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Abstract

Deep learning based on structured deep neural networks has provided pow-
erful applications in various fields. The structures imposed on the deep neural
networks are crucial, which makes deep learning essentially different from clas-
sical schemes based on fully connected neural networks. One of the commonly
used deep neural network structures is generated by convolutions. The pro-
duced deep learning algorithms form the family of deep convolutional neural
networks. Despite of their power in some practical domains, little is known
about the mathematical foundation of deep convolutional neural networks such
as universality of approximation. In this paper we propose a family of new
structured deep neural networks, deep distributed convolutional neural net-
works. We show that these deep neural networks have the same order of
computational complexity as the deep convolutional neural networks, and we
prove their universality of approximation. Some ideas of our analysis are from
ridge approximation, wavelets, and learning theory.
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1 Introduction and Main Result

The classical (shallow) neural networks to approximate functions or process data on

Rd take the form

fN(x) =
N∑
k=1

ckσ([w]k · x− bk). (1.1)

Here x := (x1, x2, . . . , xd)
T ∈ Rd is the vector of input variables, σ : R → R is an

activation function, N is the number of neurons, and {[w]k ∈ Rd, bk ∈ R, ck ∈ R} are
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parameters corresponding to weights, biases (or thresholds), and coefficients, with

[w]i · x being the dot product in Rd. Approximation of functions on subsets of Rd

by the shallow neural networks (1.1) was studied well in a large classical literature

in the late 1980s, which is described in the survey [23] and references therein. A

particular research problem called universality of approximation is to consider

when a neural network of the form (1.1) can approximate any continuous function

on any compact subset of Rd to an arbitrary accuracy when N is large enough, see

[6, 13, 1, 16, 21] and references therein.

Approximation by the neural networks (1.1) has been extended to a setting with

multi-layer neural networks in the 1990s. A multi-layer neural network with J hidden

layers of neurons {h(j) : Rd → Rdj}Jj=1 with widths {dj} is iteratively generated as

h(j)(x) =
(
σ([w]i,j · h(j−1)(x)− b(j)

i )
)dj
i=1

, (1.2)

where h(0)(x) = x ∈ Rd, d0 = d and {[w]i,j ∈ Rdj−1 , b
(j)
i ∈ R} are free parameters.

The last hidden layer produces output functions of the form fN(x) = c · h(J)(x) with

c ∈ RdJ . The multi-layer neural network (1.2) is reduced to (1.1) when J = 1,

and its universality and approximation properties have also been well studied in the

literature [13, 21, 3, 4, 5].

A key point to ensure the universality of the neural networks (1.1) or (1.2) is

the complete freedom in taking the weights {[w]k} in (1.1) or {[w]i,j} in (1.2), and

these neural networks are called fully connected because of this feature. From

the fully connectedness one can easily calculate the number of free parameters of

weights: dN in (1.1) and
∑J

j=1 djdj−1 in (1.2), very large when the dimension d

is high, which makes these neural networks hard to implement for some practical

applications dealing with big data in huge dimensions.

Great progress on artificial intelligence has been made after deep learning was in-

troduced [14]. A basic idea of deep learning is to reduce the computational complexity

of the multi-layer neural networks involving too many free parameters by imposing

architecture designs and applying error-correction tuning methods in graphics pro-

cessing units such as backpropagation and stochastic gradient descent for computing

feasible and satisfactory solutions [9, 12, 15]. These special structured multi-layer

neural networks, called deep neural networks, have led to practical success of

the scalable deep learning algorithms. There have been many deep architectures

proposed for various domains of applications and developments of the correspond-

ing efficient deep learning systems for modelling deep abstractions from big data.

One important deep architecture is deep convolutional neural networks (DC-

NNs) which have provided powerful applications in domains like computer vision.

Compared with their success in practical applications, very little is known about the
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approximation properties of DCNNs [2, 22, 17] and there is a dramatically increasing

need of rigorous mathematical foundations of DCNNs. To our best knowledge, the

universality of the DCNN has not been proved or disproved.

In this paper we propose a family of new deep neural networks, deep distribut-

ed convolutional neural networks (DDCNNs), and prove their universality of

approximation. DDCNNs generalize the DCNNs by allowing multiple biases for

distributed implementations which is motivated by our recent work on distributed

learning algorithms for dealing with big data [18, 11, 10]. They are generated by

means of the rectified linear unit (ReLU) activation function σ defined by

σ(u) = max{u, 0} =

{
u, if u ≥ 0,
0, otherwise.

The universality of approximation of a DDCNN means that it can approximate any

continuous function f on any compact subset of Rd to an arbitrary accuracy when

its depth J is large enough. The DDCNN has a fixed filter length s ∈ N and

is generated by a sequence {w(j)}j∈N of filter masks w(j) = (w
(j)
i )i∈Z : Z → R

supported on {0, . . . , s} meaning that w
(j)
i 6= 0 only when i ∈ {0, . . . , s}.

Let us describe DCNNs before defining DDCNNs. When the depth is J ∈ N, a

DCNN may take the form of a J-layer neural network (1.2) with {dj := d + js}Jj=1

and a special convolutional structure for the weights {[w]i,j} generated by the filter

masks as

[w]i,j =
(
w

(j)
i−k

)dj−1

k=1
∈ Rdj−1 , i = 1, . . . , dj, j = 1, . . . , J. (1.3)

By the support property of the mask w(j), the above convolutional structure can be

viewed more explicitly from a Toeplitz type matrix Tw
(j)

dj−1
. Here the Toeplitz type

matrix TwD associated with a filter mask w : Z → R supported on {0, . . . , s} and a

column number D ≥ s is defined to be a (D + s)×D matrix (wi−k)i=1,...,D+s,k=1,...,D

given by

TwD =



w0 0 0 0 · · · · · · 0
w1 w0 0 0 · · · · · · 0
...

. . . . . . . . . . . . . . .
...

ws ws−1 · · · w0 0 · · · 0
0 ws · · · w1 w0 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 ws · · · w1 w0

0 · · · 0 0 ws · · · w1
...

. . . . . . . . . . . . . . .
...

0 0 0 0 · · · 0 ws


∈ R(D+s)×D. (1.4)
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Observe that the number dj of neurons at level j of the DCNN increases as j becomes

larger and is given iteratively by d1 = d+ s and dj+1 = dj + s for j ∈ N. Because of

the convolutional structure in (1.3), one only needs to compute

(s+ 1)J +
J−1∑
j=1

dj + 2dJ = J

(
d+ 1 +

J + 5

2
s

)
+ d (1.5)

parameters for the DCNN, a large reduction from

J∑
j=1

djdj−1 +
J−1∑
j=1

dj + 2dJ = J

(
d2 + d+ Js

(
Js

3
+ d+

1

2

)
+

3s

2
− s2

3

)
+ d

parameters for the fully connected network (1.2). Note that the k-th component

([w]i,j)k = w
(j)
i−k of the vector [w]i,j in (1.3) satisfies

for 1 ≤ i ≤ dj, 1 ≤ k ≤ dj−1, w
(j)
i−k 6= 0 =⇒ max{1, i− s} ≤ k ≤ min{i, dj−1}. (1.6)

The purpose of this paper is to introduce the DDCNN which has the same order

of computational complexity as the DCNN. To express this new deep neural network,

we take an approach different from the form (1.2) for the DCNN. We define a sequence

of function vectors
{

Φ(j)(x)
}J
j=1

, called DDCNN input vectors, as appearing in

(1.2) before the action of the activation function σ. Denote the sequence of filter

masks supported on {0, . . . , s} as w = {w(j)}Jj=1.

Definition 1. The DDCNN input vectors

{
Φ(j)(x) =

(
φ

(j)
i (x)

)dj
i=1

}J
j=1

of a DDCNN

of depth J is defined for the first layer Φ(1)(x) by

φ
(1)
i (x) =

d∑
k=1

w
(1)
i−kxk =

min{d,i}∑
k=max{1,i−s}

w
(1)
i−kxk, 1 ≤ i ≤ d1 = d+ s, (1.7)

and for the more layers Φ(j)(x) with j = 2, . . . , J and 1 ≤ i ≤ dj = d+ js by

φ
(j)
i (x) =

dj−1∑
k=1

w
(j)
i−kσ

(
φ

(j−1)
k (x)− b(j−1)

k,i

)
=

min{dj−1,i}∑
k=max{1,i−s}

w
(j)
i−kσ

(
φ

(j−1)
k (x)− b(j−1)

k,i

)
,

(1.8)

where
(
b

(j−1)
k,i ∈ R : k = 1, . . . , dj−1, i = 1, . . . , dj

)
=: b(j−1) is a bias matrix. The

generated DDCNN hypothesis space is defined in terms of w and the sequence

of bias matrices b = (b(j))Jj=1 with b(J) ∈ RdJ to be a space of functions as

Hw,b
J =

{
dJ∑
k=1

ckσ
(
φ

(J)
k (x)− b(J)

k

)
: c1, . . . , cdJ ∈ R

}
. (1.9)
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To see (1.8) more explicitly, we set b
(j−1)
k,i = 0 for k 6∈ [max{1, i− s},min{dj−1, i}],

and express b(j−1) ∈ Rdj−1×dj to be a band matrix with band width s given by

b(j−1) =



b
(j−1)
1,1 b

(j−1)
1,2 · · · b(j−1)

1,s+1 0 · · · · · · 0

0 b
(j−1)
2,2 · · · b

(j−1)
2,s+2 0 · · · 0

...
. . . . . . . . . . . .

...

...
. . . . . . . . . . . . . . . 0

0 · · · · · · 0 b
(j−1)
dj−1,dj−1

· · · b
(j−1)
dj−1,dj


. (1.10)

Then the iterative relationship (1.8) can be written as

Φ(j)(x) =

((
Tw

(j)

dj−1

)
i,·
σ
(

Φ(j−1)(x)−
(
b(j−1)

)
·,i

))dj
i=1

, (1.11)

where
(
Tw

(j)

dj−1

)
i,·

denotes the ith row of the matrix Tw
(j)

dj−1
,
(
b(j−1)

)
·,i the ith column

of the matrix b(j−1), and σ acts componentwisely on the components of the vector

Φ(j−1)(x)−
(
b(j−1)

)
·,i. That is, the ith component of Φ(j)(x) equals the dot product

of the ith row of Tw
(j)

dj−1
and the action of σ on the difference of Φ(j−1)(x) and the ith

column of b(j−1).

Consider the special case when each row of the bias matrix (1.10) has identical

components: b
(j−1)
i,i = b

(j−1)
i,1+i = . . . = b

(j−1)
i,s+i =: b

(j−1)
i for i = 1, 2, . . . , dj−1. Denote

a vector ~b(j−1) =
(
b

(j−1)
i

)dj−1

i=1
. Then we see that in this special case, the vectors

Φ(j−1)(x) −
(
b(j−1)

)
·,i and Φ(j−1)(x) − ~b(j−1) are identical in their kth components

with the indices k satisfying max{1, i − s} ≤ k ≤ min{dj−1, i}. But the row vector(
Tw

(j)

dj−1

)
i,·

may have nonzero components only on this index set. Therefore, the

equivalent form (1.11) of the iterative relationship (1.8) can be expressed as

Φ(j)(x) =

((
Tw

(j)

dj−1

)
i,·
σ
(

Φ(j−1)(x)−~b(j−1)
))dj

i=1

= Tw
(j)

dj−1
σ
(

Φ(j−1)(x)−~b(j−1)
)
.

This is exactly the iterative relationship (1.2) for the DCNN stated in terms of the

input vectors
(
[w]i,j · h(j−1)(x)

)dj−1

i=1
= Φ(j−1)(x) with the weights given by [w]i,j =(

w
(j)
i−k

)dj−1

k=1
in (1.3). Thus we see that the DCNN is a special case of the DDCNN.

Moreover, the number of free parameters corresponding to the biases at level j is

raised to (s + 1)dj−1 (for DDCNN) from dj−1 (for DCNN), having the same order.

The total number of free parameters to be computed for the DDCNN is

(s+1)J+(s+1)
J−1∑
j=1

dj +2dJ = J

(
d+ 1 +

J + 5

2
s

)
+d+s

(
J(J − 1)s

2
+ (J − 1)d

)
5



which is at most s+1 multiple of the number (1.5) for the DCNN. This justifies that

the DDCNN has the same order of computational complexity as the DCNN.

The main analysis of this paper is to prove the following universality of approx-

imation for the DDCNN, to be done in Section 5. Observe from the definition that

Hw,b
J consists of continuous piecewise linear functions (linear splines) on any com-

pact subset Ω of Rd. So the hypothesis space Hw,b
J is a subset of C(Ω), the space of

continuous functions on Ω.

Theorem 1. Let 2 ≤ s ≤ d. For any compact subset Ω of Rd and f ∈ C(Ω), there

exist a sequence of filter masks w and a sequence of bias matrices b such that

lim
J→∞

inf
f∗∈Hw,b

J

{
‖f − f ∗‖C(Ω)

}
= 0. (1.12)

2 Novelty of Analysis

To prove the universality of approximation stated in our main result, Theorem 1,

by constructing a DDCNN, we first approximate the function f by a polynomial

PΓ ∈ PΓ(Rd) with some Γ ∈ N where PΓ(Rd) denotes the space of all polynomials

on Rd of degree at most Γ.

Our first novelty is to observe that the polynomial PΓ can be decomposed as

PΓ(x) =

nΓ∑
k=1

pk,Γ(ξk · x), x ∈ Rd, (2.1)

where each pk,Γ ∈ PΓ(R) is a univariate polynomial of degree at most Γ and {ξk}nΓ
k=1 ⊂

Rd is a set of vectors, called features, with the number nΓ depending only on d and

Γ.

Our second novelty is to approximate the univariate polynomials pk,Γ by contin-

uous piecewise linear functions (splines) spanned by {σ(·− ti)}Ni=1 generated by a set

of knots {t1, . . . , tN} to be chosen according to the approximation accuracy.

Our last and the most important novelty is to construct the filter masks w =

{w(j)}Jj=1 supported on {0, . . . , s} and the bias matrices b = (b(j))Jj=1 in such a way

that when the depth J is large enough, each polynomial pk,Γ(ξk · x) in (2.1) can be

approximated by functions from the hypothesis space Hw,b
J of the DDCNN defined

by (1.9).

Our construction of the DDCNN hypothesis space consists of three steps to be

presented in the following three sections:

1. Construct the bias matrices b = (b(j))Ij=1 and the initializing layers {Φ(j)(x)}Ij=1

for a given set of filter masks {w(j)}Ij=1 so that the components of the last

initializing layer Φ(I)(x) can contain a rich family of linear functions {ηi · x +

τi}Isi=1 with features {ηi}Isi=1 ⊂ Rd.
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2. Construct deeper layers {Φ(j)(x)}Jj=I+1 by a set of filter masks {w(j)}Jj=I+1 so

that the components of the last deeper layer Φ(J)(x) can contain the (spline)

functions {σ(ηi · x− tj) : i = 1, . . . , Is, j = 1, . . . , N} with an arbitrarily given

knot sequence t1 < . . . < tN .

3. Construct the filter masks {w(j)}Ij=1 in such a way that the set of features

{ηi}Isi=1 constructed in the first step includes the set of features {ξk}nΓ
k=1 required

in (2.1), and achieves a required approximation accuracy by constructing a

spline approximation scheme to approximate the functions pk,Γ(ξk ·x) by linear

combinations of {σ(ηi · x− tj)} from the hypothesis space.

Throughout our construction, we assume that s ≤ d and the filter mask sequence{
w(j)

}
satisfies w

(j)
0 > 0 for each j and w

(j)
s > 0 for each j = I + 1, . . . , J , which will

be realized in our mask factorization in Section 5. Some ideas of our construction

are from ridge approximation, wavelets, spline functions, and learning theory [8, 24].

In practical applications of DCNNs, fully connected layers might be added and

techniques like polling are involved [9]. These technical tools for empirical imple-

mentations will not be discussed in this paper.

3 Initializing Layers

To give a linear algebra viewpoint of our construction, we use the matrices Tw
(j)

dj−1

defined by (1.4). From the definition (1.7), we see that the first input vector can be

written as

Φ(1)(x) = Tw
(1)

d x. (3.1)

From the assumption w
(1)
0 6= 0, we find the linear independence of the first d rows

of the matrix Tw
(1)

d . Hence the first d components of Φ(1), {φ(1)
i (x) = w

(1)
0 xi +∑i−1

k=max{1,i−s}w
(1)
i−kxk}di=1, span the other components and the space of all homoge-

neous linear polynomials on Ω. Observe that each component φ
(1)
i (x) of the first

layer contains at most s + 1 variables. This special property motivates us to con-

struct {Φ(j)}Ij=1, the first I layers of input vectors with I ∈ N, called initializing

layers, in such a way that the components of the last initialing layer Φ(I) are linear

functions involving more variables with some coefficient vectors being the features

required for (2.1).

Extending the matrix form (3.1) of Φ(1), we define homogenized layers as

Φ̂(j)(x) = Tw
(j)

dj−1
. . . Tw

(1)

d x, j ∈ N. (3.2)

We construct the initializing layers by taking the biases {b(j−1)
k,i } in (1.8) to be small

enough so that φ
(j−1)
k (x) − b

(j−1)
k,i ≥ 0. Denote the `1-norm of a finitely supported
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sequence w on Z as ‖w‖1 =
∑

k∈Z |wk|. Denote

B(0) = max
x∈Ω

max
k=1,...,d

|xk|, B(j) = ‖w(j)‖1 . . . ‖w(1)‖1B
(0), j ∈ N.

Theorem 2. For j ∈ N, we have∥∥∥(Φ̂(j)(x)
)
i

∥∥∥
C(Ω)
≤ B(j), ∀i = 1, . . . , dj. (3.3)

Let I ∈ N. Set vectors τ (j) ∈ Rdj by

τ
(j)
i =

min{dj−1,i}∑
k=max{1,i−s}

w
(j)
i−kB

(j−1), i = 1, . . . , dj, j = 2, . . . , I.

Then all the components of τ (j) lie in [−B(j), B(j)]. Construct the bias matrices

{b(j)}I−1
j=1 by

b
(j)
k,i = τ

(j)
k −B

(j), ∀ k = max{1, i− s}, . . . ,min{dj, i}, i = 1, . . . , dj, (3.4)

where τ (1) denotes the zero vector. Then we have

Φ(j)(x) = Tw
(j)

dj−1
. . . Tw

(1)

d x+ τ (j) = Φ̂(j)(x) + τ (j), ∀ j = 1, . . . , I. (3.5)

Proof. From the definition of Φ̂(1) = Φ(1), we know that∥∥∥(Φ̂(1)(x)
)
i

∥∥∥
C(Ω)

= ‖φ̂(1)
i ‖C(Ω) ≤ ‖w(1)‖1B

(0) = B(1), ∀i = 1, . . . , d1.

The definition (3.2) yields the iteration relation Φ̂(j+1)(x) = Tw
(j+1)

dj
Φ̂(j)(x). Hence

∣∣∣φ̂(j+1)
i (x)

∣∣∣ =

∣∣∣∣∣∣
dj∑
k=1

w
(j+1)
i−k φ̂

(j)
k (x)

∣∣∣∣∣∣ ≤ ‖w(j+1)‖1 max
k=1,...,dj

∥∥∥(Φ̂(j)(x)
)
k

∥∥∥
C(Ω)

.

This proves (3.3) by induction on j.

From the definition of the norm, we know that
∣∣∣τ (j)
i

∣∣∣ ≤ ‖w(j)‖1B
(j−1) = B(j).

Hence all the components of τ (j) lie in [−B(j), B(j)].

To prove (3.5) with j = 2 for the second layer, we find from the choice (3.4) of

the biases and the notation τ (1) = 0 that b
(1)
k,i = −B(1) in (1.8), and φ

(1)
k (x) − b(1)

k,i =

φ
(1)
k (x) +B(1) ≥ 0 for i = 1, . . . , d2, which implies

φ
(2)
i (x) =

min{d1,i}∑
k=max{1,i−s}

w
(2)
i−kφ

(1)
k (x) +

min{d1,i}∑
k=max{1,i−s}

w
(2)
i−kB

(1).
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Due to the mask support property (1.6) and (3.1), we know that

min{d1,i}∑
k=max{1,i−s}

w
(2)
i−kφ

(1)
k (x) =

d1∑
k=1

w
(2)
i−k

(
Tw

(1)

d x
)
k

=
(
Tw

(2)

d1
Tw

(1)

d x
)
i
.

Thus (3.5) holds true for j = 2.

Now we prove (3.5) by induction. Assume that Φ(j)(x) = Tw
(j)

dj−1
. . . Tw

(1)

d x + τ (j).

From this induction hypothesis and the choice (3.4) of the biases for (1.8), we find

φ
(j)
k (x) − b

(j)
k,i = φ̂

(j)
k (x) + B(j) ≥ 0 by (3.3). It follows from (1.6) again that for

i = 1, . . . , dj+1,

φ
(j+1)
i (x) =

min{dj ,i}∑
k=max{1,i−s}

w
(j+1)
i−k φ̂

(j)
k (x) +

min{dj ,i}∑
k=max{1,i−s}

w
(j+1)
i−k B(j)

=

dj∑
k=1

w
(j+1)
i−k

(
Tw

(j)

dj−1
. . . Tw

(1)

d x
)
k

+ τ
(j+1)
i =

(
Tw

(j+1)

dj
. . . Tw

(1)

d x
)
i
+ τ

(j+1)
i .

This completes the induction procedure and proves our conclusion.

The last initializing layer can be expressed as

Φ(I)(x) = Φ̂(I)(x) + τ (I) = Tw
(I)

dI−1
. . . Tw

(1)

d x+ τ (I), (3.6)

where Tw
(I)

dI−1
. . . Tw

(1)

d is a dI×d matrix. This matrix can be written in the form (1.4).

To see this, we recall the convolution a∗b of two finitely supported sequences a, b on

Z defined by

(a∗b)i =
∑
k∈Z

ai−kbk, i ∈ Z.

If a is supported on {A0, A0 + 1, . . . , A1} and b on {B0, B0 + 1, . . . , B1}, then a∗b
is supported on {A0 + B0, A0 + B0 + 1, . . . , A1 + B1}. Now we consider the matrix

product Tw
(j)

dj−1
Tw

(j−1)

dj−2
which is a dj × dj−2 matrix. Its (i, k)-entry with 1 ≤ i ≤ dj and

1 ≤ k ≤ dj−2 can be expressed as

(
Tw

(j)

dj−1
Tw

(j−1)

dj−2

)
i,k

=

dj−1∑
`=1

(
Tw

(j)

dj−1

)
i,`

(
Tw

(j−1)

dj−2

)
`,k

=

dj−1∑
`=1

w
(j)
i−`w

(j−1)
`−k .

For ` ≤ 0, we have `− k < 0 and thereby w
(j−1)
`−k = 0, while for ` ≥ dj−1 + 1, we have

`− k > s which also implies w
(j−1)
`−k = 0. Therefore,(

Tw
(j)

dj−1
Tw

(j−1)

dj−2

)
i,k

=
∑
`∈Z

w
(j)
i−`w

(j−1)
`−k =

∑
p∈Z

w
(j)
i−k−pw

(j−1)
p =

(
w(j)∗w(j−1)

)
i−k .
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This is exactly the (i, k)-entry of the dj×dj−2 matrix Tw
(j)∗w(j−1)

dj−2
defined by (1.4) cor-

responding to the filter mask w(j)∗w(j−1) supported on {0, . . . , 2s}. Hence Tw
(j)

dj−1
Tw

(j−1)

dj−2
=

Tw
(j)∗w(j−1)

dj−2
. Applying this relation iteratively tells us that

Tw
(I)

dI−1
. . . Tw

(1)

d = TWd ∈ R(d+Is)×d,

a matrix of the form (1.4) with D = d and s replaced by Is, where W = W (I) : Z→ R
is a sequence supported on {0, . . . , Is} defined by

W = w(I)∗w(I−1)∗ . . . ∗w(2)∗w(1). (3.7)

Note that W0 = ΠI
j=1w

(j)
0 > 0. At the end, when I ≥ d

s
, the I-th homogenized

layer corresponding to the last initializing layer is given by Φ̂(I)(x) = TWd x or more

explicitly by

TWd =



W0 0 · · · 0

W1 W0
. . . 0

...
. . . . . .

...
Wd−1 · · · W1 W0

Wd Wd−1 · · · W1
...

. . . . . .
...

WIs · · · . . .
...

0 WIs · · · ...
...

. . . . . .
...

0 · · · 0 WIs



, Φ̂(I) =



φ̂
(I)
1 (x) = W0x1

...

φ̂
(I)
d−1(x) = Wd−2x1 + . . .+W0xd−1

φ̂
(I)
d (x) = Wd−1x1 + . . .+W0xd
φ̂

(I)
d+1(x) = Wdx1 + . . .+W1xd

...

φ̂
(I)
d+`(x) = Wd+`−1x1 + . . .+W`xd

...

φ̂
(I)
Is+1(x) = WIsx1 + . . .+WIs−d+1xd

...

φ̂
(I)
d+Is(x) = WIsxd



.

(3.8)

Hence the last Is components of the last homogenized layer Φ̂(I)(x) can be expressed

as

{Φ̂(I)
d+i(x)}Isi=1 = {ηi · x}Isi=1, with ηi = (Wd−1+i,Wd−2+i, . . . ,Wi)

T ∈ Rd.

Note the first i−1 components of ηi vanish for i > Is−d. In our proof of universality

of approximation, the set of features {η(k−1)d+1}1≤k≤(Is−1)/d ⊂ Rd will be used.

4 Deeper Layers for Constructing Linear Splines

Let t1 < t2 < . . . < tN−1 < tN . Based on the first I (initializing) layers, we shall con-

struct the next (N − 1)I layers, called deeper layers, of input vectors of a DDCNN

of depth J = NI so that functions of type f(φ
(I)
d+`(x)) with ` ∈ {1, . . . , Is} and f
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being a continuous linear spline supported on [t1, tN ] with knots {t1, t2, . . . , tN−1, tN}
are contained in the hypothesis space Hw,b

J .

We take a set of filter masks {w(j)}NIj=I+1 supported on {0, . . . , s} to satisfy w
(j)
0 >

0 and w
(j)
s > 0 for j = I + 1, . . . , NI. The constructed DDCNN input vectors

{Φ(j)(x)}NIj=I+1 of deeper layers will be expressed in block forms in terms of the

following two types of blocks:

L :=

 φ̂
(I)
1 (x) +B(I)

...

φ̂
(I)
d (x) +B(I)

 =

 W0x1 +B(I)

...
Wd−1x1 + . . .+W0xd +B(I)

 (4.1)

and

Σ`,t :=
[
σ(φ̂

(I)
i (x)− t)

]d`
i=d`−s+1

=


σ
(
φ̂

(I)
d+(`−1)s+1(x)− t

)
...

σ
(
φ̂

(I)
d+`s(x)− t

)
 , ` ∈ {1, . . . , I}.

(4.2)

To illustrate our construction explicitly, we express the dj × dj−1 matrix Tw
(j)

dj−1

defined by (1.4) in the following block matrix form

Tw
(j)

dj−1
=



L0 O · · · · · · · · · · · · · · · O
O U1 L1 O · · · · · · · · · · · · O

O U2 L2 O
. . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . .
...

...
. . . . . . Uq Lq

. . . . . .
...

...
. . . . . . . . . Uq+1

. . . . . .
...

...
. . . . . . . . . . . . . . . . . . O

...
. . . . . . . . . · · · · · · Uj−1 Lj−1

O · · · · · · O · · · · · · O Uj


, (4.3)

whereO denotes a zero matrix which might have different sizes in various occurrences,

L0 =
[
w

(j)
`−m

]d
`,m=1

is a lower triangular d× d matrix given by

L0 =



w
(j)
0 0 · · · · · · 0

...
. . . . . . . . .

...

w
(j)
s · · · w

(j)
0 0 · · · 0

0
. . . . . . . . . . . . 0

...
. . . . . . . . .

...

0 · · · 0 w
(j)
s · · · w

(j)
0


d×d

, (4.4)
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L1 = . . . = Lj−1 = L are identical lower triangular s × s matrices and U1 = . . . =

Uj = U are identical upper triangular s× s matrices given by

L =
[
w

(j)
`−m

]s
`,m=1

=

 w
(j)
0 0 · · ·

...
. . . . . .

w
(j)
s−1 · · · w

(j)
0

 , U =
[
w

(j)
s+`−m

]s
`,m=1

=

 w
(j)
s · · · w

(j)
1

...
. . . . . .

· · · 0 w
(j)
s

 .
(4.5)

In our construction described in details in the following subsections, we take

suitable biases in (1.8) so that only one term in the summation for φ
(j)
i (x) does not

vanish.

4.1 First deeper layer

In our construction of the first deeper layer Φ(I+1)(x), for each component φ
(I+1)
i (x)

expressed in (1.8), we take all biases except one to be b
(I)
k,i = 2B(I) which together

with Theorem 2 implies φ
(I)
k (x)−b(I)

k,i ≤ 0 and w
(I+1)
i−k σ

(
φ

(I)
k (x)− b(I)

k,i

)
= 0. In a linear

algebra viewpoint taking the matrix Tw
(I+1)

dI
in the block form (4.3) with q = 1, the

exceptional bias for each component φ
(I+1)
i (x) is taken corresponding to the main

diagonal entry w
(I+1)
0 of L0 (for 1 ≤ i ≤ d) or L1 (for d + 1 ≤ i ≤ d + s), or the

main diagonal entry w
(I+1)
s of the block U` (for d + (` − 1)s + 1 ≤ i ≤ d + `s) with

` ∈ {2, . . . , I + 1}. Here the blocks L1 and U2 lie on the same column group, so the

same block
[
φ̂

(I)
i (x)

]d+s

i=d+1
of components of Φ(I)(x) is used to generate two blocks

of Φ(I+1)(x) involving Σ1,t1 and Σ1,t2 . The exact expression for the first deeper layer

Φ(I+1)(x) in terms of the block matrices L and Σ`,t is the following.

Lemma 1. By taking the bias matrix b(I) as

b
(I)
k,i =



τ
(I)
i −B(I), if 1 ≤ i ≤ d and k = i,

τ
(I)
i + t1, if d+ 1 ≤ i ≤ d+ s and k = i,

τ
(I)
i−s + t2, if d+ s+ 1 ≤ i ≤ d+ 2s and k = i− s,
τ

(I)
i−s + t1, if d+ 2s+ 1 ≤ i ≤ d+ (I + 1)s and k = i− s,

2B(I), otherwise,

we have

Φ(I+1)(x) =


w

(I+1)
0 L

w
(I+1)
0 Σ1,t1

w
(I+1)
s Σ1,t2[
w

(I+1)
s Σ`,t1

]I
`=2

 . (4.6)
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Proof. With the given choice of the bias matrix b(I), we find that in the summation

for each component φ
(I+1)
i (x) of Φ(I+1)(x) defined in (1.8), only one term does not

vanish and this term corresponds to k = i or k = i− s, which yields

φ
(I+1)
i (x) =



w
(I+1)
0

(
φ̂

(I)
i (x) +B(I)

)
, if 1 ≤ i ≤ d,

w
(I+1)
0 σ

(
φ̂

(I)
i (x)− t1

)
, if d+ 1 ≤ i ≤ d+ s,

w
(I+1)
s σ

(
φ̂

(I)
i−s(x)− t2

)
, if d+ s+ 1 ≤ i ≤ d+ 2s,

w
(I+1)
s σ

(
φ̂

(I)
i−s(x)− t1

)
, if d+ 2s+ 1 ≤ i ≤ d+ (I + 1)s.

This together with the definition of the block matrices L and Σ`,t verifies the stated

expression for Φ(I+1)(x).

Notice that for the first deeper layer Φ̂(I+1)(x), the first d components are linear

functions and the remaining (I + 1)s components are splines with knots t1 or t2
composed with the corresponding components of Φ̂(I)(x).

4.2 Constructing deeper layers and splines with two knots

For constructing more deeper layers {Φ(I+`)(x)}I`=2, we observe from the expression

(4.6) for Φ(I+1)(x) that the block
[
φ̂

(I+1)
i (x)

]d3

i=d2+1
involving Σ2,t1 should be used to

generate two blocks involving Σ2,t1 and Σ2,t2 . This motivates our idea of consider-

ing the block
[
φ

(I+`−1)
i (x)

]d2`−1

i=d2(`−1)+1
of Φ(I+`−1)(x) for constructing Φ(I+`)(x), and

emphasizing the corresponding blocks L2`−1 and U2` in the block form (4.3) of the

matrix Tw
(I+`)

dI+`−1
for taking exceptional biases.

We need the following properties for the ReLU σ:

σ(αu) = ασ(u), σ(σ(u)− α) = σ(u− α), ∀ u ∈ R, α > 0. (4.7)

Denote

[Π0]ji = Πj
p=iw

(p)
0 , [Πs]

j
i = Πj

p=iw
(p)
s .

Observe that for I + 1 ≤ i ≤ j, both [Π0]ji and [Πs]
j
i are positive by our assumptions

on w
(j)
0 and w

(j)
s .

Lemma 2. There exist bias matrices
{
b(j)
}2I−1

j=I
(constructed explicitly) such that

Φ(I+`)(x) =


[Π0]I+`I+1L[

[Πs]
I+j−1
I+1 [Π0]I+`I+j Σj,t1

[Πs]
I+j
I+1 [Π0]I+`I+j+1 Σj,t2

]`
j=1[

[Πs]
I+`
I+1 Σj,t1

]I
j=`+1

 , ` = 1, . . . , I. (4.8)
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Proof. We prove our statement by induction. The case ` = 1 has been shown in

Lemma 1.

Assume that the expression (4.8) holds for ` − 1. Then the first components

of Φ(I+`−1)(x) are bounded by [Π0]I+`−1
I+1 2B(I) ≤ 2‖w(I+`−1)‖1 . . . ‖w(I+1)‖1B

(I) =

2B(I+`−1), while the other components are bounded by

ΠI+`−1
p=I+1‖w

(p)‖1

(
max
i
‖φ̂(I)

i ‖C(Ω) + max{|t1|, |t2|}
)
≤ B(I+`−1)

(
2 +

max{|t1|, |t2|}
B(I)

)
.

Denote this upper bound by DI+`−1.

To verify the statement for the case `, by viewing the blocks L2`−1 and U2` of the

matrix form (4.3) with q = 2`− 1 for Tw
(I+`)

dI+`−1
, we take the entries of the bias matrix

b(I+`−1) in (1.8) with special entries corresponding to k = i or k = i− s as

b
(I+`−1)
k,i =


0, if 1 ≤ i ≤ d2`−1 and k = i,

[Πs]
I+`−1
I+1 (t2 − t1) , if d2`−1 + 1 ≤ i ≤ d2` and k = i− s,

0, if d2` + 1 ≤ i ≤ dI+` and k = i− s,
DI+`−1, otherwise.

It is essential to note that all the components of Φ(I+`−1)(x) are nonnegative. So we

see from property (4.7) of the ReLU σ that the first d2`−1 components of Φ(I+`)(x)

are just the w
(I+`)
0 multiples of those of Φ(I+`−1)(x), and the last (I − `)s compo-

nents of Φ(I+`)(x) are the w
(I+`)
s multiples of those of Φ(I+`−1)(x). For the middle s

components, we see from the definition (1.8) and the choice of the bias matrix that

φ
(I+`)
i (x) = w(I+`)

s σ
(
φ

(I+`−1)
i−s (x)− [Πs]

I+`−1
I+1 (t2 − t1)

)
, d2`−1 + 1 ≤ i ≤ d2`.

By the induction hypothesis,
[
φ

(I+`−1)
i−s (x)

]d2`

i=d2`−1+1
is the block matrix [Πs]

I+`−1
I+1 Σ`,t1 .

So for α = 1, . . . , s, we have φ
(I+`−1)
d2`−1−s+α(x) = [Πs]

I+`−1
I+1 σ

(
φ̂

(I)
d`−s+α(x)− t1

)
. Thus by

(4.7) there holds

φ
(I+`)
d2`−1+α(x) = w(I+`)

s σ
(

[Πs]
I+`−1
I+1 σ

(
φ̂

(I)
d`−s+α(x)− t1

)
− [Πs]

I+`−1
I+1 (t2 − t1)

)
= w(I+`)

s [Πs]
I+`−1
I+1 σ

(
σ
(
φ̂

(I)
d`−s+α(x)− t1

)
− (t2 − t1)

)
= [Πs]

I+`
I+1 σ

(
φ̂

(I)
d`−s+α(x)− t2

)
, α = 1, . . . , s.

Hence
[
φ

(I+`)
i (x)

]d2`

i=d2`−1+1
equals the block matrix [Πs]

I+`
I+1 Σ`,t2 . Therefore the desired

expression (4.8) holds true for the case `. This completes the induction procedure.
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Lemma 2 yields the following expression for Φ(2I)(x):

Φ(2I)(x) =


[Π0]2II+1L
S(2)

1
...

S(2)
I

 , where S(2)
j =

[
[Πs]

I+j−1
I+1 [Π0]2II+j Σj,t1

[Πs]
I+j
I+1 [Π0]2II+j+1 Σj,t2

]
. (4.9)

Note that for the block S(2)
j , the components of Σj,t1 =

[
σ(φ̂

(I)
i (x)− t1)

]dj
i=dj−s+1

and Σj,t2 are splines σ(· − t1) with knots t1 and σ(· − t2) with knots t2 respectively

composed with the linear functions
{
φ̂

(I)
i (x)

}dj
i=dj−s+1

.

4.3 Constructing more deeper layers and splines with more
knots

We now apply the above procedure to construct further deeper layers and create

splines with knots t3, . . . , tN . For p ≥ 2, 1 ≤ k ≤ p, 1 ≤ j ≤ I, denote

Πp,j,k = Πk−1
ν=1

{
[Πs]

νI+j
νI+1 [Π0]

(ν+1)I
νI+j+1

}
Πp−1
ν=k

{
[Πs]

νI+j−1
νI+1 [Π0]

(ν+1)I
νI+j

}
.

When p = 2, the numbers Π2,j,1 and Π2,j,2 are exactly those in (4.9). Observe that

0 < Πp,j,k ≤ ΠpI
`=I+1‖w(`)‖1 = B(pI)

B(I) .

Lemma 3. Let 2 ≤ N ∈ N. There exist bias matrices
{
b(j)
}NI−1

j=2I
(constructed

explicitly) such that for p = 2, . . . , N , there holds

Φ(pI)(x) =


[Π0]pII+1L
S(p)

1
...

S(p)
I

 , where S(p)
j =

 Πp,j,1Σj,t1
...
Πp,j,pΣj,tp

 . (4.10)

Proof. We prove by induction for p. The case p = 2 has been shown in Lemma 2.

Suppose that the statement holds true for p− 1.

To prove the statement for the case p, we assume that for some ` ∈ {1, . . . , I},

Φ((p−1)I+`−1)(x) =


[Π0]

(p−1)I+`−1
I+1 L

S(p−1,`−1)
1

...

S(p−1,`−1)
I

 , (4.11)
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which is true for ` = 1 due to the induction hypothesis for Φ((p−1)I)(x). Here

S(p−1,`−1)
j =




[Πs]

(p−1)I+j−1
(p−1)I+1 [Π0]

(p−1)I+`−1
(p−1)I+j Πp−1,j,1Σj,t1

...

[Πs]
(p−1)I+j−1
(p−1)I+1 [Π0]

(p−1)I+`−1
(p−1)I+j Πp−1,j,p−1Σj,tp−1

[Πs]
(p−1)I+j
(p−1)I+1 [Π0]

(p−1)I+`−1
(p−1)I+j+1 Πp−1,j,p−1Σj,tp

 , if j = 1, . . . , `− 1,

 [Πs]
(p−1)I+`−1
(p−1)I+1 Πp−1,j,1Σj,t1

...

[Πs]
(p−1)I+`−1
(p−1)I+1 Πp−1,j,p−1Σj,tp−1

 , if j = `, . . . , I.

Then by property (4.7) of the ReLU and Theorem 2, we have

0 ≤ φ
((p−1)I+`−1)
k (x) ≤ B((p−1)I+`−1)

B(I)
max

{
2B(I), B(I) + max{|t1|, . . . , |tp|}

}
=: Dp,`−1.

To construct Φ((p−1)I+`)(x), we choose the bias matrix b((p−1)I+`−1) for (1.8) with

special choices corresponding to the main diagonal entries of the blocks Lp`−1 and

Up` of the matrix form (4.3) with q = p` − 1 for Tw
((p−1)I+`)

d(p−1)I+`−1
by setting b

((p−1)I+`−1)
k,i

equal to
0, if 1 ≤ i ≤ dp`−1 and k = i,

[Πs]
(p−1)I+`−1
(p−1)I+1 Πp−1,`,p−1 (tp − tp−1) , if dp`−1 + 1 ≤ i ≤ dp` and k = i− s,

0, if dp` + 1 ≤ i ≤ d(p−1)I+` and k = i− s,
Dp,`−1, otherwise.

It follows from property (4.7) of the ReLU and 0 ≤ φ
((p−1)I+`−1)
k (x) ≤ Dp,`−1 that

the first dp`−1 components of Φ((p−1)I+`)(x) are just the w
((p−1)I+`)
0 multiples of those

of Φ((p−1)I+`−1)(x), while the last (p− 1)(I− `)s components of Φ((p−1)I+`)(x) are the

w
((p−1)I+`)
s multiples of those of Φ((p−1)I+`−1)(x). For the middle s components with

indices dp`−1 + 1 ≤ i ≤ dp`, we have

φ
((p−1)I+`)
i (x) = w((p−1)I+`)

s σ
(
φ

((p−1)I+`−1)
i−s (x)− [Πs]

(p−1)I+`−1
(p−1)I+1 Πp−1,`,p−1 (tp − tp−1)

)
.

But we see from (4.11) that
[
φ

((p−1)I+`−1)
i−s (x)

]dp`
i=dp`−1+1

is the last s-block matrix

[Πs]
(p−1)I+`−1
(p−1)I+1 Πp−1,`,p−1Σ`,tp−1 of S(p−1,`−1)

` . Hence by property (4.7) of the ReLU,

φ
((p−1)I+`)
dp`−1+α (x) = w((p−1)I+`)

s σ
(

[Πs]
(p−1)I+`−1
(p−1)I+1 Πp−1,`,p−1σ

(
φ̂

(I)
d`−s+α(x)− tp−1

)
− [Πs]

(p−1)I+`−1
(p−1)I+1 Πp−1,`,p−1 (tp − tp−1)

)
= [Πs]

(p−1)I+`
(p−1)I+1 Πp−1,`,p−1σ

(
φ̂

(I)
d`−s+α(x)− tp

)
, α = 1, . . . , s.
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It implies
[
φ

((p−1)I+`)
i (x)

]dp`
i=dp`−1+1

= [Πs]
(p−1)I+`
(p−1)I+1 Πp−1,`,p−1Σ`,tp . This proves (4.11)

with ` − 1 replaced by `. So by induction, the expression (4.11) holds true for

` = 2, . . . , I + 1. Take the special index ` = I + 1, this expression is exactly the

desired formula (4.10) for Φ(pI)(x), which completes the induction procedure.

5 Approximation Scheme for Universality

In this section we prove the universality of approximation of the DDCNN.

5.1 Mask factorization

We first need to factorize an arbitrarily fixed filter maskW supported on {0, 1, . . . , SW}
into the convolutions of a finite sequence of filter masks {w(j)}Ij=1 supported on

{0, 1, . . . , s} as expressed in (3.7). For our construction, we introduce the symbol w̃

of a filter mask w : Z→ R supported on {0, 1, . . . , τ} with τ ∈ Z+ to be a polynomial

on C given by

w̃(z) =
τ∑
k=0

wkz
k, z ∈ C. (5.1)

This concept is widely used in the literature of wavelet analysis [7]. Our key idea for

proving the universality theorem here is the following factorization of the symbol W̃

which is of independent interest. For u > 0, we denote [u] its integer part, and due
the smallest integer greater than or equal to u.

Lemma 4. Let s ≥ 2 and W : Z → R be a filter mask supported on {0, 1, . . . , SW}
satisfying W0 > 0 and WSW

6= 0 with SW ≥ d ≥ s. Then there exist some integer

I ∈
[
SW

s
, SW

s−1
+ 2
)

and a sequence of filter masks {w(j)}Ij=1 supported on {0, 1, . . . , s}
having w

(1)
0 = W0 > 0 and w

(j)
0 = 1 for j = 2, . . . , I such that the convolutional

factorization (3.7) holds true.

Proof. A useful property of the filter symbol w̃ is that the symbol of the convolution

a∗b of two finitely supported sequences a, b on Z+ is given by the product of the

symbols of a and b as

ã∗b(z) = ã(z)̃b(z), ∀z ∈ C.

Observe that the coefficients of the polynomial W̃ of degree SW are real. It follows

that if z0 ∈ C is a root of W̃ of order α ∈ N meaning that its value at z0 and the values

of its derivatives up to order α − 1 vanish W̃ (z0) = W̃ ′(z0) = . . . = W̃ (α−1)(z0) = 0

while W̃ (α)(z0) 6= 0, then its complex conjugate z0 ∈ C is also a root of order α.

Hence the complete factorization of the polynomial W̃ has the form

W̃ (z) = WSW
ΠA
k=1 {(z − zk)(z − zk)}ΠSW

k=2A+1(z − xk), z ∈ C, (5.2)
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where A ∈ {1, . . . , SW} is the number of (non-real) complex root pairs with multi-

plicity represented by {zk = xk + iyk}Ak=1 ⊂ C \R with yk 6= 0, {xk}SW
k=2A+1 ⊂ R \ {0}

are real roots of W̃ with multiplicity which are nonzero due to the assumption

W̃ (0) = W0 > 0. When W̃ has only real roots, A = 0 and there is no factor of

the form (z − zk)(z − zk). When W̃ has no real root, A = SW

2
and there is no factor

of the form z − xk.
Note that

(z − zk)(z − zk) = z2 − (zk + zk) z + |zk|2 = z2 − 2xkz +
(
x2
k + y2

k

)
which is a quadratic polynomial with nonzero constant term due to yk 6= 0. So we

can normalize this quadratic polynomial to have the constant term 1 by multiplying

with 1/(x2
k + y2

k). In the same way, for k ≥ 2A + 1, we can normalize the linear

polynomial factor z − xk to have the constant term 1 by multiplying with −1/xk.

Thus we can factorize the polynomial W̃ (z) with the constant term W0 > 0 as

W̃ (z) = W0ΠA
k=1

(
1− 2xk

x2
k + y2

k

z +
1

x2
k + y2

k

z2

)
ΠSW
k=2A+1

(
1− 1

xk
z

)
, z ∈ C.

(5.3)

This leads us to construct the filter masks {w(j)}Ij=1 by their symbols as follows.

If A ≥ 1 meaning that W̃ has A non-real complex root pairs (with multiplicity),

we take I = I1 + I2 with I1 := d A
[ s
2

]
e, I2 := dSW−2A

s
e and construct the filter masks

{w(j)}Ij=1 by grouping the quadratic factors in (5.3) into groups of [s/2] and linear

factors into groups of s as

w̃(j)(z) =



W0Π
[s/2]
k=1

(
1− 2xk

x2
k+y2

k
z + 1

x2
k+y2

k
z2
)
, if j = 1,

Π
j[s/2]
k=(j−1)[s/2]+1

(
1− 2xk

x2
k+y2

k
z + 1

x2
k+y2

k
z2
)
, if 2 ≤ j ≤

[
A
[ s
2

]

]
,

ΠA

k=

[
A

[ s2 ]

]
[ s
2

]+1

(
1− 2xk

x2
k+y2

k
z + 1

x2
k+y2

k
z2
)
, if I1 >

A
[ s
2

]
and j = I1,

Π
2A+(j−I1)s
k=2A+1+(j−I1−1)s

(
1− 1

xk
z
)
, if I1 + 1 ≤ j ≤ I1 +

[
SW−2A

s

]
,

ΠSW

k=2A+
[
SW−2A

s

]
s+1

(
1− 1

xk
z
)
, if I2 >

SW−2A
s

and j = I.

(5.4)

If A = 0, then W̃ has only SW real roots. We can we take I = dSW

s
e and construct

the filter masks {w(j)}Ij=1 by grouping the linear factors into groups of s as

w̃(j)(z) =


W0Πs

k=1

(
1− 1

xk
z
)
, if j = 1,

Πjs
k=(j−1)s+1

(
1− 1

xk
z
)
, if 2 ≤ j ≤

[
SW

s

]
,

ΠSW

k=
[
SW
s

]
s+1

(
1− 1

xk
z
)
, if SW

s
>
[
SW

s

]
and j = I.

(5.5)
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With the above construction, we have

W̃ (z) = ΠI
j=1w̃

(j)(z), ∀z ∈ C,

which yields the convolutional factorization (3.7). We also see that in our construc-

tion, w
(1)
0 = W0 > 0 and w

(j)
0 = 1 for j = 2, . . . , I.

Moreover, the number I of filter masks is at least SW

s
since I ≥ A

s
2

+ SW−2A
s

= SW

s

for the case A ≥ 1. It can also be bounded as

I <
A

[ s
2
]

+ 1 +
SW − 2A

s
+ 1 ≤ 2A

s− 1
+ 1 +

SW − 2A

s
+ 1 ≤ SW

s− 1
+ 2

for the case A ≥ 1, which is also true for the case A = 0. This proved the desired

statements.

5.2 Polynomial factorization and features for approximation

Following our brief description in Section 2, we want to decompose an approximation

PΓ ∈ PΓ(Rd) of a function f ∈ C(Ω) into the form (2.1). Here we can even take the

set of features {ξk}nΓ
k=1 to depend only on d and Γ according to the following lemma

proved using some results from [19] and [20]. Denote nΓ =

(
d− 1 + Γ

Γ

)
to be the

dimension of PhΓ(Rd), the space of all homogeneous polynomials on Rd of degree Γ.

Lemma 5. Let d ∈ N and Γ ∈ N. Then there exists a set {ξk}nΓ
k=1 ⊂ {ξ ∈ Rd :

‖ξ‖2 = 1} of vectors with `2-norm 1 such that for any PΓ ∈ PΓ(Rd) we can find a set

of univariate polynomials {pk,Γ}nΓ
k=1 ⊂ PΓ(R) which makes the identity (2.1) valid on

Rd.

Proof. It was shown in [19] that the space PhΓ(Rd) of homogeneous polynomials

has a basis {(ξk · x)Γ}nΓ
k=1 for some vector set {ξk}nΓ

k=1 ⊂ Rd \ {0}. It was further

proved in [20] that the vector set {ξk}nΓ
k=1 ⊂ Rd can even be chosen in such way

that the homogeneous polynomial set {(ξk ·x)γ}nΓ
k=1 spans the space Phγ (Rd) for every

γ ∈ {0, 1, . . . ,Γ − 1}. Moreover, we can normalized the vectors {ξk}nΓ
k=1 to have

`2-norm 1 since none of them is the zero vector.

The polynomial PΓ ∈ PΓ(Rd) can be decomposed into a sum of homogeneous

polynomials with various degrees as

PΓ =
Γ∑
γ=0

Pγ,Γ, where Pγ,Γ ∈ Phγ (Rd).

But {(ξk · x)γ}nΓ
k=1 spans Phγ (Rd) for γ ∈ {0, 1, . . . ,Γ}. So there exist a set of coeffi-

cients {ck,γ ∈ R}nΓ
k=1 for every γ ∈ {0, 1, . . . ,Γ} such that

Pγ,Γ(x) =

nΓ∑
k=1

ck,γ(ξk · x)γ, ∀ x ∈ Rd, γ ∈ {0, 1, . . . ,Γ}.
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It follows that

PΓ(x) =
Γ∑
γ=0

nΓ∑
k=1

ck,γ(ξk · x)γ =

nΓ∑
k=1

{
Γ∑
γ=0

ck,γ(ξk · x)γ

}
, ∀ x ∈ Rd.

This verifies (2.1) by setting the univariate polynomials {pk,Γ}nΓ
k=1 ⊂ PΓ(R) as pk,Γ(u) =∑Γ

γ=0 ck,γu
γ. The proof of the lemma is complete.

The univariate polynomials {pk,Γ} ⊂ PΓ(R) need to be approximated by splines

{σ(u − tj)}j with knots {tj}. The following result is well-known in approximation

theory. For completeness, we give a proof here.

Lemma 6. Let t := {t1 < t2 . . . < tN−1 < tN}. Construct a linear operator Lt on

C[t2, tN−1] by

Lt(f)(u) =
N−1∑
j=2

f(tj)δj(u), u ∈ [t2, tN−1], f ∈ C[t2, tN−1], (5.6)

where the function δj ∈ C(R) with j ∈ {2, . . . , N − 1} is given by

δj(u) =
1

tj − tj−1

σ(u− tj−1)− tj+1 − tj−1

(tj+1 − tj)(tj − tj−1)
σ(u− tj) +

1

tj+1 − tj
σ(u− tj+1).

Then for any f ∈ C[t2, tN−1], we have

‖Lt(f)− f‖C[t2,tN−1] ≤ 2ω(f,∆t), (5.7)

where ∆t := maxj=3,...,N−1{|tj − tj−1|} and ω(f, µ) is the modulus of continuity of

f ∈ C[t2, tN−1] give by

ω(f, µ) = sup {|f(v)− f(y)| : v, y ∈ [t2, tN−1], |v − y| ≤ µ} , µ > 0.

Proof. The function δj ∈ C(R) satisfies

δj(u) =


u−tj−1

tj−tj−1
, if u ∈ [tj−1, tj],

tj+1−u
tj+1−tj , if u ∈ (tj, tj+1],

0, otherwise.

It is a continuous piecewise linear function on the interval [t1, tN ] having the values

δj(tj) = 1 and δj(ti) = 0 for i ∈ {1, 2, . . . , N − 1, N} \ {j}. This tells us that

the function Lt(f) is continuous and piecewise linear on the interval [t2, tN−1] with

knots {t2, . . . , tN−1} and it interpolates f at the nodes {t2, . . . , tN−1}. So for j =

3, . . . , N − 1, we have

Lt(f)(u) = f(tj−1) +
f(tj)− f(tj−1)

tj − tj−1

(u− tj−1), ∀ u ∈ [tj−1, tj].
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Hence for u ∈ [tj−1, tj], there holds

|Lt(f)(u)− f(u)| =

∣∣∣∣f(tj−1)− f(u) +
f(tj)− f(tj−1)

tj − tj−1

(u− tj−1)

∣∣∣∣
≤ |f(tj−1)− f(u)|+ |f(tj)− f(tj−1)|.

Since |tj−1 − u| ≤ ∆t and |tj − tj−1| ≤ ∆t, we have |Lt(f)(u)− f(u)| ≤ 2ω(f,∆t)

for u ∈ [tj−1, tj] and j = 3, . . . , N − 1. This proves the desired error bound.

5.3 Proof of the Main Result

We are now in a position to prove our main result on the universality of the DDCNN.

Proof of Theorem 1. Let ε > 0. Then there exists some polynomial PΓ ∈ PΓ(Rd)

with Γ ∈ N such that

‖f − PΓ‖C(Ω) ≤
ε

2
.

By Lemma 5, there exists a vector set {ξk}nΓ
k=1 ⊂ Rd such that ‖ξk‖2 = 1 for each k

and the polynomial PΓ ∈ PΓ(Rd) can be expressed as in (2.1) with {pk,Γ}nΓ
k=1 ⊂ PΓ(R).

Observe that |ξk · x| ≤ ‖ξk‖2‖x‖2 ≤ ‖x‖2 for each k ∈ {1, . . . , nΓ}. Hence for

x ∈ Ω, we have |ξk · x| ≤ B
(0)
2 where

B
(0)
2 := max

x∈Ω
‖x‖2 <∞.

So we consider the approximation of the univariate functions {pk,Γ} on the interval

[−B(0)
2 , B

(0)
2 ] using the spline approximation scheme in Lemma 6. For 4 ≤ N ∈ N we

take a knot sequence t = {t1 < t2 . . . < tN−1 < tN} as

tj = −B(0)
2 + (j − 2)

2B
(0)
2

N − 3
, j = 1, 2, . . . , N − 1, N

which implies [t2, tN−1] = [−B(0)
2 , B

(0)
2 ] and ∆t =

2B
(0)
2

N−3
. By Lemma 6,

‖Lt(pk,Γ)− pk,Γ‖C[−B(0)
2 ,B

(0)
2 ]
≤ 2ω

(
pk,Γ,

2B
(0)
2

N − 3

)
.

Since limµ→0+ ω(g, µ) = 0 for any g ∈ C[−B(0)
2 , B

(0)
2 ], we know that there exists some

µε > 0 such that ω (pk,Γ, µ) ≤ ε
4nΓ

for any 0 < µ ≤ µε and k = 1, . . . , nΓ. Take some

N ∈ N such that
2B

(0)
2

N−3
≤ µε and N ≥ 4. Then we have∥∥∥∥∥

nΓ∑
k=1

Lt(pk,Γ)(ξk · x)− PΓ

∥∥∥∥∥
C(Ω)

≤
nΓ∑
k=1

‖Lt(pk,Γ)(u)− pk,Γ(u)‖
C[−B(0)

2 ,B
(0)
2 ]
≤ ε

2
. (5.8)
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Now we turn to construct a sequence W (by stacking the vectors {ξk}nΓ
k=1 in

reverse orders), which is a key step in our proof. Express each vector ξk in terms of

its components

ξk = ((ξk)`)
d
`=1 ∈ Rd, k = 1, . . . , nΓ.

Define a filter mask W : Z→ R supported on {0, 1, . . . , dnΓ+1} by W0 = WdnΓ+1 = 1

and

W(k−1)d+` = (ξk)d+1−`, ` = 1, . . . , d, k = 1, . . . , nΓ. (5.9)

Then we apply Lemma 4 to the filter mask W : Z → R with SW = dnΓ + 1

and know that we can construct a sequence of filter masks {w(j)}Ij=1 supported on

{0, 1, . . . , s} with some integer I ∈
[
dnΓ+1
s

, dnΓ+1
s−1

+ 2
)

having w
(j)
0 = 1 for j = 1, . . . , I

such that the convolutional factorization (3.7) holds true. Combining this with our

construction of initializing layers and the expression (3.8) for the I-th homogenized

layer, we know that for k = 1, . . . , nΓ, the (kd+ 1)-th component of φ̂(I) is

φ̂
(I)
kd+1(x) = Wkdx1 + . . .+Wkd−d+1xd =

d∑
`=1

W(k−1)d+`xd+1−` = ξk · x. (5.10)

By Lemma 3, there holds

Φ(NI)(x) =


[Π0]NII+1L
S(N)

1
...

S(N)
I

 , S(N)
j =

 ΠN,j,1Σj,t1
...
ΠN,j,NΣj,tN

 , Σj,t =


σ
(
φ̂

(I)
d+(j−1)s+1(x)− t

)
...

σ
(
φ̂

(I)
d+js(x)− t

)
 .

Take J = NI and b(J) ≡ 0. Combining the above expression for Φ(J)(x) and the

property (4.7) of the ReLU, we find that the span of the last Js components of

Φ(J)(x) is

span
{

Φ
(J)
i (x)

}d+Js

i=d+1
= span

{
σ
(
φ̂

(I)
d+`(x)− ti

)
, ` = 1, . . . , Js, i = 1, . . . , N

}
.

Taking only those components with ` = (k − 1)d+ 1 for k = 1, . . . , nΓ and applying

the identity (5.10), we have

span {σ (ξk · x− ti) , k = 1, . . . , nΓ, i = 1, . . . , N}

= span
{
σ
(
φ̂

(I)
kd+1(x)− ti

)
, k = 1, . . . , nΓ, i = 1, . . . , N

}
⊆ span

{
Φ

(J)
i (x)

}d+Js

i=d+1
⊆ Hw,b

J .

But the definition of the linear operator Lt tells us that

Lt(pk,Γ)(ξk · x) ∈ span {σ (ξk · x− ti) , i = 1, . . . , N}
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for each k ∈ {1, . . . , nΓ}. Hence

nΓ∑
k=1

Lt(pk,Γ)(ξk · x) ∈ span {σ (ξk · x− ti) , k = 1, . . . , nΓ, i = 1, . . . , N} ⊆ Hw,b
J .

Therefore, by taking f ∗ =
∑nΓ

k=1 Lt(pk,Γ)(ξk · x) ∈ Hw,b
J , we obtain

‖f − f ∗‖C(Ω) ≤ ‖f − PΓ‖C(Ω) + ‖PΓ − f ∗‖C(Ω) ≤ ε.

This proves the desired limit (1.12). The proof of Theorem 1 is complete.
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