universitá degli Studi di Genova, Genova 16146, Italy
*Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong, China

August 22, 2016

Abstract

In this note, we propose and study the notion of modified Fejér
sequences. Within a Hilbert space setting, we show that it provides a
unifying framework to prove convergence rates for objective function
values of several optimization algorithms. In particular, our results
apply to forward-backward splitting algorithm, incremental subgradi-
ent proximal algorithm, and the Douglas-Rachford splitting method
including and generalizing known results.

1 Introduction

The notion of Fejér monotonicity captures essential properties of the iterates

generated by a wide range of optimization methods and provides a common

∗This material is based upon work supported by the Center for Brains, Minds and
Machines (CBMM), funded by NSF STC award CCF-1231216. The work by D. X. Zhou
described in this paper is supported by a grant from the NSFC/RGC Joint Research
Scheme [RGC Project No. N CityU120/14 and NSFC Project No. 11461161006]. L.
R. acknowledges the financial support of the Italian Ministry of Education, University
and Research FIRB project RBFR12M3AC. S. V. is member of the Gruppo Nazionale
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framework to analyze their convergence [8]. Quasi-Fejér monotonicity is a re-

laxation of the above notion that allows for an additional error term [16, 10].

In this paper, we propose and study a novel, related notion to analyze the

convergence of the objective function values, in addition to that of the it-

erates. More precisely, we modify the notion of quasi-Fejér monotonicity,

by adding a term involving the objective function and say that a sequence

satisfying the new requirement is modified Fejér monotone (modified Fejér

for short). In this paper, we show the usefulness of this new notion of mono-

tonicity by deriving convergence rates for several optimization algorithms in

a unified way. Based on this approach, we not only recover known results,

such as the sublinear convergence rate for the proximal forward-backward

splitting algorithm, but also derive new results. Interestingly, our results

show that for projected subgradient, incremental subgradient proximal, and

Douglas-Rachford algorithm, considering the last iterate leads to essential-

ly the same convergence rate as considering the best iterate selection rule

[27, 26], or ergodic means [5, 28], as typically done.

2 Modified Fejér Sequences

Throughout this paper, we assume that f : H → ]−∞,∞] is a proper func-

tion on a normed vector space H. Assume that the set

X = {z ∈ H | f(z) = min
x∈H

f(x)}

is nonempty. We are interested in solving the following optimization problem

f∗ = min
x∈H

f(x). (1)

Given x ∈ H and a subset S ⊂ H, d(x, S) denotes the distance between

x and S, i.e., d(x, S) = infx′∈S ‖x − x′‖. R+ is the set of all non-negative

real numbers and N∗ = N \ {0}. For any S ⊂ H, we denote by 1{·} the

characteristic function of S.

The following definition introduces the key notion we propose in this paper.
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Definition 1. A sequence {xt}t∈N ⊂ H is modified Fejér monotone with

respect to the target function f and the sequence {(ηt, ξt)}t∈N in R2
+, if

(∀x ∈ domf) ‖xt+1 − x‖2 ≤ ‖xt − x‖2 − ηt(f(xt+1)− f(x)) + ξt. (2)

Remark 1.

(i) Choosing x ∈ X in (2), we get

ηtf(xt+1) ≤ ξt + ηtf∗ + ‖xt − x‖2 <∞.

This implies that {xt}t∈N ⊂ domf .

(ii) By setting x = xt in (2), a direct consequence is that, for all t ∈ N,

‖xt+1 − xt‖2 ≤ ξt. (3)

(iii) All the subsequent results hold if condition (2) is replaced by the follow-

ing weaker condition

(∀x ∈ X ∪{xt}t∈N) ‖xt+1− x‖2 ≤ ‖xt− x‖2− ηt(f(xt+1)− f(x)) + ξt.

(4)

However, in the proposed applications, condition (2) is always satisfied

for every x ∈ domf .

• Here we highlight that the inequality (2) has been proved to be satisfied

and implicitly used to derive convergence rate for many algorithms, con-

sidering the best iterate selection rule, e.g., [27, 26], or ergodic means

[5, 28]. The main novelty of this paper is to show that considering the

last iterate leads to essentially the same convergence rate as that for

considering the best iterate selection rule, or ergodic means, see Theo-

rem 2.

In the following remark we discuss the relation with classical Fejér se-

quences.
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Remark 2 (Comparison with quasi-Fejér sequences).

If
∑

t∈N ξt < +∞, Definition 1 implies that the sequence {xt}t∈N is quasi-

Fejér monotone with respect to X [16, 10]. Indeed, since the solutions set

X ∈ domf and that f(xt+1)− f(x∗) ≥ 0 for every x∗ ∈ X , (2) implies

(∀x ∈ X ) ‖xt+1 − x‖2 ≤ ‖xt − x‖2 + ξt.

Note that, in the study of convergence properties of quasi-Fejér sequences

corresponding to a minimization problem, the property is considered with

respect to the set of solutions X , while here we will consider modified Fejér

monotonicity for a general constraint set or the entire space H.

We next present two main results to show how modified Fejér sequences

are useful to study the convergence of optimization algorithms. The first

result shows that if a sequence is modified Fejér monotone, one can bound

its corresponding excess function values in terms of {(ηt, ξt)}t∈N explicitly.

Theorem 1. Let {xt}t∈N ⊂ H be a modified Fejér sequence with respect to f

and {(ηt, ξt)}t∈N in R2
+. Let {ηt}t∈N be a non-increasing sequence. Let T ∈ N,

T > 1. Then

ηT (f(xT+1)− f∗) ≤
1

T
d(x1,X )2 +

T−1∑
t=1

1

T − t
ξt + ξT . (5)

Proof. Let {uj}j∈N be a sequence in R and let k ∈ {1, · · · , T − 1}. We have

1

k

T∑
j=T−k+1

uj −
1

k + 1

T∑
j=T−k

uj

=
1

k(k + 1)

{
(k + 1)

T∑
j=T−k+1

uj − k
T∑

j=T−k

uj

}

=
1

k(k + 1)

T∑
j=T−k+1

(uj − uT−k).

Summing over k = 1, · · · , T − 1, and rearranging terms, we get

uT =
1

T

T∑
j=1

uj +
T−1∑
k=1

1

k(k + 1)

T∑
j=T−k+1

(uj − uT−k). (6)
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For any x ∈ domf , choosing (∀t ∈ N) ut = ηt(f(xt+1)−f(x)) and rearranging

terms, we have the following error decomposition [19]:

ηT (f(xT+1)− f(x)) =
1

T

T∑
t=1

ηt(f(xt+1)− f(x))

+
T−1∑
k=1

1

k(k + 1)

T∑
t=T−k+1

ηt(f(xt+1)− f(xT−k+1))

+
T−1∑
k=1

1

k + 1

[
1

k

T∑
t=T−k+1

ηt − ηT−k

]
{f(xT−k+1)− f(x)} .

Let x = x∗ ∈ X . Since {ηt}t∈N is a non-increasing sequence and f(xT−k+1)−
f∗ ≥ 0, the last term of the above inequality is non-positive. Thus, we derive

that

ηT (f(xT+1)− f∗) ≤
1

T

T∑
t=1

ηt(f(xt+1)− f(x∗))

+
T−1∑
k=1

1

k(k + 1)

T∑
t=T−k+1

ηt(f(xt+1)− f(xT−k+1)). (7)

For every j ∈ {1, . . . , T}, and for every x ∈ domf , summing up (2) over

t = j, · · · , T , we get

T∑
t=j

ηt(f(xt+1)− f(x)) ≤ ‖xj − x‖2 +
T∑
t=j

ξt. (8)

The above inequality with x = x∗ and j = 1 implies

1

T

T∑
t=1

ηt(f(xt+1)− f(x∗)) ≤
1

T
‖x1 − x∗‖2 +

1

T

T∑
t=1

ξt. (9)

Inequality (8) with x = xT−k+1 and j = T − k + 1 yields

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k+1

ηt(f(xt+1)− f(xT−k+1))

≤
T−1∑
k=1

1

k(k + 1)

T∑
t=T−k

ξt. (10)
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Exchanging the order in the sum, we obtain

T−1∑
k=1

1

k(k + 1)

T∑
t=T−k

ξt =
T−1∑
t=1

T−1∑
k=T−t

1

k(k + 1)
ξt +

T−1∑
k=1

1

k(k + 1)
ξT

=
T−1∑
t=1

(
1

T − t
− 1

T

)
ξt +

(
1− 1

T

)
ξT

=
T−1∑
t=1

1

T − t
ξt + ξT −

1

T

T∑
t=1

ξt. (11)

The result follows by plugging (9),(10), and (11) into (7).

In the special case when, for every t ∈ N, ξt = 0, we derive the following

result.

Corollary 1. Let {xt}t∈N ⊂ H be a modified Fejér sequence with respect to

f and a sequence {(ηt, ξt)}t∈N in R2
+. Assume that ξt = 0 for every t ∈ N,

and {ηt}t∈N is non-increasing. Then for any T ∈ N with T > 1,

f(xT+1)− f∗ ≤
1

ηTT
d(x1,X )2.

The second main result shows how to derive explicit rates for the objec-

tive function values corresponding to a modified Fejér sequence with respect

to polynomially decaying sequences {(ηt, ξt)}t∈N in R2
+. Interestingly, the

following result (as well as the previous ones) does not require convexity of

f .

Theorem 2. Let {xt}t∈N ⊂ C be a modified Fejér sequence with respect to a

target function f and {(ηt, ξt)}t∈N ⊂ R2
+. Let η ∈ ]0,+∞[, let θ1 ∈ [0, 1[, and

set ηt = ηt−θ1. Let (θ2, ξ) ∈ R2
+ and suppose that ξt ≤ ξt−θ2 for all t ∈ N.

Let T ∈ N, T ≥ 3. Then

f(xT+1)− f∗ ≤
d(x1,X )2

η
T θ1−1 +

ξcθ2
η

(log T )1{θ2≤1}T θ1−min{θ2,1}. (12)

6



Here, cθ2 is a positive constant depending only on θ2 and is given by

cθ2 =


5 +

2

1− θ2
if θ2 < 1,

9 if θ2 = 1,

2θ2 + 3θ2 − 1

θ2 − 1
if θ2 > 1.

(13)

To prove Theorem 2, we will use Theorem 1 as well as the following

lemma.

Lemma 1. Let q ∈ R+ and T ∈ N, T ≥ 3. Then

T−1∑
t=1

1

T − t
t−q ≤


(4 + 2/(1− q))T−q log T, when q < 1,
8T−1 log T , when q = 1,
(2q + 2q)/(q − 1)T−1, when q > 1,

Proof. We split the sum into two parts

T−1∑
t=1

1

T − t
t−q =

∑
T/2≤t≤T−1

1

T − t
t−q +

∑
1≤t<T/2

1

T − t
t−q

≤ 2qT−q
∑

T/2≤t≤T−1

1

T − t
+ 2T−1

∑
1≤t<T/2

t−q

= 2qT−q
∑

1≤t≤T/2

t−1 + 2T−1
∑

1≤t<T/2

t−q.

Applying, for T ≥ 3,

T∑
t=1

t−θ2 ≤ 1 +

∫ T

1

u−θ2du ≤


T 1−θ2/(1− θ2), when θ2 < 1,
2 log T , when θ2 = 1,
θ2/(θ2 − 1), when θ2 > 1,

we get

T−1∑
t=1

1

T − t
t−q ≤ 2q+1T−q log T +


(2/(1− q))T−q, when q < 1,
4T−1 log T , when q = 1,
2qT−1/(q − 1), when q > 1,

which leads to the desired result by using T−q+1 log T ≤ 1/(2(q − 1)) when

q > 1.
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Now, we are ready to prove Theorem 2.

Proof of Theorem 2. It follows from Theorem 1 that (5) holds. Substituting

ηt = ηt−θ1 , ξt ≤ ξt−θ2 ,

ηT−θ1(f(xT+1)− f∗) ≤
1

T
d(x1,X )2 + ξ

T−1∑
t=1

1

T − t
t−θ2 + ξT−θ2 .

Applying Lemma 1 to bound the term
∑T−1

t=1
1

T−tt
−θ2 , and by a direct calcu-

lation, with cθ2 given by (13),

ηT−θ1(f(xT+1)− f∗) ≤
1

T
d(x1,X )2 + ξcθ2(log T )1{θ2≤1}T−min{θ2,1}.

The results follows dividing both sides by ηT−θ1 .

Remark 3. Following the proof of Theorem 2, we see that for a sequence

{yt}t∈N ∈ C satisfying

(∀x ∈ domf) ‖yt+1 − x‖2 ≤ ‖yt − x‖2 − ηt(f(yt)− f(y)) + ξt,

under the same assumptions of Theorem 2, there holds

f(yT )− f∗ ≤
d(x1,X )2

η
T θ1−1 +

ξcθ2
η

(log T )1{θ2≤1}T θ1−min{θ2,1}.

3 Applications in Convex Optimization

In this section, we apply previous results to some convex optimization al-

gorithms, including forward-backward splitting, projected subgradient, in-

cremental proximal subgradient, and Douglas-Rachford splitting methods.

Convergence rates for the objective function values are obtained by using

Theorem 2. The key observation is that the sequences generated by these

algorithms are modified Fejér monotone.

Throughout this section, we assume that H is a Hilbert space, and f :

H →] − ∞,∞] is a proper, lower semicontinuous convex function. Recall

that the subdifferential of f at x ∈ H is

∂f(x) = {u ∈ H : (∀y ∈ H) f(x) + 〈u, y − x〉 ≤ f(y)}. (14)
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The elements of the subdifferential of f at x are called subgradients of f at

x. More generally, for ε ∈ ]0,+∞[, the ε-subdifferential of f at x is the set

∂εf(x) defined by

∂εf(x) = {u ∈ H : (∀y ∈ H) f(x) + 〈u, y − x〉 − ε ≤ f(y)}. (15)

The proximity operator of f [21] is

proxf (x) = argmin
y∈H

{
f(y) +

1

2
‖y − x‖2

}
. (16)

3.1 Forward-Backward Splitting

In this subsection, we consider a forward-backward splitting algorithm for

solving Problem (1), with objective function

f = l + r (17)

where r : H → ]−∞,∞] and l : H → R are proper, lower semicontinuous, and

convex. Since l is real-valued, we have dom ∂l = H [2, Proposition 16.14].

Algorithm 1. Given x1 ∈ H, a sequence of stepsizes {αt}t∈N ⊂ ]0,+∞[,

and a sequence {εt}t∈N ⊂ [0,+∞[ set, for every t ∈ N,

xt+1 = proxαtr(xt − αtgt) (18)

with gt ∈ ∂εtl(xt).

The forward-backward splitting algorithm has been well studied [29, 7, 9,

6] and a review of this algorithm can be found in [11] under the assumption

that l is differentiable with a Lipschitz continuous gradient. Convergence

is proved using arguments based on Fejér monotonicity of the generated

sequences [10]. Under the assumption that l is a differentiable function with

Lipschitz continuous gradient, the algorithm exhibits a sublinear convergence

rate O(T−1) on the objective f [3]. If l is not smooth, the algorithm has been

studied first in [25], and has a convergence rate O(T−1/2), considering the

best point selection rule [28]. Our objective here is to provide a convergence

rate for the algorithm considering the last iterate, which shares the same rate
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(up-to logarithmic factors) and to allow the use of ε-subgradients, instead of

subgradients. Before stating our main results, we introduce the following

novel lemma for the forward-backward splitting for a (possibly) non-smooth

l. It recovers previous result (e.g. [3]) when l is smooth.

Lemma 2. Let {xt}t∈N∗ be the sequence generated by Algorithm 1. Then for

all t ∈ N∗, there holds

2αt[f(xt+1)− f(x)] ≤ ‖xt − x‖2 − ‖xt+1 − x‖2 − ‖xt − xt+1‖2

+ 2αt[〈xt+1 − xt, gt+1 − gt〉+ εt+1 + εt]. (19)

Proof. Let t ∈ N∗. By Fermat’s rule (see e.g. [2, Theorem 16.2]),

0 ∈ xt+1 − xt + αtgt + αt∂r(xt+1).

Thus, there exists qt+1 ∈ ∂r(xt+1), such that xt+1 in (18) can be written as

xt+1 = xt − αtgt − αtqt+1. (20)

Let x ∈ domf . The convexity of r implies

r(xt+1)− r(x) ≤ 〈xt+1 − x, qt+1〉.

Multiplying both sides by 2αt, and combining with (20), we get

2αt[r(xt+1)− r(x)] ≤ 2αt〈xt+1 − x, qt+1〉
= 2〈xt+1 − x, xt − xt+1 − αtgt〉
= 2〈xt+1 − x, xt − xt+1〉+ 2αt〈x− xt+1, gt〉.

A direct computation yields

2〈xt+1 − x, xt − xt+1〉 = 2〈xt+1 − x, xt − x〉 − 2‖xt+1 − x‖2

= ‖xt − x‖2 − ‖xt+1 − x‖2 − ‖xt − xt+1‖2. (21)

Therefore,

2αt[r(xt+1)− r(x)]

≤ ‖xt − x‖2 − ‖xt+1 − x‖2 − ‖xt − xt+1‖2 + 2αt〈x− xt+1, gt〉.
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Moreover, by (15), we have

〈x− xt, gt〉 ≤ l(x)− l(xt) + εt,

and

〈xt − xt+1, gt+1〉 ≤ l(xt)− l(xt+1) + εt+1,

and thus

〈x− xt+1, gt〉 = 〈x− xt, gt〉+ 〈xt − xt+1, gt+1〉+ 〈xt − xt+1, gt − gt+1〉
≤ l(x)− l(xt) + εt + l(xt)− l(xt+1) + εt+1 + 〈xt − xt+1, gt − gt+1〉
= l(x)− l(xt+1) + 〈xt+1 − xt, gt+1 − gt〉+ εt+1 + εt.

Consequently, we get

2αt[r(xt+1)− r(x)] ≤ ‖xt − x‖2 − ‖xt+1 − x‖2 − ‖xt − xt+1‖2

+2αt[l(x)− l(xt+1) + 〈xt+1 − xt, gt+1 − gt〉+ εt+1 + εt].

Rearranging terms and recalling that f = l+r, the desired result thus follows.

Theorem 3. Let α ∈ ]0,+∞[, let θ ∈ [0, 1[, and let, for every t ∈ N∗,
αt = αt−θ. Let ε ∈ ]0,+∞[, {εt}t∈N∗ ⊂ [0,+∞], and assume that εt ≤ εαt.

Let {xt}t∈N∗ be the sequence generated by Algorithm 1. Let T ∈ N with T > 3.

Assume that there exists B ∈ ]0,+∞[ such that

(∀1 ≤ t ≤ T ) ‖gt‖ ≤ B, (22)

and let c be defined as in (13). Then

f(xT+1)− f∗ ≤
d(x1,X )2

2α
T θ−1 + 2α(B2 + ε)c2θ(log T )1{2θ≤1}T−min{θ,1−θ}.

Proof. Let t ∈ N∗. By (19) and Cauchy-Schwartz inequality

‖xt+1 − x‖2 − ‖xt − x‖2

≤− ‖xt − xt+1‖2 + 2αt[〈xt+1 − xt, gt+1 − gt〉+ εt+1 + εt]− 2αt[f(xt+1)− f(x)]

≤− ‖xt − xt+1‖2 + 2αt[‖xt+1 − xt‖‖gt+1 − gt‖+ εt+1 + εt]− 2αt[f(xt+1)− f(x)]

≤α2
t‖gt+1 − gt‖2 + 2αt[εt+1 + εt]− 2αt[f(xt+1)− f(x)].
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Using the assumptions ‖gt‖ ≤ B and εt ≤ εαt,

‖xt+1 − x‖2 − ‖xt − x‖2

≤4B2α2
t + 2εαt[αt + αt+1]− 2αt[f(xt+1)− f(x)]

≤4(B2 + ε)α2
t − 2αt[f(xt+1)− f(x)].

Thus, {xt}t∈N∗ is a modified Fejér sequence with respect to the target function

f and {(2αt, 4(B2 + ε)α2
t )}t∈N∗ . The statement follows from Theorem 2,

applied with θ1 = θ, θ2 = 2θ, η = 2α and ξ = 4(B2 + ε)α2.

The following remark collects some comments on the previous result.

Remark 4.

1. Setting θ = 1/2, we get a convergence rate O(T−1/2 log T ) for forward-

backward algorithm with nonsummable diminishing stepsizes, consider-

ing the last iterate.

2. In Theorem 3, the assumption on bounded approximate subgradients,

which implies Lipschitz continuity of l, is satisfied for some practical

optimization problems. For example, when r is the indicator function

of a closed, bounded, and convex set D ⊂ RN , it follows that {xt}t∈N
is bounded, which implies {gt}t∈N is bounded as well [1]. For general

cases, similar results may be obtained by imposing a growth condition

on ∂f , using a similar approach to that in [19] to bound the sequence

of subgradients.

3. Theorem 3 improves [12, Corollary 2.4] in two aspects. First, the as-

sumption (22) is weaker than the assumption, i.e., ‖gt + ut‖ ≤ B for

some ut ∈ ∂r(xt), in [12]. Second, [12] shows convergence rate only for

the best point, i.e, the one with smallest function value:

(∀T ∈ N∗) bT = argmin
1≤t≤T

f(xt). (23)

where our result holds for any last iterate.

If the function l in (17) is differentiable, with a Lipschitz differentiable

gradient, we recover the well-known O(1/T ) convergence rate for the objec-

tive function values.
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Proposition 1. [3, Theorem 3.1] Let β ∈ [0,+∞[ and assume that ∇l is

β-Lipschitz continuous. Consider Algorithm 1 with ε = 0 and αt = 1/β for

all t ∈ N∗. Then, for every T ∈ N, T > 1

f(xT+1)− f∗ ≤
βd(x1,X )2

2T
(24)

Proof. Following from (19) and that ∇l is β-Lipschitz continuous, with εt =

0,

2αt[f(xt+1)−f(x)] ≤ ‖xt−x‖2−‖xt+1−x‖2−‖xt−xt+1‖2+2αtβ‖xt+1−xt‖2,

which leads to [3, Equation 3.6]

(∀t ∈ N∗)
2

β
(f(xt+1)− f∗) ≤ ‖xt+1 − x∗‖2 − ‖xt − x∗‖2. (25)

Thus, {xt}t∈N∗ is a modified Fejér sequence with respect to the target function

f and the sequence {(ηt, ξt)}t∈N∗ with (∀t ∈ N) ηt = 2/β and ξt = 0. The

statement follows from Corollary 1.

3.2 Projected Approximate Subgradient Method

Let D be a convex and closed subset ofH, and let ιD be the indicator function

of D. In this subsection, we consider Problem (1) with objective function

given by

f = l + ιD (26)

where l : H → R is proper, lower semicontinuous, and convex. It is clear

that (26) is a special case of (17) corresponding to a given choice of r. The

forward-backward algorithm in this case reduces to the following projected

subgradient method (see e.g. [27, 26, 5] and references therein), which allows

to use ε-subgradients, see [1, 8].

Algorithm 2. Given x1 ∈ H, a sequence of stepsizes {αt}t∈N ⊂ ]0,+∞[,

and a sequence {εt}t∈N ⊂ [0,+∞[ , set, for every t ∈ N,

xt+1 = PD(xt − αtgt) (27)

with gt ∈ ∂εtl(xt).
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The algorithm has been studied using different rules for choosing the

stepsizes. Here, as a corollary of Theorem 3, we derive the convergence rate

for the objective function values, for a nonsummable diminishing stepsize.

Theorem 4. For some α1 > 0, ε ≥ 0 and θ ∈ [0, 1), let αt = η1t
−θ and

εt ≤ εαt for all t ∈ N∗. Let {xt}t∈N be a sequence generated by Algorithm 2.

Assume that for all t ∈ N∗, ‖gt‖ ≤ B. Then, for every T ∈ N, T > 3

f(xT+1)− f ∗ ≤
d(x1,X )2

2α1

T θ−1 + α1(B
2 + 2ε)c̃2θ(log T )1{2θ≤1}T−min(θ,1−θ)

Choosing θ = 1/2, we get a convergence rate of order O(T−1/2 log T ) for

projected approximate subgradient methods with nonsummable diminishing

stepsizes, which is optimal up to a log factor without any further assump-

tion on f [13, 24]. Since the subgradient method is not a descent method, a

common approach keeps track of the best point found so far, i.e., (23). Pro-

jected subgradient method with diminishing stepsizes of the form {αt−θ}t,
with θ ∈ ]0, 1], satisfies bT − f∗ = O(T−1/2). Our result shows that consider-

ing the last iterate for projected approximate subgradient method essentially

leads to the same convergence rate, up to a logarithmic factor, as the one

corresponding to the best iterate, even in the cases that the function val-

ue may not decrease at each iteration. To the best of our knowledge, our

result is the first of this kind, without any assumption on strong convex-

ity of f , or on a conditioning number with respect to subgradients (as in

[17] using stepsizes {γt/‖gt‖}t). Note that, using nonsummable diminishing

stepsizes, convergence rate O(T−1/2) was shown, but only for a subsequence

of {xt}t∈N∗ [1]. Finally, let us mention that using properties of quasi-Fejér

sequences, convergence properties were proved in [8].

3.3 Incremental Subgradient Proximal Algorithm

In this subsection, we consider an incremental subgradient proximal algo-

rithm [4, 22] for solving (1), with objective function f given by, for some

m ∈ N∗,
m∑
i=1

(li + ri),

14



where for each i, both li : H → R and ri : H → ]−∞,+∞] are convex,

proper, and lower semicontinuous. The algorithm is similar to the proximal

subgradient method, the main difference being that at each iteration, xt is

updated incrementally, through a sequence of m steps.

Algorithm 3. Let t ∈ N∗. Given xt ∈ H, an iteration of the incremental

proximal subgradient algorithm generates xt+1 according to the recursion,

xt+1 = ψmt , (28)

where ψmt is obtained at the end of a cycle, namely as the last step of the

recursion

ψ0
t = xt, ψit = proxαtri(ψ

i−1
t − αtgit), ∀git ∈ ∂li(ψi−1t ), i = 1, · · · ,m

(29)

for a suitable sequence of stepsizes {αt}t∈N∗ ⊂ ]0,+∞[.

Several versions of incremental subgradient proximal algorithms have

been studied in [4], where convergence results for various stepsizes rules and

both for stochastic of cyclic selection of the components are given. Concern-

ing the function values, the results are stated in terms of the best iteration,

i.e., (23). See also [23] for the study of the special case of incremental sub-

gradient methods under different stepsizes rules. The paper [18] provides

convergence results using approximate subgrdients instead of gradients.

In this section, we derive a sublinear convergence rate for the incremen-

tal subgradient proximal algorithm in a straightforward way, relying on the

properties of modified Fejér sequences assuming a boundedness assumption

on the subdifferentials, already used in [23].

Theorem 5. Let α ∈ ]0,+∞[, let θ ∈ [0, 1[, and let, for every t ∈ N∗,
αt = αt−θ. Let {xt}t∈N∗ be the sequence generated by Algorithm 3. Let

B ∈ ]0,+∞[ be such that

(∀t ∈ N∗)(∀g ∈ ∂li(xt) ∪ ∂ri(xt)) ‖g‖ ≤ B,

and let c be defined as in (13). Then, for every T ∈ N∗,

f(xT )− f∗ ≤
d(x1,X )2

2α
T θ−1 +

α(4m+ 5)mB2

2
c2θ(log T )1{2θ≤1}T−min{θ,1−θ}.
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Proof. It was shown in [4, Proposition 3 (Equation 27)] that,

‖xt+1 − x‖2 ≤ ‖xt − x‖2 − 2αt[f(xt)− f(x)] + α2
t (4m+ 5)mB2.

Thus, {xt}t∈N∗ is a modified Fejér sequence with respect to the target function

f , and {(2αt, α2
t (4m+ 5)mB2)}t∈N∗ . The proof is concluded by applying

Remark 3 with θ1 = θ, θ2 = 2θ, η = 2α and ξ = α2 (4m+ 5)mB2.

Remark 5.

1. An immediate consequence of Theorem 5, is that the choice θ = 1/2

yields a convergence rate of order O(T−1/2 log T ).

2. In contrast to [4, Proposition 5] where convergence rate of order T−1/2

is derived for the best iterate (23) using a fixed stepsize, our result holds

for any last iterate, considering both the fixed and diminishing stepsize

setting.

Similar to Theorem 5, we can derive convergence rates for the projected

incremental subgradient method. Analogously to what we have done for the

forward-backward algorithm in Section 3.1, Theorem 5 can be extended to

analyze convergence of the approximate and incremental subgradient method

in [18].

3.4 Douglas-Rachford splitting method

In this subsection, we consider Douglas-Rachford splitting algorithm for solv-

ing (1). Given l : H → R and r : H → R proper, convex, and lower semincon-

tinuous functions, we assume that f = l + r in (1).

Algorithm 4. Let {αt}t∈N∗ ⊂ ]0,+∞[. Let t ∈ N∗. Given xt ∈ H, an

iteration of Douglas-Rachford algorithm generates xt+1 according to
yt+1 = proxαtl(xt)
zt+1 = proxαtr(2yt+1 − xt),
xt+1 = xt + zt+1 − yt+1.

(30)
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The algorithm has been introduced in [15] to minimize the sum of two

convex functions, and then has been extended to monotone inclusions in-

volving the sum of two nonlinear operators [20]. A review of this algorithm

can be found in [11]. The convergence of the iterates is established using

the theory of Fejér sequences [10]. Our objective here is to establish a new

result, namely a convergence rate for the objective function values.

Theorem 6. Let α ∈ ]0,+∞[, and let θ ∈ [0, 1[. For every t ∈ N∗, let

αt = αt−θ. Let {(yt, xt, zt}t∈N∗ be the sequences generated by Algorithm 4.

Assume that there exists B ∈ ]0,+∞[ such that

(∀t ∈ N∗)(∀g ∈ ∂l(yt)) ‖g‖ ≤ B and (∃g′ ∈ ∂r(xt)) ‖g′‖ ≤ B. (31)

Let c be the function defined in (13). Then, for every T ∈ N, T > 3,

f(xT+1)− f∗ ≤
d(x1,X )2

2α
T θ−1 +

5αB2c2θ
2

(log T )1{2θ≤1}T−min{θ,1−θ}.

Proof. Let t ∈ N∗, set v = (xt− yt+1)/αt and w = (2yt+1− xt− zt+1)/αt. By

Fermat’s rule,

v ∈ ∂l(yt+1) and w ∈ ∂r(zt+1). (32)

We can rewrite (30) as
yt+1 = xt − αtv,
zt+1 = (2yt+1 − xt)− αtw,
xt+1 = xt + zt+1 − yt+1,

(33)

By (14), we have for any x ∈ domf,

l(yt+1)− l(x) ≤ 〈yt+1 − x, v〉.

Multiplying both sides by 2αt, and introducing with v = (xt − yt+1)/αt,

2αt[l(yt+1)− l(x)] ≤ 2αt〈yt+1 − x, v〉 = 2〈yt+1 − x, xt − yt+1〉.

Similarly, we have

2αt[r(zt+1)− r(x)] ≤ 2αt〈zt+1 − x,w〉 = 2〈zt+1 − x, 2yt+1 − xt − zt+1〉.

17



Combining the above two estimates, we get

2αt[l(yt+1) + r(zt+1)− l(x)− r(x)]

≤ 2〈yt+1 − x, xt − yt+1〉+ 2〈zt+1 − x, 2yt+1 − xt − zt+1〉.

Plugging with zt+1 = xt+1 − xt + yt+1 (implied by the third equability of

(33)),

2αt[l(yt+1) + r(zt+1)− l(x)− r(x)]

≤ 2〈yt+1 − x, xt − yt+1〉+ 2〈xt+1 − xt + yt+1 − x, 2yt+1 − xt+1 − yt+1〉
= 2〈xt − xt+1, xt+1 − x〉.

Introducing with (21),

2αt[l(yt+1) + r(zt+1)− l(x)− r(x)]

≤ ‖xt − x‖2 − ‖xt+1 − x‖2 − ‖xt − xt+1‖2.

Adding both sides by 2αt[l(xt+1) + r(xt+1)− l(yt+1)− r(zt+1)], and recalling

that f = l + r,

2αt[f(xt+1)− f(x)] ≤ ‖xt − x‖2 − ‖xt+1 − x‖2 − ‖xt − xt+1‖2

+ 2αt[l(xt+1) + r(xt+1)− l(yt+1)− r(zt+1)]. (34)

Let u ∈ ∂l(xt+1) and s ∈ ∂r(xt+1) such that ‖u‖ ≤ B and ‖s‖ ≤ B. Then

using the convexity of l and r, and (33),

l(xt+1)− l(yt+1) ≤ 〈xt+1 − yt+1, u〉
= 〈xt+1 − xt, u〉+ 〈xt − yt+1, u〉
= 〈xt+1 − xt, u〉+ αt〈v, u〉
≤ ‖xt+1 − xt‖‖u‖+ αt‖v‖‖u‖
≤ ‖xt+1 − xt‖B + αtB

2

≤ ‖xt+1 − xt‖2/(2αt) +B2αt/2 + αtB
2,

and

r(xt+1)− r(zt+1) ≤ 〈xt+1 − zt+1, s〉
= αt〈v, s〉 ≤ αt‖v‖‖s‖ ≤ αtB

2.
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Introducing the last two estimates into (34), and by a direct calculation,

2αt[f(xt+1)− f(x)] ≤ ‖xt − x‖2 − ‖xt+1 − x‖2 + 5B2α2
t .

Thus, {xt}t∈N∗ is a Super Quasi-Fejér sequence with respect to the target

function f and {(2αt, 5α2
tB

2)}t∈N∗ . The statement follows from Theorem 2

with θ1 = θ and θ2 = 2θ.

Again, choosing θ = 1/2, we get a convergence rate O(T−1/2 log T ) for the

algorithm with nonsummable diminishing stepsizes. Nonergodic convergence

rates for the objective function values corresponding to the Douglas-Rachford

iteration can be derived by [14, Corollary 3.5], under the additional assump-

tion that l is the indicator function of a linear subspace of H.

Remark 6. Theorem 6 still holds when the assumption (31) is replaced by

(∀t ∈ N∗)(∀g ∈ ∂r(yt)) ‖g‖ ≤ B and (∃g′ ∈ ∂l(xt)) ‖g′‖ ≤ B,

where the proof is essentially the same.
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