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Abstract

In this paper we propose an online learning algorithm, a general randomized sparse Kacz-

marz method, for generating sparse approximate solutions to linear systems and present learn-

ing theory analysis for its convergence. Under a mild assumption covering the case of noisy

random measurements in the sampling process or nonlinear regression function, we show that

the algorithm converges in expectation if and only if the step size sequence {ηt}t∈N satisfies

limt→∞ ηt = 0 and
∑∞

t=1 ηt = ∞. Convergence rates are also obtained and linear conver-

gence is shown to be impossible under the assumption of positive variance of the sampling

process. A sufficient condition for almost sure convergence is derived with an additional re-

striction
∑∞

t=1 η
2
t <∞. Our novel analysis is performed by interpreting the randomized sparse

Kaczmarz method as a special online mirror descent algorithm with a non-differentiable mirror

map and using the Bregman distance. The sufficient and necessary conditions are derived by

establishing a restricted variant of strong convexity for the involved generalization error and

using the special structures of the soft-thresholding operator.

Keywords: Linearized Bregman iteration, Randomized sparse Kaczmarz algorithm, Online

learning, Learning theory, Bregman distance

AMS Subject Classifications: 68Q32, 93E35

1 Introduction

In this big data era, scalable algorithms are desired for various learning tasks arising from

practical applications. Online learning and stochastic gradient descent are useful tools to fulfill this

scalability need. They can be used for handling big data or data arriving naturally in sequential

ways, and play an important role in deep learning. In this paper we study an online learning

algorithm for generating sparse approximate solutions to linear systems, motivated by linearized

Bregman iteration and sparse Kaczmarz algorithms.

Linearized Bregman iteration is a simple and fast algorithm to solve basis pursuit problems and

has found wide applications in image processing, compressive sensing, and machine learning [12,

28, 29, 31]. To solve a linear system Aw = y with A ∈ Rn×d and y ∈ Rn, the linearized Bregman

iteration with a threshold parameter λ ≥ 0 produces a sequence {(wt, vt)}t∈N of vector pairs in Rd

∗The work described in this paper is partially supported by the Research Grants Council of Hong Kong [Project

No. CityU 11304114] and by National Natural Science Foundation of China under Grants 11461161006 and 11471292.
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with initial vectors w1 = v1 = 0 ∈ Rd as{
vt+1 = vt − ηtA>(Awt − y),

wt+1 = Sλ(vt+1),
(1.1)

where {ηt}t∈N is a positive step size sequence, A> is the transpose of A and Sλ : Rd → Rd is

the soft-thresholding operator defined component-wisely in terms of the soft-thresholding function

Sλ : R → R given by Sλ(v) := sgn(v) max(|v| − λ, 0). Here sgn(a) is the sign of a ∈ R. If the

linear system Aw = y is consistent, λ > 0, and the step size sequence is constant bounded by

the reciprocal of the largest eigenvalue of AA>, it was shown in [6, 7, 28] that the sequence {wt}t
produced by (1.1) converges to the unique solution of the optimization problem

min
w∈Rd

Ψ(w) := λ‖w‖1 + 2−1‖w‖22 subject to Aw = y, (1.2)

where ‖w‖p = [
∑d
i=1 |w(i)|p]

1
p is the `p-norm of w = (w(i))di=1 = [w(1), . . . , w(d)]> ∈ Rd for p ≥ 1.

Along a different direction, motivated by sparsity and scalable algorithms for handling big

data, the classical Kaczmarz algorithm [16] for solving linear systems has recently attracted much

attention in non-uniform sampling [26, 32] and in learning theory [19]. The most recent one is the

sparse Kaczmarz algorithm proposed in [20, 21] by processing an example at each iteration as{
vt+1 = vt − δtar(t),
wt+1 = Sλ(vt+1).

(1.3)

Here ar(t) is the transpose of the r(t)-th row of the matrix A, {r(t)}t is a sequence called admissible

control sequence satisfying some conditions such as the periodic condition r(t) = t mod (n + 1),

and δt is a residual error term which is chosen in [20] to be

δt = arg min
δ∈R

1

2

∥∥Sλ(vt − δar(t))
∥∥2

2
+ δyr(t)

and in [21] to be similar to that in the randomized Kaczmarz algorithm [26] as

δt =
〈wt, ar(t)〉 − yr(t)
‖ar(t)‖22

, (1.4)

where 〈·, ·〉 is the dot product or Euclidean inner product in Rd. Under the consistency assumption of

the linear system Aw = y and the above choices of δt, it was shown in [20, 21] that {wt}t∈N produced

by (1.3) with λ > 0 converges to the solution of (1.2). A randomized sparse Kaczmarz method

was considered in [23] by taking iterations (1.3) with randomly chosen r(t) from a distribution on

{1, . . . , n} and taking the residual error form (1.4), and linear convergence was established under

the consistency assumption again.

In this paper we propose an online learning algorithm, a general randomized sparse Kaczmarz

method, based on motivations from the above two learning algorithms and stochastic gradient

descent algorithms used recently in deep learning as scalable methods. This algorithm is able to

perform learning tasks using sequentially arriving data or big data since each iteration only involves

a single example. The relaxation of step sizes allows the algorithm to handle noisy data, to which

the convergence analysis of the special randomized sparse Kaczmarz algorithm given in [23] does

not apply. Let X (the input set) be a nonempty measurable subset of Rd and Y = R be the output

set.
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Definition 1. Let {zt := (xt, yt)}t ⊂ Z = X × Y be a sequence of input-output pairs. The

randomized sparse Kaczmarz method produces a sequence of vector pairs {(wt, vt)}t∈N defined

iteratively with the initial pair w1 = v1 = 0 by{
vt+1 = vt − ηt(〈wt, xt〉 − yt)xt,
wt+1 = Sλ(vt+1),

(1.5)

where {ηt} is a sequence of positive relaxation parameters or step sizes.

This algorithm is an online version of the linearized Bregman iteration (1.1) modified with a

step size sequence {ηt}t. It is more general than the sparse Kaczmarz algorithm (1.3) considered in

[21] which is a special case in the sense that the input set X = { ar
‖ar‖2 }

n
r=1 takes the special choice

consisting of the normalized row vectors of A and the step size sequence takes the special constant

sequence ηt ≡ 1. If λ = 0, then our algorithm recovers the randomized Kaczmarz algorithm studied

in [19].

We present learning theory analysis for the randomized sparse Kaczmarz method (1.5) by assum-

ing throughout the paper that {zt = (xt, yt)}t∈N are independently drawn from a Borel probability

measure ρ on Z. Different from the results in [6, 7, 20, 21, 28], our analysis does not require the

consistency of the linear system Aw = y. So we do not need the sample value y to be exactly equal

to the conditional mean of ρ at x, nor do we require the conditional mean (called regression function

of ρ below) to be a linear function. To handle this general case, a relaxation parameter sequence

{ηt}t is necessary, as shown in our earlier work [19] for the special case with λ = 0 corresponding

to the randomized Kaczmarz algorithm.

To state the limit of the vector sequence {wt}t∈N defined by (1.5), we denote by Z = (X,Y )

a random sample drawn from ρ, and by CρX = EZ [XX>] the covariance matrix of the marginal

distribution ρX of ρ on X , where EZ is the expectation with respect to Z . Then the linear equation

CρXw = EZ [XY ] is consistent and we denote its solution set as

W ∗ := {w ∈ Rd : CρXw = EZ [XY ]}. (1.6)

Our target vector (the limit of {wt}) is now defined by

w∗ = arg min
w∈W∗

Ψ(w). (1.7)

Under a mild assumption (w∗ 6= 0 and (2.1) below) on positive variance of the sampling process, we

establish a sufficient and necessary condition as limt→∞ ηt = 0 and
∑∞
t=1 ηt =∞ for the convergence

in expectation of the vector sequence {wt}t produced by (1.5) to the target vector defined by (1.7).

We also provide convergence rates of E[‖wT − w∗‖22] and show that these rates cannot be of order

O(T−q) for any q > 2. A sufficient condition with an additional constraint
∑∞
t=1 η

2
t < ∞ for the

almost sure convergence is also provided. Our analysis is carried out based on error decompositions

for the one-step progress of the randomized sparse Kaczmarz method after interpreting it as a

special online mirror descent algorithm [17, 22] with a non-differentiable mirror map. Our main

novelty in this paper is to bound a Bregman distance by means of the generalization error (to be

defined below), which overcomes the difficulty caused by the non-differentiability of the mirror map

Ψ and making the method in [18] not applicable. The sufficient conditions are then established by

showing that the generalization error satisfies a restricted variant of strong convexity after observing

that w∗ defined in (1.7) is indeed the closest element to wt in the solution set W ∗ in the sense of a

Bregman distance. The necessary conditions are derived by observing that the convergence of {wt}t
3



implies that of {vt}t restricted to the support of w∗, using special structures of the soft-thresholding

operator.

2 Main Results

We assume throughout the paper that X ⊆ {x ∈ Rd : ‖x‖2 ≤ R} for some R > 0 , and that the

target vector w∗ defined by (1.7) is not the zero vector. Let I = {i ∈ {1, . . . , d} : w∗(i) 6= 0} be the

support of w∗ and we denote by w(I) = (w(i))i∈I the restriction of w ∈ Rd onto the index set I.

For convenience we list in Table 1 the key notations used in this paper.

Our first main result, Theorem 1, gives a sufficient and necessary condition for the convergence

in expectation of {‖wt−w∗‖22}t to 0. Its sufficiency part will be proved by Proposition 10 in Section

4, for which the mild assumption (2.1) is not needed. The necessity part will be proved in Section

5.

Theorem 1. Let {(wt, vt)}t∈N be the sequence generated by (1.5) and w∗ defined by (1.7). Assume

inf
w∈Rd

EZ [‖(〈w,X〉 − Y )X(I)‖2] > 0. (2.1)

Then limT→∞ Ez1,...,zT−1
[‖wT − w∗‖22] = 0 if and only if the step size sequence satisfies

lim
t→∞

ηt = 0 and

∞∑
t=1

ηt =∞. (2.2)

In this case, we have
∞∑
T=1

√
Ez1,...,zT−1

[‖wT − w∗‖22] =∞. (2.3)

Our second main result, to be proved in Section 6, gives a sufficient condition for the almost

sure convergence of the randomized sparse Kaczmarz method by imposing an additional constraint∑∞
t=1 η

2
t <∞.

Theorem 2. Let {(wt, vt)}t∈N be the sequence generated by (1.5) and w∗ defined by (1.7). If the

step size sequence satisfies
∞∑
t=1

ηt =∞ and

∞∑
t=1

η2
t <∞, (2.4)

then we have limt→∞ ‖wt − w∗‖22 = 0 almost surely.

Condition (2.4) also appears in the literature to study the almost sure convergence of stochastic

gradient descent algorithms [5]. It was commonly used in investigating online learning algorithms

(e.g., [27, 30]). The second part of this condition implies limt→∞ ηt = 0. So we see that (2.4)

is stronger than (2.2). Condition (2.2) is found to be a necessary and sufficient condition for the

convergence of the randomized Kaczmarz algorithm in [19]. Let us give some intuitions on the

necessity of this condition in Theorem 1. From the definition of the randomized sparse Kaczmarz

algorithm (1.5), we see that the convergence of {‖wt−w∗‖22}t should imply that of vt+1(I)−vt(I) =

−ηt
(
〈wt, xt〉 − yt

)
xt(I) to the zero vector, from which together with (2.1) we expect limt→∞ ηt =

0. As we will show in Remark 1, the sequence {wt} satisfies ‖wt‖22 = O
(∑t

k=1 ηk
)
. Hence the

requirement
∑t
k=1 ηk =∞ is needed for {wt} to explore vectors in the space Rd.

Our third main result, to be proved in Section 6, is on convergence rates of the randomized

sparse Kaczmarz method.
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Theorem 3. Let {(wt, vt)}t∈N be the sequence generated by (1.5) and w∗ defined by (1.7).

(a) If we take the step size sequence as ηt = η1t
−θ with 0 < η1 ≤ (2R2)−1 and 0 < θ < 1, then

there exists a constant C1 independent of T such that

Ez1,...,zT
[
‖wT+1 − w∗‖22

]
≤ C1T

−θ, ∀T ∈ N. (2.5)

(b) There exist constants ã > 0 and C2 > 0 independent of T such that with the step size sequence

ηt = 2
(t+1)ã ,

Ez1,...,zT
[
‖wT+1 − w∗‖22

]
≤ C2T

−1, ∀T ≥ 4R2ã−1. (2.6)

Part (b) of Theorem 3 shows that Ez1,...,zT−1
[‖wT − w∗‖22] may decay with the rate O(T−1),

though it cannot decay with a rate O(T−q) for any q > 2 under the assumption (2.1) according to

(2.3) in Theorem 1, in a sharp contrast with the linear convergence [23] of the randomized sparse

Kaczmarz method in the consistency case with X = { ar
‖ar‖2 }

n
r=1 and yr(t) = 〈w∗, ar(t)〉 in (1.4). This

contrast is due to the positivity assumption (2.1) on the variance of the sampling process, which

can be further seen in the one-step progress analysis below (see (4.13)). It would be interesting to

investigate whether a rate O(T−q) with 1 < q ≤ 2 is possible for the randomized sparse Kaczmarz

method.

Our theoretical findings will be verified in the last section by some experimental results on

tomography reconstruction in image processing.

Let us mention that our analysis and algorithm might be extended to the setting with functional

data where the input set X becomes L2[0, 1], the space of square integrable functions on [0, 1], each

example xt is a function in L2[0, 1], and the inner product 〈wt, xt〉 is the one in L2[0, 1]. We leave

detailed analysis to our further study.

The optimization problem (1.2) has been studied in a vast literature (e.g., [1, 3, 4, 7]). We focus

on the general randomized sparse Kaczmarz method (1.5) with motivations from computing sparse

approximations, the recent work [20, 21, 23] in the special case with exact linear measurements, and

designing scalable algorithms for handling big data or data arriving naturally in sequential ways.

It would be interesting to extend our learning theory analysis to other methods as we have done

for learning algorithms with kernels and general loss functions [11, 13, 15, 24].

3 Error Decompositions and Technical Tools

Our error decompositions for the randomized sparse Kaczmarz method are based on two main

tools, Bregman distance and excess generalization error.

3.1 Bregman distance associated with non-differentiable mirror map

The first main tool for our analysis of the randomized sparse Kaczmarz method is the Bregman

distance associated with the convex mirror map Ψ.

Definition 2. For a convex function g : Rd → R, we define its subdifferential at w ∈ Rd as

∂g(w) =
{
v ∈ Rd : g(w̃)− g(w) ≥ 〈w̃ − w, v〉 for any w̃ ∈ Rd

}
.

For v ∈ ∂g(w), we define the associated Bregman distance between w̃ ∈ Rd and w by

Dv
g(w̃, w) = g(w̃)− g(w)− 〈w̃ − w, v〉.
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Table 1: Notations and the number of the page where a notation appears first.

notation meaning page

n the number of examples 1

d the dimension of the input space 1

A a measurement-matrix in Rn×d 1

y a vector of measurements in Rd 1

λ a threshold parameter 1

{ηt} step size sequence 2

Sλ the soft-thresholding function associated to the parameter λ 2

sgn the sign operator 2

‖ · ‖p `p-norm 2

Ψ(w) λ‖w‖1 + 2−1‖w‖22 2

〈·, ·〉 the Euclidean inner product in Rd 2

X ,Y,Z the input space, output space and the sample space 3

zt = (xt, yt) the t-th example with xt ∈ X and yt ∈ Y 3

{(wt, vt)} the sequence of vector pairs in the algorithm 3

ρ the probability measure defined over Z 3

ρX the marginal distribution of ρ on X 3

CρX the covariance matrix 3

EZ the expectation with respect to Z 3

W ∗ the set defined by (1.6) 3

w∗ the target vector defined by (1.7) 3

R an upper bound on the radius of the input space 4

I the support of w∗ 4

w(I) sub-vector of w with indices in I 4

Dv
g(w̃, w) the Bregman distance between w̃ and w induced by g 5

∂g(w) the subdifferential of g at w 5

L2
ρX the L2 space with respect to the marginal distribution ρX 7

fρ the regression function 7

fw the linear function associated to the vector w 7

H the hypothesis space consisting of linear functions 7

E(w) the generalization error of fw 7

σmin(CρX ) the smallest positive eigenvalue of CρX 10

σmax(CρX ) the largest positive eigenvalue of CρX 10

w∗t the orthogonal projection of wt onto W ∗ 10

dist(S1, S2) the distance between the sets S1 and S2 11

κ mini∈I |w∗(i)| 15

|I| cardinality of I 15
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We have used the Bregman distance in our earlier work [17, 18] on mirror descent algorithms

where the mirror map is differentiable and ∂g(w) consists of the gradient of g at w only. The mirror

map Ψ(w) = λ‖w‖1 + 2−1‖w‖22 in this paper is not differentiable, and our previous approach does

not work. But this mirror map has its special explicit form involving only the 2-norm square and

1-norm, and provides us some desired rich information: while its 2-norm square component yields

its 1-strong convexity with respect to ‖ · ‖2 in the sense that

Dv
Ψ(w̃, w) ≥ 1

2
‖w̃ − w‖22, ∀w̃, w ∈ Rd, v ∈ ∂Ψ(w), (3.1)

with an additional 1-norm term the soft-thresholding operator Sλ is exactly the gradient of the

Fenchel dual of Ψ as used in [20]. It follows that vt+1 ∈ ∂Ψ(wt+1) which gives a useful choice for a

subgradient to define the Bregman distance Dvt
Ψ (w,wt). Moreover, we can see from (3.1) and (3.8)

below the following upper and lower bounds for the Bregman distance between w∗ and wt defined

by (1.5)
1

2
‖w∗ − wt‖22 ≤ D

vt
Ψ (w∗, wt) ≤ 2λ

√
d‖w∗ − wt‖2 +

1

2
‖w∗ − wt‖22.

For our analysis of estimating the expected Bregman distance Ez1,...,zT−1
[DvT

Ψ (w∗, wT )], we shall

refine these bounds by means of the second main tool, excess generalization error given in terms of

the generalization error described in the next subsection.

3.2 Excess generalization error in the space of linear functions

In the standard least squares regression setting of learning theory [8], the generalization error

of a measurable function f : X → Y is defined as E(f) = 1
2

∫
Z(f(X)− Y )2dρ, which uses the least

squares loss for taking the expected error to measure the generalization ability of the estimator

f when predicting outcome values beyond the given sample points. In L2
ρX , the L2 space with

respect to the marginal distribution ρX of ρ on X , with the norm ‖f‖L2
ρX

=
(∫
X |f(x)|2dρX

)1/2
, it

is minimized by the regression function fρ : X → Y defined by fρ(x) =
∫
Y ydρ(y|x), the mean of

the conditional distribution ρ(·|x) at x ∈ X . Moreover, the excess generalization error E(f)−E(fρ)

of an estimator f can be expressed in terms of the norm of the difference function f − fρ as

2
(
E(f)− E(fρ)

)
=

∫
X

(f(x)− fρ(x))2dρX = ‖f − fρ‖2L2
ρX

, ∀f ∈ L2
ρX .

A hypothesis space H of functions on X is often taken for implementing learning algorithms

according to various learning tasks. A typical example is a reproducing kernel Hilbert space with

a kernel chosen accordingly. For the purpose of analyzing the approximation of the target vector

w∗ ∈ Rd by the sequence {wt}t of vectors in Rd, we observe that the linear function fw induced by

a vector w ∈ Rd as fw(x) = 〈w, x〉 has its L2
ρX -norm square as

‖fw‖2L2
ρX

=

∫
X
|〈w, x〉|2dρX =

∫
X
w>xx>wdρX = w>CρXw.

This expression leads us to study the error ‖wt−w∗‖2 from the approximation of the linear function

fw∗ by fwt in the function space L2
ρX . Take the hypothesis space consisting of homogeneous linear

functions

H =
{
fw : X → Y

}
w∈Rd ,where fw(x) = 〈w, x〉 for x ∈ X .
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For w ∈ Rd, the doubled generalization error of the linear function fw ∈ H equals

2E(fw) =

∫
Z

(〈w, x〉 − Y )2dρ =

∫
Z
w>xx>w − 2w>xy + y2dρ = w>CρXw − 2w>E[XY ] + E[Y 2].

Combining this with the constraint CρXw = E[XY ] satisfied by any vector w in the set W ∗ defined

by (1.6) tells us that fw minimizes the generalization error over H:

fw = arg min
f∈H
E(f) = arg min

f∈H
‖f − fρ‖2L2

ρX

, ∀w ∈W ∗.

But the hypothesis space H is a finite-dimensional closed subspace of the Hilbert space L2
ρX . So

for any vector w ∈ W ∗, the function fw is a best approximation of fρ from H. Moreover, for

w, w̃ ∈W ∗, the definition of W ∗ implies CρX (w − w̃) = 0 and thereby fw = fw̃:

‖fw − fw̃‖2L2
ρX

= ‖(w − w̃)>x‖2L2
ρX

= (w − w̃)>CρX (w − w̃) = 0.

The vector w∗ is a particular vector in the subspace H which minimizes the functional Ψ. The

special form of the functional Ψ allows w∗ to capture some a priori information on sparsity of the

model. When fρ 6∈ H, we have fw∗ 6= fρ and say that the sampling process is nonlinear. When

E(fρ) > 0 no matter whether fρ ∈ H or not, we say that the sampling process is noisy. It is clear

that the assumption (2.1) implies E(fw∗) > 0, which amounts to saying that the sampling process

generated by ρ is either noisy or nonlinear [19].

Now we focus on the hypothesis spaceH and denote E(w) = E(fw) for w ∈ Rd. Since a minimizer

of the excess generalization error E(fw)−E(fρ) also minimizes E(fw)−E(fw∗) = E(w)−E(w∗), we

will estimate this last quantity in the following.

3.3 Error decompositions and novel estimates

Our learning theory analysis of the randomized sparse Kaczmarz method is based on the fol-

lowing two error decompositions for the one-step progress of the Bregman distance:

D
vt+1

Ψ (w,wt+1)−Dvt
Ψ (w,wt) = 〈w − wt+1, vt − vt+1〉 −Dvt

Ψ (wt+1, wt), (3.2)

D
vt+1

Ψ (w,wt+1)−Dvt
Ψ (w,wt) = 〈w − wt, vt − vt+1〉+D

vt+1

Ψ (wt, wt+1). (3.3)

These identities can be found in the literature (e.g., [3]). They can be easily seen from the following

expression involving Bregman distances

D
vt+1

Ψ (w,wt+1)−Dvt
Ψ (w,wt) = Ψ(wt)−Ψ(wt+1)− 〈w − wt+1, vt+1〉+ 〈w − wt, vt〉, (3.4)

by setting w − wt = w − wt+1 + wt+1 − wt in the last term and w − wt+1 = w − wt + wt − wt+1

in the middle term together with the definition of the Bregman distance. We shall use the first

error decomposition (3.2) for deriving sufficient conditions and the second decomposition (3.3) for

deriving necessary conditions for the convergence of the randomized sparse Kaczmarz method.

One technical novelty in our analysis of the randomized sparse Kaczmarz method is to bound

the Bregman distance Dvt
Ψ (w∗, wt) by the quantity E(wt)−E(w∗), which will be proved in the next

section.

Lemma 4. Let {(wt, vt)}t∈N be defined by (1.5) and w∗ by (1.7). Then there exists a constant C3

independent of t such that almost surely

Dvt
Ψ (w∗, wt) ≤ C3[E(wt)− E(w∗)], ∀t ∈ N. (3.5)
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The other technical novelty is to show in the following lemma, to be proved in the next section,

that w∗ is indeed the closest element to wt in W ∗ almost surely, based on the key observation that

vt belongs to the range of CρX almost surely. Identity (3.7) establishes a generalized Pythagoras

formula and estimate (3.8) controls the Bregman distance between w∗ and wt by the Euclidean

distance between w and wt for any w ∈W ∗.

Lemma 5. Let {(wt, vt)}t∈N be defined by (1.5) and w∗ by (1.7). For t ∈ N, w∗ is the closest

element to wt in W ∗ with respect to the Bregman distance induced by Ψ almost surely meaning that

w∗ = arg min
w∈W∗

Dvt
Ψ (w,wt). (3.6)

Furthermore, there exists some v∗ ∈ ∂Ψ(w∗) such that there holds almost surely

Dv∗

Ψ (w,w∗) +Dvt
Ψ (w∗, wt) = Dvt

Ψ (w,wt), w ∈W ∗. (3.7)

We also have almost surely

Dvt
Ψ (w∗, wt) ≤ 2λ

√
d‖w − wt‖2 +

1

2
‖w − wt‖22, ∀w ∈W ∗. (3.8)

4 Sufficiency of Convergence in Expectation

This section presents the proof of the sufficiency of Theorem 1, after we prove Lemmas 5 and 4

stated in the previous section.

To prove Lemma 5, we need the following optimality condition for constrained optimization

problems with linear constraints which follows from a direct application of Lagrange multipliers.

Lemma 6. Let f : Rd → R be a convex function, A ∈ Rn×d and y ∈ Rn. A point w∗ is a solution

to the minimization problem with linear constraints

min
w∈Rd

{
f(w) : Aw = y

}
(4.1)

if and only if there is some λ∗ ∈ Rn such that

Aw∗ = y, A>λ∗ ∈ ∂f(w∗).

Proof of Lemma 5. For any vector u in the kernel of CρX , we have

Ext [(u>xt)2] = Ext [u>xtx>t u] = u>CρXu = 0,

from which we know that u>xt = 0 almost surely. Hence almost surely xt is orthogonal to the

kernel of CρX and therefore belongs to the range of CρX . It then follows by induction from v1 = 0

and the definition of vt in (1.5) that vt also belongs to the range of CρX almost surely. So there

exists some λt ∈ Rd such that vt = CρXλt almost surely. According to the definition of w∗ in (1.7)

and the optimality condition given in Lemma 6, we know the existence of some λ∗ ∈ Rd such that

CρXλ
∗ ∈ ∂Ψ(w∗). According to the definition of the Bregman distance and vt ∈ ∂Ψ(wt), we get

almost surely

CρX (λ∗ − λt) ∈ ∂Ψ(w∗)− vt = ∂ (Ψ(w)−Ψ(wt)− 〈w − wt, vt〉) |w=w∗ = ∂Dvt
Ψ (w,wt)|w=w∗ ,

from which and Lemma 6 we verify (3.6).
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Denote v∗ := CρXλ
∗ ∈ ∂Ψ(w∗). Let w ∈ W ∗. Then CρX (w − w∗) = 0 and there holds almost

surely

〈w − w∗, vt − v∗〉 = 〈w − w∗, CρX (λt − λ∗)〉 = 〈CρX (w − w∗), λt − λ∗〉 = 0. (4.2)

Combining this with the definition of the Bregman distance, we find almost surely

Dv∗

Ψ (w,w∗) +Dvt
Ψ (w∗, wt)−Dvt

Ψ (w,wt) = Ψ(w)−Ψ(w∗)− 〈w − w∗, v∗〉
+ Ψ(w∗)−Ψ(wt)− 〈w∗ − wt, vt〉 −Ψ(w) + Ψ(wt) + 〈w − wt, vt〉
= 〈w − w∗, vt − v∗〉 = 0.

This establishes identity (3.7).

To prove inequality (3.8), we apply (3.6) and know almost surely that for any w ∈W ∗,

Dvt
Ψ (w∗, wt) ≤ Dvt

Ψ (w,wt) = Ψ(w)−Ψ(wt)− 〈w − wt, vt〉

= λ‖w‖1 − λ‖wt‖1 +
1

2
‖w‖22 −

1

2
‖wt‖22 − 〈w − wt, vt〉.

Note that ‖w‖22 = ‖w − wt + wt‖22 = ‖w − wt‖22 + ‖wt‖22 + 2〈w − wt, wt〉. Hence

Dvt
Ψ (w,wt) = λ‖w‖1 − λ‖wt‖1 +

1

2
‖w − wt‖22 + 〈w − wt, wt − vt〉. (4.3)

By the definition (1.5), wt − vt = Sλ(vt)− vt. But the soft-thresholding function satisfies ‖Sλ(v)−
v‖∞ ≤ λ. So 〈w − wt, wt − vt〉 ≤ λ‖w − wt‖1. Also, λ‖w‖1 − λ‖wt‖1 ≤ λ‖w − wt‖1. Therefore,

Dvt
Ψ (w∗, wt) ≤ 2λ‖w − wt‖1 +

1

2
‖w − wt‖22 ≤ 2λ

√
d‖w − wt‖2 +

1

2
‖w − wt‖22 (4.4)

almost surely. This verifies (3.8). The proof of Lemma 5 is complete.

To prove Lemma 4, we need two auxiliary results. The first relates the quantity E(wt)− E(w∗)

of wt to its Euclidean distance to the set W ∗. Let σmin(CρX ) and σmax(CρX ) be the smallest and

largest positive eigenvalue of CρX , respectively.

Lemma 7. Let {(wt, vt)}t be defined by (1.5), w∗ by (1.7), and w∗t be the orthogonal projection of

wt onto W ∗ in Rd defined by

w∗t = arg min
w∈W∗

‖w − wt‖22. (4.5)

Then E(w∗t ) = E(w∗) and

σmin(CρX )

2
‖wt − w∗t ‖22 ≤ E(wt)− E(w∗) ≤ σmax(CρX )

2
‖wt − w∗t ‖22. (4.6)

Proof. The identity CρXw = EZ [XY ] satisfied by both w∗t ∈W ∗ and w∗ implies CρX (w∗t −w∗) = 0

and thereby

2[E(w∗t )− E(w∗)] = EZ
[(
〈w∗t − w∗, X〉+ 〈w∗, X〉 − Y

)2]− EZ
[
(〈w∗, X〉 − Y )2

]
= EZ

[
〈w∗t − w∗, X〉2

]
+ 2EZ [〈w∗t − w∗, X〉(〈w∗, X〉 − Y )]

= EZ
[
(w∗t − w∗)>XX>(w∗t − w∗)

]
+ 2

〈
wt − w∗,EX [XX>]w∗ − EZ [XY ]

〉
= 0,

which verifies the first desired identity E(w∗t ) = E(w∗).
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In the same way, from the identity CρXw
∗
t = CρXw

∗ = E[XY ] again we find

2[E(wt)− E(w∗)] = 2[E(wt)− E(w∗t )] = EZ
[(
〈wt − w∗t , X〉+ 〈w∗t , X〉 − Y

)2]− EZ
[
(〈w∗t , X〉 − Y )2

]
= EZ

[
〈wt − w∗t , X〉2

]
+ 2EZ [〈wt − w∗t , X〉(〈w∗t , X〉 − Y )]

= EZ [〈wt − w∗t , X〉2] = (wt − w∗t )>CρX (wt − w∗t ).

By Lemma 6 and the subdifferential formula ∂
(
‖w − wt‖22

)
|w∗
t

= 2(w∗t −wt) we know that w∗t −wt
belongs to the range of CρX and is therefore orthogonal to the kernel of CρX , from which we see

σmin(CρX )‖wt − w∗t ‖22 ≤ (wt − w∗t )>CρX (wt − w∗t ) ≤ σmax(CρX )‖wt − w∗t ‖22.

Then (4.6) follows. The proof is complete.

The second auxiliary result is about distances between points and sets. The distance between

two sets S1, S2 ⊂ Rd is defined as

dist(S1, S2) = inf
u∈S1,v∈S2

‖u− v‖2.

The distance between a point w ∈ Rd and a set S ⊂ Rd is dist(w, S) = dist({w}, S). Part (a) of the

following lemma shows that the distance between a point and the intersection of two polyhedrons

can be uniformly controlled by the maximum of its distance to these two polyhedrons. Here a set

S ∈ Rd is said to be a polyhedron if it is the solution set of a linear inequality system, i.e., there

exist a matrix B ∈ Rm×d with m ∈ N and a vector b ∈ Rm such that S = {w ∈ Rd : Bw ≤ b}. Part

(b) shows that the distance between a compact set and a closed set is positive provided that they

do not intersect. Part (a) can be found in Corollary 5.26 of [1], while Part (b) is a standard result

on metric spaces.

Lemma 8. (a) Let S1, S2 be two polyhedrons in Rd. If S1 ∩S2 6= ∅, then there exists some positive

constant γS1,S2 depending only on S1, S2 such that

dist(w, S1 ∩ S2) ≤ γS1,S2
max

{
dist(w, S1),dist(w, S2)

}
, ∀w ∈ Rd.

(b) Let H1 ⊂ Rd be compact and H2 ⊂ Rd be closed. If H1 ∩H2 = ∅, then dist(H1, H2) > 0.

Based on the above two auxiliary results, we can now prove Lemma 4.

Proof of Lemma 4. Let t ∈ N. We first consider the case ‖wt‖2 > 2‖w∗‖2. In this case, ‖w∗−wt‖2 ≥
‖w∗‖2. Let w∗t be defined by (4.5). Applying (3.8) with w = w∗t implies almost surely

1

2
‖w∗‖22 ≤

1

2
‖w∗ − wt‖22 ≤ D

vt
Ψ (w∗, wt) ≤ 2λ

√
d‖w∗t − wt‖2 +

1

2
‖w∗t − wt‖22.

From this quadratic inequality concerning ‖w∗t − wt‖2 we derive almost surely

‖w∗t − wt‖2 ≥ −2λ
√
d+

√
4λ2d+ ‖w∗‖22 := c1.

Plugging the above inequality back into (3.8) with w = w∗t gives almost surely

Dvt
Ψ (w∗, wt) ≤ 2λ

√
d‖w∗t − wt‖2 +

1

2
‖w∗t − wt‖22

≤
(
2λ
√
dc−1

1 +
1

2

)
‖w∗t − wt‖22.
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Combining this with (4.6) yields almost surely

Dvt
Ψ (w∗, wt) ≤

(
4λ
√
dc−1

1 + 1
)
σ−1

min(CρX )
[
E(wt)− E(w∗)

]
. (4.7)

Then we consider the case ‖wt‖2 ≤ 2‖w∗‖2. For a vector w ∈ Rd with support Iw, we define a

set (the half plane on its support)

Pw =
{
w̃ ∈ Rd : w̃(i) = 0 for i 6∈ Iw and w̃(i)w(i) ≥ 0 for i ∈ Iw

}
,

and take

Hw = Pw ∩B2‖w∗‖2 ,

whereBr = {w ∈ Rd : ‖w‖2 ≤ r} denotes the `2-ball of radius r ≥ 0. It is clear from ‖wt‖2 ≤ 2‖w∗‖2
that wt ∈ Hwt .

We prove (3.5) according to whether Hwt intersects W ∗.

If Hwt ∩W ∗ = ∅, then

dist(Hwt ,W
∗) ≥ c2 := min

w∈Rd:Hw∩W∗=∅
dist(Hw,W

∗).

Since there are only 3d different support sets corresponding to different signs of w, and Hw∩W ∗ = ∅
implies dist(Hw,W

∗) > 0 by Part (b) of Lemma 8, we know that c2 is the minimum of at most 3d

positive numbers and is therefore positive c2 > 0. But wt ∈ Hwt and w∗t ∈ W ∗. So ‖wt − w∗t ‖2 ≥
dist(Hwt ,W

∗) ≥ c2. Again, by (3.8), (4.6), and the identity E(w∗t ) = E(w∗), we have almost surely

Dvt
Ψ (w∗, wt) ≤

(
2λ
√
dc−1

2 +
1

2

)
‖w∗t − wt‖22 ≤

(
4λ
√
dc−1

2 + 1
)
σ−1

min(CρX )
[
E(wt)− E(w∗)

]
. (4.8)

If Hwt ∩W ∗ 6= ∅, then it is clear that Pwt ∩W ∗ 6= ∅. In this case, we define

w̃t = arg min
w∈Pwt∩W∗

‖w − wt‖22.

Since w̃t ∈ Pwt , we know that w̃t(i) = wt(i) = 0 for i 6∈ Iwt and w̃t(i)wt(i) ≥ 0 for i ∈ Iwt . This

together with (4.3) for w̃t ∈W ∗ implies

Dvt
Ψ (w̃t, wt) = λ

∑
i∈Iwt

[|w̃t(i)| − |wt(i)|] +
∑
i∈Iwt

[w̃t(i)− wt(i)][wt(i)− vt(i)] +
1

2
‖w̃t − wt‖22.

But for i ∈ Iwt , wt(i) 6= 0 and wt(i) = Sλ(vt(i)). Hence |vt(i)| > λ and vt(i) = (|wt(i)| +

λ)sgn(wt(i)). Also, |w̃t(i)|− |wt(i)| = w̃t(i)sgn(w̃t(i))−wt(i)sgn(wt(i)) = (w̃t(i)−wt(i))sgn(wt(i)).

Therefore,

Dvt
Ψ (w̃t, wt) = λ

∑
i∈Iwt

(w̃t(i)− wt(i))sgn(wt(i))− λ
∑
i∈Iwt

(w̃t(i)− wt(i))sgn(wt(i)) +
1

2
‖w̃t − wt‖22,

which equals 1
2‖w̃t − wt‖

2
2. It is clear that Pw is a polyhedron for any w ∈ Rd. The set W ∗ is also

a polyhedron. According to Part (a) of Lemma 8, for any Pw satisfying Pw ∩W ∗ 6= ∅, there exists

a constant γPw > 0 depending only on Pw and W ∗ such that

dist(wt, Pw ∩W ∗) ≤ γPw max
{

dist(wt, Pw),dist(wt,W
∗)
}
. (4.9)
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Define γ = maxw:Pw∩W∗ 6=∅ γPw , which is finite since there are only 3d different support sets Pw.

According to (3.6), (4.9), and the proved identity Dvt
Ψ (w̃t, wt) = 1

2‖w̃t −wt‖
2
2, we get almost surely

Dvt
Ψ (w∗, wt) ≤ Dvt

Ψ (w̃t, wt) =
1

2
‖w̃t − wt‖22 =

1

2
dist2(wt, Pwt ∩W ∗)

≤ 1

2
γ2 max

{
dist2(wt, Pwt),dist2(wt,W

∗)
}

=
1

2
γ2dist2(wt,W

∗)

≤ σ−1
min(CρX )γ2[E(wt)− E(w∗)],

where we have used the fact wt ∈ Pwt in the last identity and (4.6) in the last inequality (note

E(w∗) = E(w) for all w ∈ W ∗). Combining this with (4.7) and (4.8) verifies the desired bound by

setting

C3 = σ−1
min(CρX ) max

{
4λ
√
dc−1

1 + 1, 4λ
√
dc−1

2 + 1, γ2
}
. (4.10)

It is clear that C3 is independent of t. The proof of Lemma 4 is complete.

We shall also need the following elementary inequality which was essentially used in [19, 27, 30].

The proof is given in the appendix.

Lemma 9. Let {ηt}t∈N be a sequence of non-negative numbers such that limt→∞ ηt = 0 and∑∞
t=1 ηt = ∞. Let a > 0 and t1 ∈ N such that ηt < a−1 for any t ≥ t1. Then we have

limT→∞
∑T
t=t1

η2
t

∏T
k=t+1(1− aηk) = 0.

With the above lemmas, we are now in a position to present the following convergence result

which is more general than the sufficiency part of Theorem 1 by means of (3.1) since condition (2.1)

is not required.

Proposition 10. Let {(wt, vt)}t∈N be the sequence generated by (1.5) and w∗ defined by (1.7). If

the step size sequence satisfies (2.2), then limT→∞ Ez1,...,zT−1
[DvT

Ψ (w∗, wT )] = 0.

Proof. Let γ > 0 be arbitrarily fixed. Since limt→∞ ηt = 0, we can find some t1 ∈ N such that

ηt ≤ min{(2R2)−1, 2C3} for t ≥ t1.

Now we apply the first error decomposition (3.2) for the randomized sparse Kaczmarz method.

Separate w−wt+1 into w−wt+wt−wt+1 and bound 〈wt−wt+1, vt−vt+1〉 by the Schwarz inequality

as

〈wt − wt+1, vt − vt+1〉 ≤
1

2
‖wt − wt+1‖22 +

1

2
‖vt − vt+1‖22.

Combing this with the lower bound (3.1) of the Bregman distance Dvt
Ψ (wt+1, wt) in (3.2), we get

D
vt+1

Ψ (w,wt+1)−Dvt
Ψ (w,wt) ≤ 〈w − wt, vt − vt+1〉+

1

2
‖vt − vt+1‖22.

Using the iteration (1.5), we find

D
vt+1

Ψ (w,wt+1)−Dvt
Ψ (w,wt) ≤ ηt〈w − wt, (〈wt, xt〉 − yt)xt〉+ 2−1η2

t ‖(〈wt, xt〉 − yt)xt‖22.

But ‖xt‖2 ≤ R and the function on Rd mapping w to 2−1(〈w, xt〉 − yt)2 is convex. Hence we have

D
vt+1

Ψ (w,wt+1)−Dvt
Ψ (w,wt) ≤

ηt
2

[
(〈w, xt〉− yt)2− (〈wt, xt〉− yt)2

]
+
η2
t

2
R2(〈wt, xt〉− yt)2. (4.11)

Taking w = w∗ in the above inequality followed by taking conditional expectations on both sides

(note (vt, wt) is independent of zt), we derive

Ezt [D
vt+1

Ψ (w∗, wt+1)]−Dvt
Ψ (w∗, wt) ≤ ηt[E(w∗)− E(wt)] + η2

tR
2E(wt)

= (ηt − η2
tR

2)[E(w∗)− E(wt)] + η2
tR

2E(w∗).
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For t ≥ t1, we have ηtR
2 ≤ 1/2 and know by Lemma 4 that almost surely

Ezt [D
vt+1

Ψ (w∗, wt+1)]−Dvt
Ψ (w∗, wt) ≤

ηt
2

[E(w∗)− E(wt)] + η2
tR

2E(w∗) (4.12)

≤ −(2C3)−1ηt[D
vt
Ψ (w∗, wt)] + η2

tR
2E(w∗).

Reformulation of the above inequality followed by taking expectations over the remaining random

variables gives

Ez1,...,zt [D
vt+1

Ψ (w∗, wt+1)] ≤ (1− ãηt)Ez1,...,zt−1
[Dvt

Ψ (w∗, wt)] + b̃η2
t , (4.13)

where we denote the constants ã = (2C3)−1 and b̃ = R2E(w∗). Applying this inequality iteratively

for t = T, . . . , t1 yields

Ez1,...,zT [D
vT+1

Ψ (w∗, wT+1)] ≤
T∏
t=t1

(1− ãηt)Ez1,...,zt1−1
[D

vt1
Ψ (w∗, wt1)] + b̃

T∑
t=t1

η2
t

T∏
k=t+1

(1− ãηk).

(4.14)

The first term of the above inequality can be estimated by the standard inequality 1−a ≤ exp(−a)

for a > 0 together with the assumption
∑∞
t=1 ηt =∞ as

T∏
t=t1

(1− ãηt)Ez1,...,zt1−1
[D

vt1
Ψ (w∗, wt1)] ≤

T∏
t=t1

exp
(
− ãηt

)
Ez1,...,zt1−1

[D
vt1
Ψ (w∗, wt1)]

= exp
(
− ã

T∑
t=t1

ηt

)
Ez1,...,zt1−1

[D
vt1
Ψ (w∗, wt1)]→ 0 (T →∞).

Applying Lemma 9 with a = ã, we get

lim
T→∞

T∑
t=t1

η2
t

T∏
k=t+1

(1− ãηk) = 0.

Plugging the above two expressions into (4.14) shows the convergence of
{
Ez1,...,zt−1 [Dvt

Ψ (w∗, wt)]
}

to 0. The proof of the proposition is complete.

Remark 1. If ηt ≤ R−2 for all t ∈ N, one can take w = 0 in (4.11) to get

D
vt+1

Ψ (0, wt+1)−Dvt
Ψ (0, wt) ≤ 2−1ηty

2
t + 2−1ηt(ηtR

2 − 1)
(
〈wt, xt〉 − yt

)2 ≤ 2−1ηty
2
t .

If Y is bounded, then there holds Dvt
Ψ (0, wt) = O

(∑t
k=1 ηk

)
.

If E(w∗) = 0, then (4.13) translates to

Ez1,...,zt [D
vt+1

Ψ (w∗, wt+1)] ≤ (1− ãηt)Ez1,...,zt−1
[Dvt

Ψ (w∗, wt)],

from which one can derive linear convergence by taking a constant step size sequence ηt ≡ η1.

Remark 2. There are interesting connections between (1.5) and the proximal operator in the liter-

ature of Bregman optimization (e.g., [3]). Indeed, the component wt+1 in (1.5) can be reformulated

as

wt+1 = arg min
w∈Rd

Dvt
Ψ (w,wt) + ηt

〈
w,
(
〈wt, xt〉 − yt

)
xt
〉
.

That is, wt+1 is the output [3] of a proximal operator associated with the Bregman distance induced

by Ψ. However, from (4.13), we see that the so-called Bregman monotonicity [2] of {wt}t∈N with

respect to W ∗ does not hold in general, due to the positive variance of the sampling process.
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The randomized sparse Kaczmarz method is also closely related to the online proximal gradient

descent algorithm updating iterates [4, 10] defined as

wt+1 = Sλ̃ηt
(
wt − ηt(〈wt, xt〉 − yt)xt

)
, (4.15)

which also performs a soft-thresholding operation Sλ̃ with a threshold parameter λ̃ after a gradient

descent step. An essential difference between these two algorithms lies in the gradient descent step:

online proximal gradient descent moves along the minus gradient direction from the position wt,

while the randomized sparse Kaczmarz method moves along the minus gradient direction from the

position vt.

5 Necessity of Convergence in Expectation

The proof of the necessity part of Theorem 1 is based on the following key lemma relating the

one-step update on wt to the one-step update on vt, using special structures of the soft-thresholding

operator. Recall that I is the support of w∗. Hence κ := mini∈I |w∗(i)| > 0. Denote the cardinality

of the set I as |I|. Our idea is to estimate the expected value of the difference norm

Dt := ‖wt(I)− vt(I)− (wt+1(I)− vt+1(I))‖2

according to whether wt and wt+1 are close to w∗ on I (satisfying ‖wt(I)− w∗(I)‖∞ ≤ κ/2). Our

novelty here is to bound the probability of the event ‖wt(I) − w∗(I)‖∞ > κ/2 by the Bregman

distance Dvt
Ψ (w∗, wt).

Lemma 11. Let w∗ be defined by (1.7) and κ = mini∈I |w∗(i)| > 0. Then for t ∈ N, there holds

Ez1,...,zt [‖vt(I)− vt+1(I)‖2] ≤ Ez1,...,zt [‖wt(I)− wt+1(I)‖2]

+
16

κ2

√
|I|λEz1,...,zt [D

vt
Ψ (w∗, wt) +D

vt+1

Ψ (w∗, wt+1)]. (5.1)

Proof. Introduce a sequence of events

Ωt =
{
{(xi, yi)}t−1

i=1 ∈ Z
t−1 : ‖wt(I)− w∗(I)‖∞ ≤

κ

2

}
, t ∈ N.

For an event A, we denote by Pr(A) its probability, and by Ā its complement. We express the

expected value of Dt by the law of total expectation in terms of the event Ωt ∩ Ωt+1 and its

complement Ω̄t ∪ Ω̄t+1 as

Ez1,...,zt [Dt] = Ez1,...,zt
[
Dt
∣∣Ωt ∩ Ωt+1

]
Pr
(
Ωt ∩ Ωt+1

)
+ Ez1,...,zt

[
Dt
∣∣Ω̄t ∪ Ω̄t+1

]
Pr
(
Ω̄t ∪ Ω̄t+1

)
.

Conditioned on the event Ωt ∩ Ωt+1, the following identity holds for any i ∈ I

sgn(wt(i)) = sgn(wt+1(i)) = sgn(w∗(i)) 6= 0.

It implies by the relation wt = Sλ(vt) that for i ∈ I, wt(i)−vt(i) = sgn(wt(i))[|wt(i)|−(|wt(i)|+λ)],

which together with the same equality for wt+1(i)− vt+1(i) yields

wt(i)− vt(i) + vt+1(i)− wt+1(i) = 0.

Hence Ez1,...,zt
[
Dt
∣∣Ωt ∩ Ωt+1

]
Pr
(
Ωt ∩ Ωt+1

)
= 0.
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Conditioned on the event Ω̄t, we have ‖wt(I)− w∗(I)‖∞ > 2−1κ. Hence

Pr(Ω̄t) ≤ Pr
({

(xi, yi)}t−1
i=1 ∈ Z

t−1 : ‖wt(I)− w∗(I)‖2∞/(κ/2)2 > 1
})

≤ Ez1,...,zt−1

[
‖wt(I)− w∗(I)‖2∞/(κ/2)2

]
≤ (2/κ)

2 Ez1,...,zt−1

[
‖wt(I)− w∗(I)‖22

]
≤ 8

κ2
Ez1,...,zt−1

[Dvt
Ψ (w∗, wt)].

We also have Pr(Ω̄t+1) ≤ 8
κ2Ez1,...,zt [D

vt+1

Ψ (w∗, wt+1)]. Observe that |wt(i)− vt(i)| ≤ λ for every i.

So we have Dt ≤ ‖wt(I)− vt(I)‖2 + ‖wt+1(I)− vt+1(I)‖2 ≤ 2
√
|I|λ and thereby

Ez1,...,zt
[
Dt
∣∣Ω̄t ∪ Ω̄t+1

]
Pr
(
Ω̄t ∪ Ω̄t+1

)
≤ 2
√
|I|λ[Pr(Ω̄t) + Pr(Ω̄t+1)]

≤ 2
√
|I|λ 8

κ2
Ez1,...,zt [D

vt
Ψ (w∗, wt) +D

vt+1

Ψ (w∗, wt+1)].

Combining the above estimates for the two parts, we obtain

Ez1,...,zt [Dt] ≤
16

κ2

√
|I|λEz1,...,zt [D

vt
Ψ (w∗, wt) +D

vt+1

Ψ (w∗, wt+1)].

Then the desired estimate (5.1) follows. The proof is complete.

We can now state a proposition on necessity of the convergence measured by the Bregman

distance, from which the necessity part of Theorem 1 follows as Corollary 13.

Proposition 12. Let {(wt, vt)}t be the sequence generated by (1.5) and w∗ defined by (1.7). Assume

(2.1). If limT→∞ Ez1,...,zT−1
[DvT

Ψ (w∗, wT )] = 0, then the step size sequence satisfies (2.2). In this

case,
∞∑
T=1

√
Ez1,...,zT [D

vT+1

Ψ (w∗, wT+1)] =∞. (5.2)

Proof. We first show limt→∞ ηt = 0. Since limt→∞ Ez1,...,zt−1
[Dvt

Ψ (w∗, wt)] = 0, we know

lim
t→∞

Ez1,...,zt [‖wt − wt+1‖22] = lim
t→∞

Ez1,...,zt [‖wt − w∗ + w∗ − wt+1‖22]

≤ 2 lim
t→∞

Ez1,...,zt
[
‖wt − w∗‖22 + ‖wt+1 − w∗‖22

]
≤ 4 lim

t→∞
Ez1,...,zt

[
Dvt

Ψ (w∗, wt) +D
vt+1

Ψ (w∗, wt+1)
]

= 0,

from which and Hölder’s inequality we get

lim
t→∞

Ez1,...,zt [‖wt(I)−wt+1(I)‖2] ≤ lim
t→∞

Ez1,...,zt [‖wt−wt+1‖2] ≤ lim
t→∞

√
Ez1,...,zt [‖wt − wt+1‖22] = 0.

Combining this with (5.1) and the condition limt→∞ Ez1,...,zt−1
[Dvt

Ψ (w∗, wt)] = 0 yields

lim
t→∞

ηtEz1,...,zt [‖(〈wt, xt〉 − yt)xt(I)‖2] = lim
t→∞

Ez1,...,zt [‖vt(I)− vt+1(I)‖2]

≤ lim
t→∞

Ez1,...,zt [‖wt(I)− wt+1(I)‖2] +
16

κ2

√
|I|λ lim

t→∞
Ez1,...,zt [D

vt
Ψ (w∗, wt) +D

vt+1

Ψ (w∗, wt+1)] = 0.

According to the assumption σ := infw∈Rd EZ [‖(〈w,X〉 − Y )X(I)‖2] > 0, we also know

ηtEz1,...,zt [‖(〈wt, xt〉 − yt)xt(I)‖2] = ηtEz1,...,zt−1

[
Ezt [‖(〈wt, xt〉 − yt)xt(I)‖2]

]
= ηtEz1,...,zt−1

[
EZ [‖(〈wt, X〉 − Y )X(I)‖2]

]
≥ ηtσ.

16



The necessary condition limt→∞ ηt = 0 then follows from the above two inequalities.

We now turn to the necessary condition
∑∞
t=1 ηt =∞. Here we apply our second error decom-

position (3.3) and use the expression for vt − vt+1 in (1.5). We find

D
vt+1

Ψ (w,wt+1)−Dvt
Ψ (w,wt) = ηt〈w − wt, (〈wt, xt〉 − yt)xt〉+D

vt+1

Ψ (wt, wt+1).

Setting w = w∗ in the above identity, taking conditional expectations and using Ezt [xtx>t wt−xtyt] =

CρX (wt − w∗) due to the definition of w∗, we get

Ezt [D
vt+1

Ψ (w∗, wt+1)]−Dvt
Ψ (w∗, wt) = ηt〈w∗ − wt, CρX (wt − w∗)〉+ Ezt [D

vt+1

Ψ (wt, wt+1)].

But 〈wt−w∗, CρX (wt−w∗)〉 ≤ σmax(CρX )‖wt−w∗‖22 ≤ 2σmax(CρX )Dvt
Ψ (w∗, wt) according to (3.1).

It follows that

Ezt [D
vt+1

Ψ (w∗, wt+1)]−Dvt
Ψ (w∗, wt) ≥ −2ηtσmax(CρX )Dvt

Ψ (w∗, wt) + Ezt [D
vt+1

Ψ (wt, wt+1)].

Taking expectations over the remaining random variables then yields

Ez1,...,zt [D
vt+1

Ψ (w∗, wt+1)] ≥ (1− 2ηtσmax(CρX ))Ez1,...,zt−1
[Dvt

Ψ (w∗, wt)] + Ez1,...,zt [D
vt+1

Ψ (wt, wt+1)].

(5.3)

Since limt→∞ ηt = 0, there exists some integer t2 > 1 such that ηt ≤ (6σmax(CρX ))−1 for t ≥ t2.

Applying the standard inequality 1− η ≥ exp(−2η) for η ∈ (0, 1/3) to (5.3), we derive for t ≥ t2,

Ez1,...,zt [D
vt+1

Ψ (w∗, wt+1)]

≥ exp
(
− 4ηtσmax(CρX )

)
Ez1,...,zt−1

[Dvt
Ψ (w∗, wt)] + Ez1,...,zt [D

vt+1

Ψ (wt, wt+1)]

≥ exp
(
− 4ηtσmax(CρX )

)
Ez1,...,zt−1

[Dvt
Ψ (w∗, wt)].

Applying the above inequality repeatedly from t = T to t = t2 + 1, we get

Ez1,...,zT [D
vT+1

Ψ (w∗, wT+1)] ≥
T∏

t=t2+1

exp
(
− 4ηtσmax(CρX )

)
Ez1,...,zt2 [D

vt2+1

Ψ (w∗, wt2+1)]

= exp
(
− 4σmax(CρX )

T∑
t=t2+1

ηt

)
Ez1,...,zt2 [D

vt2+1

Ψ (w∗, wt2+1)]. (5.4)

We now show by contradiction that Ez1,...,zt2 [D
vt2+1

Ψ (w∗, wt2+1)] > 0. Suppose to the contrary that

Ez1,...,zt2 [D
vt2+1

Ψ (w∗, wt2+1)] = 0. Then, by (5.3) and 1− 2ηt2σmax(CρX ) > 0, we get

Ez1,...,zt2−1 [D
vt2
Ψ (w∗, wt2)] = 0 and Ez1,...,zt2 [D

vt2+1

Ψ (wt2 , wt2+1)] = 0. (5.5)

According to (5.1), we then have

Ez1,...,zt2 [‖wt2(I)− wt2+1(I)‖2]

≥ Ez1,...,zt2 [‖vt2(I)− vt2+1(I)‖2]− 16

κ2

√
|I|λEz1,...,zt2 [D

vt2
Ψ (w∗, wt2) +D

vt2+1

Ψ (w∗, wt2+1)]

= Ez1,...,zt2 [‖vt2(I)− vt2+1(I)‖2] = ηt2Ez1,...,zt2−1

[
Ezt2 [‖(〈wt2 , xt2〉 − yt2)xt2(I)‖2]

]
≥ ηt2σ, (5.6)

where the first identity follows from the assumption Ez1,...,zt2 [D
vt2+1

Ψ (w∗, wt2+1)] = 0 and the in-

duced identity Ez1,...,zt2−1
[D

vt2
Ψ (w∗, wt2)] = 0. This contradicts with the second identity in (5.5).

Therefore, Ez1,...,zt2 [D
vt2+1

Ψ (w∗, wt2+1)] > 0. Equation (5.4) can be reformulated as

T∑
t=t2+1

ηt ≥
(
4σmax(CρX

)−1[
log
(
Ez1,...,zt2 [D

vt2+1

Ψ (w∗, wt2+1)]
)
− log

(
Ez1,...,zT [D

vT+1

Ψ (w∗, wT+1)]
)]
.
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The necessary condition
∑∞
t=1 ηt = ∞ then follows from limT→∞ Ez1,...,zT [D

vT+1

Ψ (w∗, wT+1)] = 0

and Ez1,...,zt2 [D
vt2+1

Ψ (w∗, wt2+1)] > 0. This verifies (2.2).

We now turn to (5.2). Let t ≥ t2.

If Ez1,...,zt [D
vt
Ψ (w∗, wt) +D

vt+1

Ψ (w∗, wt+1)] ≤ κ2

32
√
|I|λ

σηt, applying (5.1) again we have from the

definition (1.5)

Ez1,...,zt [‖wt(I)− wt+1(I)‖2] ≥ Ez1,...,zt [‖vt(I)− vt+1(I)‖2]− 2−1σηt ≥ 2−1σηt.

This together with (5.3) yields

Ez1,...,zt [D
vt+1

Ψ (w∗, wt+1)] ≥ Ez1,...,zt [D
vt+1

Ψ (wt, wt+1)] ≥ 2−1Ez1,...,zt [‖wt − wt+1‖22]

≥ 2−1
(
Ez1,...,zt [‖wt − wt+1‖2]

)2 ≥ 8−1σ2η2
t .

This inequality can be reformulated as

ηt ≤ σ−1
√

8Ez1,...,zt [D
vt+1

Ψ (w∗, wt+1)].

If Ez1,...,zt [D
vt
Ψ (w∗, wt) +D

vt+1

Ψ (w∗, wt+1)] > κ2

32
√
|I|λ

σηt, we immediately have

ηt ≤
32
√
|I|λ

κ2σ
Ez1,...,zt

[
Dvt

Ψ (w∗, wt) +D
vt+1

Ψ (w∗, wt+1)
]
.

Combining the above two inequalities on ηt in the two cases, we have for t ≥ t2,

ηt ≤ 2σ−1 max
{√

2Ez1,...,zt [D
vt+1

Ψ (w∗, wt+1)],
16
√
|I|λ

κ2
Ez1,...,zt

[
Dvt

Ψ (w∗, wt) +D
vt+1

Ψ (w∗, wt+1)
]}
,

which, coupled with the necessary condition
∑∞
t=1 ηt =∞, shows that

∞∑
t=1

max
{√

Ez1,...,zt [D
vt+1

Ψ (w∗, wt+1)],Ez1,...,zt
[
Dvt

Ψ (w∗, wt) +D
vt+1

Ψ (w∗, wt+1)
]}

=∞.

This together with limt→∞ Ez1,...,zt−1 [Dvt
Ψ (w∗, wt)] = 0 implies (5.2). The proof is complete.

Corollary 13. Let {(wt, vt)}t be the sequence generated by (1.5) and w∗ defined by (1.7). Assume

(2.1). If limT→∞[‖w∗ − wT ‖22] = 0, then the step size sequence satisfies (2.2). In this case, (2.3)

holds.

Proof. According to (3.8) with w = w∗, we derive

lim
T→∞

Ez1,...,zT−1
[DvT

Ψ (w∗, wT )] ≤

2λ
√
d lim
T→∞

√
Ez1,...,zT−1

[‖w∗ − wT ‖2] +
1

2
lim
T→∞

Ez1,...,zT−1
[‖w∗ − wT ‖22] = 0,

from which and Proposition 12 we get (2.2) and (5.2). Furthermore, according to Lemma 4 and

(4.6), we have almost surely

Dvt
Ψ (w∗, wt) ≤ C3[E(wt)− E(w∗)] ≤ C3σmax(CρX )

2
‖wt − w∗t ‖22,

where w∗t is defined in (4.5). But the definition of w∗t implies ‖wt−w∗t ‖2 ≤ ‖wt−w∗‖2. Therefore,

together with (5.2), we have (2.3). The proof is complete.
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The assumption (2.1) is given in Theorem 1 in order to derive the necessary condition limt→∞ ηt =

0, based on the intuitive observation that the convergence of {wt}t in expectation can ensure the

convergence of {vt(I)}t in expectation but not that of {vt}t. We present a proposition here to show

that the necessary condition limt→∞ ηt = 0 is equivalent to limt→∞ Ez1,...,zt [‖vt−vt+1‖2] = 0 under

the assumption

inf
w∈Rd

EZ [‖(〈w,X〉 − Y )X‖2] > 0. (5.7)

It would be interesting to investigate whether the condition (2.1) in Theorem 1 can be relaxed to

the assumption (5.7).

Proposition 14. Let {(wt, vt)}t∈N be the sequence generated by (1.5) and w∗ defined by (1.7).

Assume (5.7) and the limit limT→∞ Ez1,...,zT−1

[
‖w∗ − wT ‖22

]
= 0. Then limt→∞ ηt = 0 if and only

if limt→∞ Ez1,...,zt [‖vt − vt+1‖2] = 0.

Proof. Since limT→∞ Ez1,...,zT−1

[
‖w∗ − wT ‖22

]
= 0, there exists some constant σ2 > 0 such that

Ez1,...,zt−1

[
‖w∗ − wt‖22

]
≤ σ2, ∀t ∈ N.

It follows from ‖xt‖2 ≤ R that

ηt inf
w∈Rd

EZ [‖(〈w,X〉 − Y )X‖2] ≤ ηtEz1,...,zt
[
‖(〈wt, xt〉 − yt)xt‖2

]
≤ ηtEz1,...,zt

[
‖〈wt − w∗, xt〉xt‖2

]
+ ηtEz1,...,zt

[
‖(〈w∗, xt〉 − yt)xt‖2

]
≤ ηtR2Ez1,...,zt−1

[
‖w∗ − wt‖2

]
+ ηtEZ

[
‖(〈w∗, X〉 − Y )X‖2

]
≤ ηtR2

√
Ez1,...,zt−1

[
‖w∗ − wt‖22

]
+ ηtEZ

[
‖(〈w∗, X〉 − Y )X‖2

]
≤ ηtR2√σ2 + ηtEZ

[
‖(〈w∗, X〉 − Y )X‖2

]
.

But ηt(〈wt, xt〉 − yt)xt = vt − vt+1 by the first expression of the algorithm (1.5). So the above

inequalities yield

ηt inf
w∈Rd

EZ [‖(〈w,X〉 − Y )X‖2] ≤ Ez1,...,zt
[
‖vt − vt+1‖2

]
≤ ηtR2√σ2 + ηtEZ

[
‖(〈w∗, X〉 − Y )X‖2

]
.

If limt→∞ ηt = 0, then the second inequality above implies limt→∞ Ez1,...,zt [‖vt − vt+1‖2] = 0. If

limt→∞ Ez1,...,zt [‖vt − vt+1‖2] = 0, then (5.7) and the first inequality implies limt→∞ ηt = 0. The

proof is complete.

6 Almost Sure Convergence and Convergence Rates

The proof of Theorem 2 for almost sure convergence is based on the following Doob’s forward

convergence theorem (see, e.g., [9] on page 195).

Lemma 15. Let {X̃t}t∈N be a sequence of non-negative random variables and let {Ft}t∈N be a

nested sequence of σ-algebras with Ft ⊂ Ft+1 for all t ∈ N. If E[X̃t+1|Ft] ≤ X̃t almost surely for

every t ∈ N, then X̃t converges to a nonnegative random variable X̃ almost surely.

Proof of Theorem 2. By (4.12) and E(w∗) ≤ E(wt), we know almost surely that for t ≥ t1,

Ezt [D
vt+1

Ψ (w∗, wt+1)] ≤ Dvt
Ψ (w∗, wt) + η2

tR
2E(w∗). (6.1)
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Since
∑∞
t=1 η

2
t <∞, we can define a random process as

X̃t = D
vt+1

Ψ (w∗, wt+1) +R2E(w∗)

∞∑
t̃=t+1

η2
t̃ , t ∈ N.

Inequality (6.1) amounts to saying that Ezt
[
X̃t

]
≤ X̃t−1 almost surely for t ≥ t1 and therefore the

random process {X̃t : t ≥ t1} is a supermartingale. Also, X̃t ≥ 0. Lemma 15 then shows that X̃t

converges almost surely, which, together with the condition
∑∞
t=1 η

2
t <∞, implies that Dvt

Ψ (w∗, wt)

converges to a non-negative random variable X̃ almost surely. According to Fatou’s Lemma and

the limit limt→∞ E[Dvt
Ψ (w∗, wt)] = 0 established in Proposition 10, we get

E[X̃] = E
[

lim
t→∞

Dvt
Ψ (w∗, wt)

]
≤ lim inf

t→∞
E[Dvt

Ψ (w∗, wt)] = 0.

But X̃ is a non-negative random variable, so we have X̃ = 0 almost surely. It follows that

{Dvt
Ψ (w∗, wt)}t∈N converges to 0 almost surely. By means of (3.1), the proof is complete.

To prove Theorem 3 on convergence rates in expectation, we need the following elementary

inequality which can be found in [25]:

t−1∑
i=1

i−q2 exp
(
− ν

t∑
j=i+1

j−q1
)
≤
(

2q1+q2

ν
+
( 1 + q2

ν(1− 2q1−1)e

) 1+q2
1−q1

)
tq1−q2 , t ∈ N, (6.2)

where ν > 0, q2 ≥ 0 and 0 < q1 < 1.

Proof of Theorem 3. (a) Since ηt ≤ (2R2)−1 for t ∈ N, applying 1−a ≤ exp(−a) for a > 0 to (4.14)

yields

Ez1,...,zT [DΨ(w∗, wT+1)] ≤
T∏
t=1

exp(−ãηt)DΨ(w∗, w1) + b̃

T∑
t=1

η2
t

T∏
k=t+1

exp(−ãηk)

= exp
(
− ãη1

T∑
t=1

t−θ
)
DΨ(w∗, w1) + b̃η2

1

T∑
t=1

t−2θ exp
(
− ãη1

T∑
k=t+1

k−θ
)
.

Since
∑T
t=1 t

−θ ≥ 1
1−θ [(T + 1)1−θ − 1] for 0 < θ < 1, applying (6.2) with q1 = θ, q2 = 2θ, ν = ãη1

gives

Ez1,...,zT [DΨ(w∗, wT+1)] ≤ exp
( ãη1

1− θ

)
exp

(
− ãη1

1− θ
T 1−θ

)
DΨ(w∗, w1)

+ b̃η2
1T
−2θ + b̃η2

1

(
23θ

ãη1
+
( 1 + 2θ

ãη1(1− 2θ−1)e

) 1+2θ
1−θ
)
T−θ.

An elementary inequality found in [25] asserts that exp(−νx) ≤
(
α(νex)−1

)α
for x, ν, α > 0. Using

this inequality with α = θ
1−θ , x = T 1−θ and ν = ãη1(1− θ)−1 yields

Ez1,...,zT [DΨ(w∗, wT+1)] ≤ exp
( ãη1

1− θ

)(
θ(ãη1e)

−1
) θ

1−θ
T−θDΨ(w∗, w1)

+ b̃η2
1

(
1 +

23θ

ãη1
+
( 1 + 2θ

ãη1(1− 2θ−1)e

) 1+2θ
1−θ
)
T−θ.
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Together with (3.1), this verifies (2.5) with

C1 = 2 exp
( ãη1

1− θ

)(
θ(ãη1e)

−1
) θ

1−θ
DΨ(w∗, w1) + 2b̃η2

1

(
1 +

23θ

ãη1
+
( 1 + 2θ

ãη1(1− 2θ−1)e

) 1+2θ
1−θ
)
.

(b) Let t̃1 be the smallest positive integer no less than 4R2

ã with ã = (2C3)−1. It is clear that

ηt ≤ (2R2)−1 for any t ≥ t̃1. Plugging the step size choice ηt = 2
(t+1)ã into (4.13) then gives

Ez1,...,zt
[
D
vt+1

Ψ (w∗, wt+1)
]
≤ t− 1

t+ 1
Ez1,...,zt−1

[
Dvt

Ψ (w∗, wt)
]

+
4b̃

ã2(t+ 1)2
, ∀t ≥ t̃1.

Multiplying both sides of the above inequality by t(t+ 1) implies

t(t+ 1)Ez1,...,zt
[
D
vt+1

Ψ (w∗, wt+1)
]
≤ t(t− 1)Ez1,...,zt−1

[
Dvt

Ψ (w∗, wt)
]

+ 4ã−2b̃, ∀t ≥ t̃1.

Summing the above inequality from t = T to t = t̃1 yields

T (T + 1)Ez1,...,zT
[
D
vT+1

Ψ (w∗, wT+1)
]
≤ (t̃1 − 1)t̃1Ez1,...,zt̃1−1

[
D
vt̃1
Ψ (w∗, wt̃1)

]
+ 4ã−2b̃(T − t̃1 + 1)

for any T ≥ t̃1, from which we have

Ez1,...,zT
[
D
vT+1

Ψ (w∗, wT+1)
]
≤

(t̃1 − 1)t̃1Ez1,...,zt̃1−1

[
D
vt̃1
Ψ (w∗, wt̃1)

]
T (T + 1)

+
4b̃

T ã2
, ∀T ≥ t̃1.

This together with (3.1) establishes (2.6) with

C2 = 2t̃1Ez1,...,zt̃1−1

[
D
vt̃1
Ψ (w∗, wt̃1)

]
+ 8ã−2b̃. (6.3)

The proof of Theorem 3 is complete.

Remark 3. According to C3 defined in (4.10), we see that C3 is bounded by C̃3σ
−1
min(CρX )(1+λ

√
d)

with a constant C̃3 depending only on W ∗ and ‖w∗‖2. Therefore the constant C2 defined in (6.3)

can be asymptotically bounded by O
(
σ−2

min(CρX )(λ2d+ 1)(R2 + 1)
)
. It enjoys a linear dependency

on the dimension d, a quadratic dependency on λ and a quadratic dependency on σ−1
min(CρX ). The

dimension d enters into the constant C3 by the use of (4.4), where an upper bound of `1-norm in

terms of `2-norm results in a factor of
√
d. It would be interesting to study whether the dimension

d in C3 can be replaced by the cardinality |I| of the support set of w∗ reflecting the sparsity of the

model. The dependency on λ in C3 shows that λ trades off the sparsity of iterates and learning

rates: a large λ would increase the sparsity level of iterates but lower the learning rates.

7 Numerical Experiments

In this section, we apply the general randomized sparse Kaczmarz method (RSK) (1.5) to the

problem of tomography reconstruction in image processing. We use the AIR toolbox [14], followed

with the `2-normalization of rows, to create a CT-measurement matrix A ∈ Rn×d and an N × N
sparse image encoded by a vector w† ∈ Rd with d = N2. Each row of A corresponds to a line

integral from a fan beam projection geometry. Note that the corresponding lines form a preselected

set in our experiments. We consider a noisy case where the line integrals are corrupted by Gaussian

noises. Our purpose is to reconstruct the image w† from the matrix A and the noisy measurements

by (1.5). At the t-th step, we randomly choose an index it from the uniform distribution over
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{1, . . . , n}. We then choose the transpose of Ait as xt and yt = Aitw
† + st, where Ait is the it-th

row of A and st is a Gaussian random variable with mean 0 and standard deviation 0.1|Aitw†|.
To illustrate our convergence results with step sizes, we consider three sequences of polynomially

decaying step sizes ηt = (1 + tσmin(CρX ))−θ with θ = 0, θ = 1
2 and θ = 1. The constant σmin(CρX )

is chosen according to the constant ã = (2C3)−1 in the proof of Theorem 3 (b) and the constant C3

given in (4.10). Note that our algorithm (1.5) with θ = 0 recovers the randomized sparse Kaczmarz

method in [23] with constant step size ηt ≡ 1. To demonstrate the effectiveness of our algorithm,

we also compare our algorithm with two baseline methods: the randomized Kaczmarz algorithm

(RK) in [19] and the online proximal gradient descent method (OPGD) given in (4.15). We also

consider different step sizes for these two baseline methods. We repeat the experiments 10 times

for each case and report here the average of the results.

RSK RK
OPGD

λ̃ = 10−6 λ̃ = 3× 10−6 λ̃ = 10−5 λ̃ = 3× 10−5

errr(w2×106) 8.52± 0.09 11.44± 0.08 9.85± 0.09 9.14± 0.07 9.21± 0.08 10.68± 0.09

Table 2: Relative errors with standard deviations for different methods on tomography reconstruc-

tion with N = 128, n = 92160, ‖w†‖0 = 6794 and 10% relative noise. We consider models with

lineary decaying step sizes, i.e., θ = 1 in this table.

Figure 1 shows the experimental results for tomography reconstruction with N = 128 and

n = 92160. Panel (a) displays the true image with ‖w†‖0 = 6794 with ‖w†‖0 being the number

of non-zero entries of w†. The reconstructed image, encoded by ŵ ∈ R16384, by RSK (1.5) with

linearly decaying step size sequence (θ = 1) is shown in Panel (b). Panels (c), (d) and (e) give the

plots of relative errors errr(wt) := 100‖wt−w†‖2/‖w†‖2 as functions of iteration numbers for RSK

with λ = 1, RK and OPGD (4.15) with λ̃ = 3× 10−6, respectively. Panel (f) shows the number of

non-zero elements of models along the iterations for the considered three models.

From Panel (c), we can see that RSK with a constant step size sequence cannot reconstruct

well the true image due to the existence of noise. As a comparison, (1.5) with θ = 1/2 and θ = 1

attain decaying relative errors along the iterations. This is consistent with our theoretical results

on sufficient and necessary conditions for the convergence of (1.5). Furthermore, it can be seen

clearly that (1.5) with θ = 1 achieves a faster convergence rate than that with θ = 1/2, which

is consistent with our error rate analysis. According to Panel (d) and Panel (e), we know that

step sizes should also diminish along the iterations for the convergence of RK and OPGD in the

noisy case. From Panel (f), we can see that the RSK is able to capture the sparsity of the models.

Indeed, the average ‖wt‖0 for the last iterate of RSK with θ = 1 is 6913, while ‖w†‖0 = 6794. As

a comparison, the sparsity of models is not preserved by either RK or OPGD. Table 2 exhibits the

relative errors errr(w2×106) with standard deviations for RSK with λ = 1, RK and OPGD with

regularization parameters λ̃ ∈ {10−6, 3 × 10−6, 10−5, 3 × 10−5}, from which one can see that RSK

outperforms the two baseline methods by attaining smaller relative errors in this example.
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(a) True Image. (b) Reconstructed Image.
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(c) Randomized Sparse Kaczmarz method.
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(d) Randomized Kaczmarz method
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(e) Online proximal gradient descent.
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(f) Sparsity versus iteration numbers.

Figure 1: Tomography reconstruction with N = 128, n = 92160, ‖w†‖0 = 6794 and 10% relative

noise. Panel (a) is the true image. Panel (b) is the reconstructed image ŵ by (1.5) with a linearly

decaying step size sequence, i.e., θ = 1. Panel (c) shows the plots of relative errors for RSK with

λ = 1 for polynomially decaying step sizes with θ = 0 (blue color), θ = 1/2 (red color) and θ = 1

(black color). Panel (d) shows the plots of relative errors for RK. Panel (e) shows the plots of

relative errors for OPGD (4.15) with the regularization parameter λ̃ = 3 × 10−6. Panel (f) plots

‖wt‖0 versus iteration numbers for RSK method with λ = 1 (blue color), RK (red color) and OPGD

with λ̃ = 10−5 (black color).
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Appendix: Proof of Lemma 9

Since limt→∞ ηt = 0 and
∑∞
t=1 ηt = ∞, for any ε > 0 we can find some integer t(ε) ≥ t1 such

that ηt ≤ aε
2 ,∀t ≥ t(ε), and then another integer t′(ε) > t(ε) such that

T∑
k=t(ε)+1

ηk ≥
1

a
log

2t(ε)

a2ε
, ∀T ≥ t′(ε).

For T ≥ t′(ε), we then have

T∑
t=t1

η2
t

T∏
k=t+1

(1− aηk) =

t(ε)∑
t=t1

η2
t

T∏
k=t+1

(1− aηk) +

T∑
t=t(ε)+1

η2
t

T∏
k=t+1

(1− aηk)

≤
t(ε)∑
t=t1

η2
t

T∏
k=t+1

(1− aηk) +
aε

2

T∑
t=t(ε)+1

ηt

T∏
k=t+1

(1− aηk)

≤
t(ε)∑
t=t1

η2
t

T∏
k=t+1

(1− aηk) +
ε

2
, (A)

where we have used the notation
∏T
k=t+1(1− aηk) = 1 for t = T and the inequality

T∑
t=t(ε)+1

aηt

T∏
k=t+1

(1− aηk) =

T∑
t=t(ε)+1

[1− (1− aηt)]
T∏

k=t+1

(1− aηk)

=

T∑
t=t(ε)+1

[ T∏
k=t+1

(1− aηk)−
T∏
k=t

(1− aηk)
]

= 1−
T∏

k=t(ε)+1

(1− aηk) ≤ 1.

The first term on the right-hand side of (A) is bounded by

t(ε)∑
t=t1

η2
t

T∏
k=t+1

(1− aηk) ≤
t(ε)∑
t=t1

a−2
T∏

k=t(ε)+1

(1− aηk) ≤ a−2

t(ε)∑
t=t1

T∏
k=t(ε)+1

exp(−aηk)

= a−2

t(ε)∑
t=t1

exp
(
− a

T∑
k=t(ε)+1

ηk

)
≤ a−2

t(ε)∑
t=t1

exp
(
− log

2t(ε)

a2ε

)
≤ a−2t(ε)

a2ε

2t(ε)
=
ε

2
.

Plugging the above inequality back into (A) then yields
∑T
t=t1

η2
t

∏T
k=t+1(1 − aηk) ≤ ε for any

T ≥ t′(ε). The proof is complete since ε is arbitrarily chosen.
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