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Online Learning Algorithms Can Converge
Comparably Fast as Batch Learning

Junhong Lin and Ding-Xuan Zhou

Abstract— Online learning algorithms in a reproducing kernel1

Hilbert space associated with convex loss functions are studied.2

We show that in terms of the expected excess generalization error,3

they can converge comparably fast as corresponding kernel-4

based batch learning algorithms. Under mild conditions on loss5

functions and approximation errors, fast learning rates and6

finite sample upper bounds are established using polynomially7

decreasing step-size sequences. For some commonly used loss8

functions for classification, such as the logistic and the p-norm9

hinge loss functions with p ∈ [1, 2], the learning rates are the10

same as those for Tikhonov regularization and can be of order11

O(T−(1/2) log T ), which are nearly optimal up to a logarithmic12

factor. Our novelty lies in a sharp estimate for the expected values13

of norms of the learning sequence (or an inductive argument to14

uniformly bound the expected risks of the learning sequence in15

expectation) and a refined error decomposition for online learning16

algorithms.17

Index Terms— Approximation error, learning theory, online18

learning, reproducing kernel Hilbert space (RKHS).19

I. INTRODUCTION20

NONPARAMETRIC regression or classification aims at21

learning predictors from samples. To measure the per-22

formance of a predictor, one may use a loss function and23

its induced generalization error. Given a prediction function24

f : X → R, defined on a separable metric space X (input25

space), a loss function V : R
2 → R+ gives a local error26

V (y, f (x)) at (x, y) ∈ Z := X × Y with an output space27

Y ⊆ R. The generalization error E = EV associated with the28

loss V and a Borel probability measure ρ on Z , defined as29

E( f ) =
∫

Z
V (y, f (x))dρ,30

measures the performance of f .31

Kernel methods provide efficient nonparametric learning32

algorithms for dealing with nonlinear features, where repro-33

ducing kernel Hilbert spaces (RKHSs) are often used as34

hypothesis spaces in the design of learning algorithms. With35

suitable choices of kernels, RKHSs can be used to approximate36
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functions in L2
ρX

, the space of square integrable functions with 37

respect to the marginal probability measure ρX . A reproducing 38

kernel K : X × X → R is a symmetric function such that 39

(K (ui , u j ))
�
i, j=1 is positive semidefinite for any finite set of 40

points {ui }�i=1 in X . The RKHS (HK , ‖·‖K ) is the completion 41

of the linear span of the set {Kx := K (x, ·) : x ∈ X} with 42

respect to the inner product given by 〈Kx , Ku〉K = K (x, u). 43

Batch learning algorithms perform learning tasks by using a 44

whole batch of sample z = {zi = (xi , yi ) ∈ Z}T
i=1. Throughout 45

this paper, we assume that the sample {zi = (xi , yi )}i is 46

drawn independently according to the measure ρ on Z . A large 47

family of batch learning algorithms are generated by Tikhonov 48

regularization 49

fz,λ = arg min
f ∈HK

{
1

T

T∑
t=1

V (yt , f (xt )) + λ‖ f ‖2
K

}
, λ > 0. (1) 50

Tikhonov regularization scheme (1) associated with convex 51

loss functions has been extensively studied in the literature, 52

and sharp learning rates have been well developed due to 53

many results, as described in the books (see [1], [2], and 54

references therein). But in practice, it may be difficult to 55

implement when the sample size T is extremely large, as its 56

standard complexity is about O(T 3) for many loss functions. 57

For example, for the hinge loss V (y, f ) = (1 − y f )+ = 58

max{1 − y f, 0} or the square hinge loss V (y, f ) = (1 − y f )2+ 59

in classification corresponding to support vector machines, 60

solving the scheme (1) is equivalent to solving a constrained 61

quadratic program, with complexity of order O(T 3). 62

With complexity O(T ) or O(T 2), online learning repre- 63

sents an important family of efficient and scalable machine 64

learning algorithms for large-scale applications. Over the past 65

years, a variety of online learning algorithms have been 66

proposed (see [3]–[7] and references therein). Most of them 67

take the form of regularized online learning algorithms, i.e., 68

given f1 = 0, 69

ft+1 = ft −ηt (V ′−(yt , ft (xt ))Kxt +λt ft ), t = 1, . . . , T −1 70

(2) 71

where {λt } is a regularization sequence and {ηt > 0} is a 72

step-size sequence. In particular, {λt } is chosen as a constant 73

sequence {λ > 0} in [4] and [5] or as a time-varying regu- 74

larization sequence in [8] and [9]. Throughout this paper, we 75

assume that V is convex with respect to the second variable. 76

That is, for any fixed y ∈ Y , the univariate function V (y, ·) 77

on R is convex. Hence, its left derivative V ′−(y, f ) exists at 78

every f ∈ R and is nondecreasing. 79

We study the following online learning algorithm without 80

regularization. 81
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Definition 1: The online learning algorithm without reg-82

ularization associated with the loss V and the kernel K is83

defined by f1 = 0 and84

ft+1 = ft − ηt V ′−(yt , ft (xt ))Kxt , t = 1, . . . , T − 1 (3)85

where {ηt > 0} is a step-size sequence.86

Let f V
ρ be a minimizer of the generalization error E( f )87

among all measurable functions f : X → Y . The main88

purpose of this paper is to estimate the expected excess gen-89

eralization error E[E( fT )−E( f V
ρ )], where fT is generated by90

the unregularized online learning algorithm (3) with a convex91

loss V . Under a mild condition on approximation errors and92

a growth condition on the loss V , we derive upper bounds for93

the expected excess generalization error using polynomially94

decaying step-size sequences. Our bounds are independent of95

the capacity of the RKHS HK , and are comparable to those96

for Tikhonov regularization (1), see more details in Section III.97

In particular, for some loss functions, such as the logistic loss,98

the p-absolute value loss, and the p-hinge loss with p ∈ [1, 2],99

our learning rates are of order O(T −(1/2) log T ), which is100

nearly optimal in the sense that up to a logarithmic factor,101

it matches the minimax rates of order O(T −(1/2)) in [10]102

for stochastic approximation in the nonstrongly convex case.103

In our approach, an inductive argument is involved, to develop104

sharp estimates for the expected values of ‖ ft ‖2
K , which is105

better than uniform bounds in the existing literature, or to106

bound the expected values of E( ft ) uniformly. Our second107

novelty is a refined error decomposition, which might be used108

for other online or gradient descent algorithms [11], [12] and109

is of independent interest.110

The rest of this paper is organized as follows. We intro-111

duce in Section II some basic assumptions that underlie112

our analysis, and give our main results as well as exam-113

ples, illustrating our upper bounds for the expected excess114

generalization error for different kinds of loss functions in115

learning theory. Section III contributes to discussions and116

comparisons with previous results, mainly on online learning117

algorithms with or without regularization, and the common118

Tikhonov regularization batch learning algorithms. Section IV119

deals with the proof of our main results, which relies on120

an error decomposition as well as the lemmas proved in the121

Appendix. Finally, in Section V, we will discuss the numerical122

simulation of the studied algorithms, and give some numerical123

simulations, which complements our theoretical results.124

II. MAIN RESULTS125

In this section, we first state our main assumptions, follow-126

ing with some comments. We then present our main results127

with simple discussions.128

A. Assumptions on the Kernel and Loss Function129

Throughout this paper, we assume that the kernel is bounded130

on X × X with the constant131

κ = sup
x∈X

max(
√

K (x, x), 1) < ∞ (4)132

and that |V |0 := supy∈Y V (y, 0) < ∞. These bounded133

conditions on K and V are common in learning theory.134

They are satisfied when X is compact and Y is a bounded 135

subset of R. Moveover, the condition |V |0 < ∞ implies that 136

E( f V
ρ ) is finite 137

E( f V
ρ ) ≤ E(0) =

∫
Z

V (y, 0)dρ ≤ |V |0. 138

The assumption on the loss function V is a growth condition 139

for its left derivative V ′−(y, ·). 140

Assumption 1.a: Assume that for some q ≥ 0 and constant 141

cq > 0, there holds 142

|V ′−(y, f )| ≤ cq(1 + | f |q), ∀ f ∈ R, y ∈ Y. (5) 143

The growth condition (5) is implied by the requirement for 144

the loss function to be Nemitiski [2], [13]. It is weaker than, 145

either assuming the loss or its gradient, to be Lipschitz in its 146

second variable as often done in learning theory, or assuming 147

the loss to be α-activating with α ∈ (0, 1] in [14]. 148

An alterative to Assumption 1.a made for V in the literature 149

is the following assumption [15], [16]. 150

Assumption 1.b: Assume that for some aV , bV ≥ 0, there 151

holds 152

|V ′−(y, f )|2 ≤ aV V (y, f ) + bV , ∀ f ∈ R, y ∈ Y. (6) 153

Assumption 1.b is satisfied for most loss functions commonly 154

used in learning theory, when Y is a bounded subset of R. 155

In particular, when V (y, ·) is smooth, it is satisfied with 156

bV = 0 and some appropriate aV [16, Lemma 2.1]. 157

B. Assumption on the Approximation Error 158

The performance of online learning algorithm (3) depends 159

on how well the target function f V
ρ can be approximated by 160

functions from the hypothesis space HK . For our purpose of 161

estimating the excess generalization error, the approximation 162

is measured by E( f ) − E( f V
ρ ) with f ∈ HK . Moreover, the 163

output function fT produced by the online learning algorithm 164

lies in a ball of HK with the radius increasing with T (as 165

shown in Lemma 7). So we measure the approximation ability 166

of the hypothesis space HK with respect to the generalization 167

error E( f ) and f V
ρ by penalizing the functions with their norm 168

squares [17] as follows. 169

Definition 2: The approximation error associated with the 170

triplet (ρ, V , K ) is defined by 171

D(λ) = inf
f ∈HK

{E( f ) − E( f V
ρ

)+ λ‖ f ‖2
K

}
, λ > 0. (7) 172

When f V
ρ ∈ HK , we can take f = f V

ρ in (7) and 173

find D(λ) ≤ ‖ f V
ρ ‖2

K λ = O(λ). When E( f ) − E( f V
ρ ) 174

can be arbitrarily small as f runs over HK , we know that 175

D(λ) → 0 as λ → 0. To derive explicit convergence 176

rates for the studied online algorithm, we make the fol- 177

lowing assumption on the decay of the approximation error 178

to be O(λβ). 179

Assumption 3: Assume that for some β ∈ (0, 1] and 180

cβ > 0, the approximation error satisfies 181

D(λ) ≤ cβλβ, ∀ λ > 0. (8) 182
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C. Alternative Conditions on the Approximation Error183

Assumption (8) on the approximation error is standard in184

analyzing both Tikhonov regularization schemes [1], [2] and185

online learning algorithms [8], [9], [18]. It is independent of186

the sample, and measures the approximation ability of the187

space HK to f V
ρ with respect to (ρ, V ). It may be replaced188

by alterative simple conditions for specified loss functions.189

For a Lipschitz continuous loss function meaning that190

sup
y∈Y, f, f ′∈R

|V (y, f ) − V (y, f ′)|
| f − f ′| = l < ∞191

it is easy to see that E( f )−E( f V
ρ ) ≤ l‖ f − f V

ρ ‖L1
ρX

, and thus192

a sufficient condition for (8) is193

inf
f ∈HK

{∥∥ f − f V
ρ

∥∥
L1

ρX
+ λ‖ f ‖2

K

} = O(λβ).194

In particular, for the hinge loss in classification, we have l = 1.195

Such a condition measures quantitatively the approximation196

of the function f V
ρ in the space L1

ρX
by functions from the197

RKHS HK , and can be characterized [2], [17] by requiring198

f V
ρ to lie in some interpolation space between HK and L1

ρX
.199

For the least squares loss, f V
ρ = fρ and there holds E( f )−200

E( fρ) = ‖ f − fρ‖2
L2

ρX
. Here, fρ is the regression function201

defined at x ∈ X to be the expectation of the conditional202

distribution ρ(y|x) given x . In this case, condition (8) is203

exactly204

inf
f ∈HK

{∥∥ f − fρ
∥∥2

L2
ρX

+ λ‖ f ‖2
K

} = O(λβ).205

This condition is about the approximation of the function fρ206

in the space L2
ρX

by functions from the RKHS HK . It can be207

characterized [17] by requiring that fρ lies in Lβ/2
K (L2

ρX
), the208

range of the operator Lβ/2
K . Recall that the integral operator209

L K : L2
ρX

→ L2
ρX

is defined by210

L K ( f ) =
∫

X
f (x)KxdρX , f ∈ L2

ρX
.211

Since K is a reproducing kernel with finite κ , the operator212

L K is symmetric, compact, and positive, and its power Lβ/2
K213

is well defined.214

D. Stating Main Results215

Our first main result of this paper, to be proved in216

Section IV, is stated as follows.217

Theorem 1: Under Assumption 1.a, let ηt = η1t−θ with218

max((1/2), q/(q + 1)) < θ < 1 and η1 satisfying219

0 < η1 ≤ min

(√
(q∗ − 1)(1 − θ)

12c2
q(1 + κ)2q+2q∗ ,

1 − θ

2(1 + 2|V |0)

)
(9)220

where we denote q∗ = 2θ − (1 − θ) ·max(0, q − 1) > 0. Then221

Ez1,z2,...,zT −1

{E( fT ) − E( f V
ρ

)} ≤ C̃{D(T θ−1) + T θ−1} (10)222

where C̃ is a positive constant depending on η1, q , κ , and θ223

(independent of T and given explicitly in the proof).224

Combining Theorem 1 with Assumption 3, we get the follow-225

ing explicit learning rates.226

Corollary 2: Under the conditions of Theorem 1 and 227

Assumption 3, we have 228

Ez1,z2,...,zT −1

{E( fT ) − E( f V
ρ

)} = O(T −(1−θ)β). 229

Replacing Assumption 1.a by Assumption 1.b, we can relax 230

the restriction on θ in Theorem 1 as θ ∈ (0, 1), which thus 231

improves the learning rates. Concretely, we have the following 232

convergence results. 233

Theorem 3: Under Assumption 1.b, let ηt = η1t−θ with 234

0 < θ < 1 and η1 satisfying 235

0 < η1 ≤ min(θ, 1 − θ)

2aV κ2 . (11) 236

Then 237

Ez1,z2,...,zT −1

{E( fT ) − E( f V
ρ

)}
238

≤ C̃ ′{D(T θ−1) + T − min(θ,1−θ)} log T (12) 239

where C̃ ′ is a positive constant depending on η1, aV , bV κ , 240

and θ (independent of T and given explicitly in the proof). 241

Corollary 4: Under the conditions of Theorem 3 and 242

Assumption 3, let θ = β/(β + 1). Then, we have 243

Ez1,z2,...,zT −1

{E( fT ) − E( f V
ρ

)} = O(T − β
β+1 log T ). 244

To illustrate the above-mentioned results, we give the fol- 245

lowing examples of commonly used loss functions in learning 246

theory with corresponding learning rates for online learning 247

algorithms (3). 248

Example 1: Assume |y| ≤ M , and conditions (4) and (8) 249

hold with 0 < β ≤ 1. For the least squares loss V (y, a) = 250

(y − a)2, the p-norm loss V (y, a) = |y − a|p with p ∈ [1, 2), 251

the hinge loss V (y, a) = (1−ya)+, the logistic loss V (y, a) = 252

log(1 + e−ya), and the p-norm hinge loss V (y, a) = ((1 − 253

ya)+)p with p ∈ (1, 2], choosing ηt = η1t−β/(β+1) with η1 254

satisfying (11), we have 255

Ez1,z2,...,zT −1

{E( fT ) − E( f V
ρ

)} = O(T − β
β+1 log T ) 256

which is of order O(T −(1/2) log T ) if β = 1. 257

Example 1 follows from Corollary 4, while the conclusion 258

of the next example is seen from Corollary 2. 259

Example 2: Under the assumption of Example 1, for the 260

p-norm loss V (y, a) = |y − a|p and the p-norm hinge 261

loss V (y, a) = ((1 − ya)+)p with p > 2, selecting ηt = 262

η1t−((p−1)/p+ε) with ε ∈ (0, (1/p)) and η1 such that (9) holds 263

with q = p − 1, we have 264

Ez1,z2,...,zT −1

{E( fT ) − E( f V
ρ

)} = O(T −( 1
p −ε)β

) 265

which is of order O(T ε−(1/p)) if β = 1. 266

Remark 1: 1) The learning rates given in Example 1 are 267

optimal in the sense that they are the same as those for 268

the Tikhonov regularization [2, Ch. 7]. 269

2) According to Example 1, the optimal learning rates are 270

achieved when ηt � t−β/(1+β). Since β is not known in 271

general, in practice, a hold-out cross-validation method 272

can be used to tune the ideal exponential parameter θ . 273

3) Our analysis can be extended to the case of constant step 274

sizes. In fact, following our proofs given in the follow- 275

ing, the readers can see that, when ηt = T −β/(β+1) for 276
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t = 1, . . . , T − 1, the results stated in Example 1 still277

hold.278

E. Classification Problem279

The binary classification problem in learning theory is a280

special case of our learning problems. In this case, Y =281

{1,−1}. A classifier for classification is a function f from282

X to Y and its misclassification error R( f ) is defined as the283

probability of the event {(x, y) ∈ Z : y �= f (x)} of making284

wrong predictions. A minimizer of the misclassification error285

is the Bayes rule fc : X → Y given by286

fc(x) =
{

1, if ρ(y = 1|x) ≥ 1/2

−1, otherwise.
287

The performance of a classification algorithm can be measured288

by the excess misclassification error R( f ) − R( fc). For289

the online learning algorithms (3), our classifier is given by290

sign( fT )291

sign( fT )(x) =
{

1, if fT (x) ≥ 0

−1, otherwise.
292

So our error analysis aims at the excess misclassification error293

R(sign( fT )) − R( fc).294

This can be often done [15], [19], [20] by bounding the295

excess generalization error E( f ) − E( f V
ρ ) and using the so-296

called comparison theorems. For example, for the hinge loss297

V (y, f (x)) = (1 − y f (x))+, it was shown in [21] that298

f V
ρ = fc and the comparison theorem in [15] asserts that299

R(sign( f )) − R( fc) ≤ E( f ) − E( fc)300

for any measurable function f . For the least squares loss,301

the logistic loss, and the p-norm hinge loss with p > 1,302

the comparison theorem [19], [20] states that there exists a303

constant cV such that for any measurable function f304

R(sign( f )) − R( fc) ≤ cV

√
E( f ) − E( f V

ρ ).305

Furthermore, if the distribution ρ satisfies a Tsybakov306

noise condition, then there is a refined comparison relation307

for a so-called admissible loss function, see more details308

in [19] and [20].309

III. RELATED WORK AND DISCUSSION310

There is a large amount of work on online learning311

algorithms and, more generally, stochastic approximations312

(see [3]–[9], [12], [14]–[16], [18], [22], [23], and the refer-313

ences therein). In this section, we discuss some of the previous314

results related to this paper.315

The regret bounds for online algorithms have been well316

studied in the literature [22]–[24]. Most of these results317

assume that the hypothesis space is of finite dimension, or the318

gradient is bounded, or the objective functions are strongly319

convex. Using an “online-to-batch” approach, generalization320

error bounds can be derived from the regret bounds.321

For the nonparametric regression or classification setting,322

online algorithms have been studied in [3]–[6], [8], [9], [14],323

and [18]. Recently, Ying and Zhou [14] showed that for a loss 324

function V satisfying 325

|V ′−(y, f ) − V ′−(y, g)| ≤ L| f − g|α, ∀y ∈ Y, f, g ∈ R 326

(13) 327

for some 0 < α ≤ 1 and 0 < L < ∞, under the assumption 328

of existence of arg inf f ∈HK
E( f ) = fHK ∈ HK , by selecting 329

ηt = η1t−2/(α+2), there holds 330

Ez1,z2,...,zT −1[E( fT ) − E( fHK )] = O(T − α
α+2 ). 331

It is easy to see that such a loss function always satisfies the 332

growth condition (5) with q = α, when supy∈Y |V ′−(y, 0)| < 333

∞. Therefore, as shown in Corollary 2, our learning rates for 334

such a loss function are of order O(T −(β/2)+ε), which reduces 335

to O(T −(1/2)+ε), if we further assume the existence of fHK = 336

arg inf f ∈HK
E( f ) ∈ HK , as in [14]. Note that in general, fHK 337

may not exist, thus our results require weaker assumptions, 338

involving approximation errors in the error bounds. Also, our 339

obtained upper bounds are better and are especially of great 340

improvements when α is close to 0. In the cases of β = 1, 341

these bounds are nearly optimal and up to a logarithmic factor, 342

coincide with the minimax rates of order O(T −(1/2)) in [10] 343

for stochastic approximations in the nonstrongly convex case. 344

Besides, in comparison with [14], where only loss functions 345

satisfying (13) with α ∈ (0, 1] are considered, a broader class 346

of convex loss functions are considered in this paper. At last, 347

let us mention that for the least squares loss, the obtained 348

learning rate O(T −β/(β+1) log T ) from Example 1 is the same 349

as that derived in [18]. 350

Our learning rates are also better than those for online 351

classification in [5] and [8]. For example, for the hinge 352

loss, the upper bound obtained in [5] is of the form 353

O(T ε−β/(2(β+1))), while the bound in Example 1 is of the 354

form O(T −β/(1+β) log T ), which is better. For a p-norm hinge 355

loss with p > 1, the bound obtained in [5] is of order 356

O(T ε−β/(2[(2−β)p+3β])), while the bounds in Examples 1 and 2 357

are of order O(T ε−(β/ max(p,2))). 358

We now compare our learning rates with those for batch 359

learning algorithms. For general convex loss functions, the 360

method for which sharp bounds are available is Tikhonov 361

regularization (1). If no noise condition is imposed, the best 362

capacity-independent error bounds for (1) with Lipschitz loss 363

functions [2, Ch. 7], are of order O(T −β/(β+1)). The obtained 364

bounds in Example 1 for Lipschitz loss functions are the same 365

as the best one available for the Tikhonov regularization, up 366

to a logarithmic factor. 367

We conclude this section with some possible future work. 368

First, it would be interesting to prove sharper rates by con- 369

sidering the capacity assumptions on the hypothesis spaces. 370

Second, in this paper, we only consider the i.i.d. (independent 371

identically distributed) setting. However, our analysis can be 372

extended to some non-i.i.d. settings, such as the setting with 373

Markov sampling as in [25] and [26]. Finally, our analysis 374

may also be applied to other stochastic learning models, such 375

as online learning with random features [27], which will be 376

studied in our future work. 377
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IV. PROOF OF MAIN RESULTS378

In this section, we prove our main results, Theorems 1 and 3.379

A. Preliminary Lemmas380

To prove Theorems 1 and 3, we need several lemmas to be381

proved in the Appendix.382

Lemma 1 is key and will be used several times for the383

proof of Theorem 1. It is inspired by the recent work384

in [14], [28], and [29].385

Lemma 1: Under Assumption 1.a, for any f ∈ HK , and386

t = 1, . . . , T − 1387

‖ ft+1 − f ‖2
K ≤ ‖ ft − f ‖2

K + η2
t G2

t388

+ 2ηt [V (yt , f (xt)) − V (yt , ft (xt ))] (14)389

where390

Gt = κcq
(
1 + κq‖ ft‖q

K

)
. (15)391

Using Lemma 1 and an inductive argument, we can estimate392

the expected value Ez1,...,zt [‖ ft+1‖2
K ] and provide a novel393

bound as follows. For notational simplicity, we denote by394

A( f∗) the excess generalization error of f∗ ∈ HK with respect395

to (ρ, V ) as396

A( f∗) = E( f∗) − E( f V
ρ

)
. (16)397

Lemma 2: Under Assumption 1.a, let ηt = η1t−θ with398

max((1/2), q/(q + 1)) < θ < 1 and η1 satisfying (9). Then,399

for an arbitrarily fixed f∗ ∈ HK and t = 1, . . . , T − 1400

Ez1,...,zt

[‖ ft+1‖2
K

] ≤ 6‖ f∗‖2
K + 4A( f∗)t1−θ + 4 (17)401

and402

η2
t+1Ez1,...,zt

[
G2

t+1

]≤(3‖ f∗‖2
K + 2A( f∗)t1−θ +3

)
(t + 1)−q∗

403

(18)404

where q∗ is defined in Theorem 1.405

Lemma 2 asserts that for a suitable choice of decaying step406

sizes, Ez1,...,zt [‖ ft+1‖2
K ] can be well bounded if there exists407

some f∗ ∈ HK such that A( f∗) is small. It improves uniform408

bounds found in the existing literature.409

Replacing Assumption 1.a with Assumption 1.b in410

Lemma 1, we can prove the following result.411

Lemma 3: Under Assumption 1.b, we have for any arbitrary412

f ∈ HK , and t = 1, . . . , T − 1413

‖ ft+1 − f ‖2
K ≤ ‖ ft − f ‖2

K +η2
t κ

2bV + aV η2
t κ

2V (yt , ft (xt ))414

+ 2ηt [V (yt , f (xt )) − V (yt , ft (xt ))]. (19)415

Using Lemma 3, and an induction argument, we can bound416

the expected risks of the learning sequence as follows.417

Lemma 4: Under Assumption 1.b, let ηt = η1t−θ with θ ∈418

(0, 1) and η1 such that (11). Then, for any t = 1, . . . , T − 1,419

there holds420

Ez1,...,zt−1E( ft ) ≤ B̃ (20)421

where B̃ is a positive constant depending only on η1, θ, bV , κ2,422

and |V |0 (given explicitly in the proof).423

We also need the following elementary inequalities, which, 424

for completeness, will be proved in the Appendix using a 425

similar approach as that in [28]. 426

Lemma 5: For any q∗ ≥ 0, there holds 427

T −1∑
k=1

1

k(k + 1)

T∑
t=T−k

t−q∗ ≤ 2T − min(1,q∗) log(eT ). 428

Furthermore, if q∗ > 1, then 429

T −1∑
k=1

1

k(k + 1)

T∑
t=T −k

t−q∗ ≤ 2

(
2q∗ + q∗

q∗ − 1

)
T −1. 430

B. Deriving Convergence From Averages 431

An essential tool in our error analysis is to derive the 432

convergence of a sequence {ut }t from its averages of the 433

form (1/T )
∑T

j=1 u j and (1/k)
∑T

j=T−k+1 u j . Lemma 6 is 434

elementary for sequences and the idea is from [7]. We provide 435

a proof in the Appendix. 436

Lemma 6: Let {ut }t be a real-valued sequence. We have 437

uT = 1

T

T∑
j=1

u j +
T −1∑
k=1

1

k(k + 1)

T∑
j=T −k+1

(u j − uT −k). (21) 438

From Lemma 6, we see that if the average 439

(1/T )
∑T

j=1 u j tends to some u∗ and the moving average 440∑T −1
k=1 1/(k(k + 1))

∑T
j=T −k+1(u j − uT −k) tends to zero, 441

then uT tends to u∗ as well. 442

Recall that our goal is to derive upper bounds for 443

the expected excess generalization error Ez1,...,zT −1[E( fT ) − 444

E( f V
ρ )]. We can easily bound the weighted average 445

(1/T )
∑

t=1 2ηt Ez1,...,zT −1[E( ft )−E( f V
ρ )] from (14) [or (19)]. 446

This, together with Lemma 6, demonstrates how to bound the 447

weighted excess generalization error 2ηT Ez1,...,zT −1[E( fT ) − 448

E( f V
ρ )] in terms of the weighted average and the moving 449

weighted average. Interestingly, the bounds on the weighted 450

average and the moving weighted average are essentially the 451

same, as shown in Sections IV-D and IV-E. 452

C. Error Decomposition 453

Our proofs rely on a novel error decomposition derived from 454

Lemma 6. In what follows, we shall use the notation E for 455

Ez1,...,zT −1 . Choosing ut = 2ηtE{E( ft )−E( f V
ρ )} in Lemma 6, 456

we get 457

2ηT E
{E( fT ) − E( f V

ρ

)}
458

= 1

T

T∑
j=1

2η j E
{E( f j ) − E( f V

ρ

)} 459

+
T −1∑
k=1

1

k(k + 1)

T∑
j=T −k+1

(2η j E
{E( f j ) − E( f V

ρ

)}
460

− 2ηT −kE
{E( fT −k) − E( f V

ρ

)}
) 461
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which can be rewritten as462

2ηT E
{E( fT ) − E( f V

ρ

)}
463

= 1

T

T∑
t=1

2ηt E
{E( ft ) − E( f V

ρ

)}
464

+
T −1∑
k=1

1

k(k + 1)

T∑
t=T −k+1

2ηt E{E( ft ) − E( fT −k)}465

+
T −1∑
k=1

1

k + 1

[
2

k

T∑
t=T−k+1

ηt − ηT −k

]
466

× E
{E( fT −k) − E( f V

ρ

)}
. (22)467

Since, E( fT −k)−E( f V
ρ ) ≥ 0 and that {ηt }t∈N is a nonincreas-468

ing sequence, we know that the last term of (22) is at most469

zero. Therefore, we get470

2ηT E
{E( fT ) − E( f V

ρ

)}
471

≤ 1

T

T∑
t=1

2ηt E
{E( ft ) − E( f V

ρ

)}
472

+
T −1∑
k=1

1

k(k + 1)

T∑
t=T −k+1

2ηt E
{E( ft ) − E( fT −k)

}
. (23)473

D. Proof of Theorem 1474

In this section, we prove Theorem 1. We first prove the475

following general result, from which we can derive Theorem 1.476

Theorem 5: Under Assumption 1.a, let ηt = η1t−θ with477

max((1/2), q/(q + 1)) < θ < 1 and η1 satisfying (9). Then,478

for any fixed f∗ ∈ HK479

Ez1,...,zT −1

{E( fT ) − E( f V
ρ

)}
480

≤ C̄1A( f∗) + C̄2‖ f∗‖2
K T −1+θ + C̄3T −1+θ (24)481

where C̄1, C̄2, and C̄3 are positive constants depending on482

η1, q, κ , and θ (independent of T or f∗ and given explicitly483

in the proof).484

Proof: Let us first bound the average error, the first term485

of (23). Choosing f = f∗ in (14), taking expectation on both486

sides, and noting that ft depends only on z1, z2, . . . , zt−1, we487

have488

Ez1,...,zt

[‖ ft+1 − f∗‖2
K

]
489

≤ Ez1,...,zt−1

[‖ ft − f∗‖2
K

]+ η2
t Ez1,...,zt−1

[
G2

t

]
490

+ 2ηtEz1,...,zt−1

[E( f∗) − E( ft )
]

491

= Ez1,...,zt−1

[‖ ft − f∗‖2
K

]+ η2
t Ez1,...,zt−1

[
G2

t

]
492

+ 2ηtA( f∗) − 2ηtEz1,...,zt−1

[E( ft ) − E( f V
ρ

)]
(25)493

which implies494

2ηtE
[E( ft ) − E( f V

ρ

)]
495

≤ E
[‖ ft − f∗‖2

K

]− E
[‖ ft+1 − f∗‖2

K

]
496

+ 2ηtA( f∗) + η2
t E
[
G2

t

]
.497

Summing over t = 1, . . . , T , with f1 = 0 and ηt = η1t−θ
498

T∑
t=1

2ηt E
[E( ft ) − E( f V

ρ

)]
499

≤ ‖ f∗‖2
K + 2η1A( f∗)

T∑
t=1

t−θ +
T∑

t=1

η2
t E
[
G2

t

]
. 500

This together with (18) yields 501

T∑
t=1

2ηtE
[E( ft ) − E( f V

ρ

)]
502

≤ ‖ f∗‖2
K + 2η1A( f∗)

T∑
t=1

t−θ
503

+ (3‖ f∗‖2
K + 2A( f∗)T 1−θ + 3

) T∑
t=1

t−q∗
. 504

Applying the elementary inequalities 505

t∑
j=1

j−θ ′ ≤ 1 +
∫ t

1
u−θ ′

du ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t1−θ ′

1 − θ ′ , when θ ′ < 1

log(et), when θ ′ = 1
θ ′

θ ′ − 1
, when θ ′ > 1

506

(26) 507

with θ ′ = θ and q∗ > 1, we have 508

T∑
t=1

2ηtE
[E( ft ) − E( f V

ρ

)]
509

≤
(

2η1

1 − θ
+ 2q∗

q∗ − 1

)
A( f∗)T 1−θ + (4‖ f∗‖2

K + 3
) q∗

q∗ − 1
. 510

Dividing both sides by T , we get a bound for the first term 511

of (23) as 512

1

T

T∑
t=1

2ηtE
[E( ft ) − E( f V

ρ

)]
513

≤
(

2η1

1 − θ
+ 2q∗

q∗ − 1

)
A( f∗)T −θ

514

+ (4‖ f∗‖2
K + 3

) q∗

q∗ − 1
T −1. (27) 515

Then, we turn to the moving average error, the second term 516

of (23). Let k ∈ {1, . . . , T − 1}. Note that fT −k depends only 517

on z1, . . . , zT −k−1. Taking expectation on both sides of (14), 518

and rearranging terms, we have that for t ≥ T − k 519

2ηtE[E( ft ) − E( fT −k)] 520

≤ E
[‖ ft − fT −k‖2

K

]− E
[‖ ft+1 − fT −k‖2

K

]+ η2
t E
[
G2

t

]
. 521

Using this inequality repeatedly for t = T −k, . . . , T , we have 522

T −1∑
k=1

1

k(k + 1)

T∑
t=T−k+1

2ηt E{E( ft ) − E( fT −k)} 523

≤
T −1∑
k=1

1

k(k + 1)

T∑
t=T −k

η2
t E
[
G2

t

]
. 524
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Combining this with (18) implies525

T −1∑
k=1

1

k(k + 1)

T∑
t=T −k+1

2ηt E{E( ft ) − E( fT −k)}526

≤ (
3‖ f∗‖2

K + 2A( f∗)T 1−θ + 3
) T −1∑

k=1

1

k(k + 1)

T∑
t=T−k

t−q∗
.527

Applying Lemma 5, we have528

T −1∑
k=1

1

k(k + 1)

T∑
t=T −k+1

2ηt E{E( ft ) − E( fT −k)}529

≤ 2

(
2q∗ + q∗

q∗ − 1

) (
3‖ f∗‖2

K + 2A( f∗)T 1−θ + 3
)
T −1.530

(28)531

Finally, putting (27) and (28) into the error decomposition532

(23), and then dividing both sides by 2ηT = 2η1T −θ , by a533

direct calculation, we get our desired bound (24) with534

C̄1 = 1

1 − θ
+ 3q∗

η1(q∗ − 1)
+ 2q∗+1

η1
535

C̄2 = 5q∗

η1(q∗ − 1)
+ 3 · 2q∗

η1
536

and537

C̄3 = 9q∗

2η1(q∗ − 1)
+ 3 · 2q∗

η1
.538

The proof is complete. �539

We are in a position to prove Theorem 1.540

Proof of Theorem 1: By Theorem 5, we have541

E
{E( fT ) − E( f V

ρ

)}
542

≤ (C̄1 + C̄2)
{E( f∗) − E( f V

ρ

)+ ‖ f∗‖2
K T θ−1}+ C̄3T θ−1.543

Since the constants C̄1, C̄2, and C̄3 are independent of544

f∗ ∈ HK , we take the infimum over f∗ ∈ HK on both sides,545

and conclude that546

E
{E( fT ) − E( f V

ρ

)} ≤ (C̄1 + C̄2)D(T θ−1) + C̄3T θ−1.547

The proof of Theorem 1 is complete by taking548

C̃ = C̄1 + C̄2 + C̄3.549

E. Proof of Theorem 3550

In this section, we give the proof of Theorem 3. It follows551

from the following more general theorem, as shown in the552

proof of Theorem 1.553

Theorem 6: Under Assumption 1.b, let ηt = η1t−θ with554

0 < θ < 1 and η1 satisfying (11). Then, for any fixed f∗ ∈ HK555

Ez1,...,zT −1

{E( fT ) − E( f V
ρ )
}

556

≤ (
2A( f∗) + (2η1)

−1‖ f∗‖2
K T −1+θ + B̄1T − min(θ,1−θ)

)
log T557

(29)558

where B̄1 is a positive constant depending only on559

η1, aV , bV , κ , and θ (independent of T or f∗ and given560

explicitly in the proof).561

Proof: The proof parallels to that of Theorem 5. Note 562

that we have the error decomposition (23). We only need to 563

estimate the last two terms of (23). 564

To bound the first term of the right-hand side of (23), we 565

first apply Lemma 3 with a fixed f ∈ HK and subsequently 566

take the expectation on both sides of (19) to get 567

E
[‖ fl+1 − f ‖2

K

]
568

≤ E
[‖ fl − f ‖2

K

]
569

+ η2
l κ

2(aV E[E( fl )] + bV ) + 2ηlE(E( f ) − E( fl)). (30) 570

By Lemma 4, we have (20). Introducing (20) into (30) with 571

f = f∗, and rearranging terms 572

2ηlE
(E( fl ) − E( f V

ρ

)) ≤ E
[‖ fl − f∗‖2

K − ‖ fl+1 − f∗‖2
K

]
573

+ 2ηlA( f∗) + η2
l κ2(aV B̃ + bV ). 574

Summing up over l = 1, . . . , T , rearranging terms, and then 575

dividing both sides by T , we get 576

1

T

T∑
l=1

2ηlE(E( fl ) − E( f∗)) 577

≤ ‖ f∗‖2
K

T
+ 2η1

T
A( f∗)

T∑
t=1

t−θ +η2
1κ

2(aV B̃+bV )
1

T

T∑
l=1

l−2θ . 578

By using the elementary inequality with q ≥ 0, T ≥ 3 579

T∑
t=1

t−q ≤ T max(1−q,0)
T∑

t=1

t−1 ≤ 2T max(1−q,0) log T 580

one can get 581

1

T

T∑
l=1

2ηlE(E( fl ) − E( f∗)) 582

≤ ‖ f∗‖2
K

T
+ 4η1A( f∗)T −θ log T 583

+ η2
12κ2(aV B̃ + bV )T − min(2θ,1) log T . (31) 584

To bound the last term of (23), we let 1 ≤ k ≤ t − 1 and 585

i ∈ {t − k, . . . , t}. Note that fi depends only on z1, . . . , zi−1 586

when i > 1. We apply Lemma 3 with f = ft−k , and then 587

take the expectation on both sides of (19) to derive 588

2ηiE[E( fi ) − E( ft−k)] 589

≤ E
[‖ fi − ft−k‖2

K − ‖ fi+1 − ft−k‖2
K

]
590

+ η2
i κ

2(aV E[E( fi )] + bV ). 591

Summing up over i = t − k, . . . , t 592

t∑
i=t−k

2ηi E[E( fi ) − E( ft−k)]≤κ2
t∑

i=t−k

η2
i (aV E[E( fi )] + bV ). 593
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Note that the left-hand side is exactly
∑t

i=t−k+1 ηi E[E( fi ) −594

E( ft−k)]. We thus know that595

t−1∑
k=1

1

k(k + 1)

t∑
i=t−k+1

ηiE[E( fi ) − E( ft−k)]596

≤ κ2

2

t−1∑
k=1

1

k(k + 1)

t∑
i=t−k

η2
i (aV E[E( fi )] + bV )597

≤ κ2

2

(
aV sup

1≤i≤t
E[E( fi )] + bV

) t−1∑
k=1

1

k(k + 1)

t∑
i=t−k

η2
i .598

With ηt = η1t−θ , by using Lemma 5, this can be relaxed as599

t−1∑
k=1

1

k(k + 1)

t∑
i=t−k+1

ηi E[E( fi ) − E( ft−k)]600

≤ η2
1κ

2t− min(2θ,1) log(et)(aV sup
1≤i≤t

E[E( fi )] + bV ). (32)601

Introducing (31) and (32) into (23), plugging with (20), and602

dividing both sides by 2ηT = 2η1T −θ , one can prove the603

desired result with B̄1 = 2η1κ
2(aV B̃ + bV ). �604

V. NUMERICAL SIMULATIONS605

The simplest case to implement online learning606

algorithm (3) is when X = R
d for some d ∈ N and607

K is the linear kernel given by K (x, w) = wT x . In this608

case, it is straightforward to see that ft+1(x) = w�
t+1x with609

w1 = 0 ∈ R
d and610

wt+1 = wt − ηt V
′−(yt , w

�
t xt)xt , t = 1, . . . , T .611

For a general kernel, by induction, it is easy to see that612

ft+1(x) =∑T
j=1 c j

t+1K (x, x j ) with613

ct+1 = ct − ηt V ′−

⎛
⎝yt ,

T∑
j=1

c j
t K (xt , x j )

⎞
⎠ et , t = 1, . . . , T614

for c1 = 0 ∈ R
T . Here, ct = (c1

t , . . . , cT
t )� for 1 ≤ t ≤ T ,615

and {e1, . . . , eT } is a standard basis of R
T . Indeed, it is616

straightforward to check by induction that617

ft+1 =
T∑

j=1

c j
t Kx j − ηt V ′−(yt , ft (xt ))Kxt618

=
T∑

j=1

Kx j

(
c j

t − ηt V
′−(y j , ft (x j ))e

j
t

)
.619

To see how the step-size decaying rate indexed by θ affects620

the performance of the studied algorithm, we carry out simple621

numerical simulations on the Adult1 data set with the hinge622

loss and the Gaussian kernel with kernel width σ = 4. We623

consider a subset of Adult with T = 1000, and run the624

algorithm for different θ values with η1 = 1/4. The test and625

training errors (with respect to the hinge loss) for different θ626

values are shown in Fig. 1. We see that the minimal test error627

(with respect to the hinge loss) is achieved at some θ∗ < 1/2,628

1The data set can be downloaded from archive.ics.uci.edu/ml and
www.csie.ntu.edu.tw/cjlin/libsvmtools/

Fig. 1. Test and training errors for online learning with different θ values
on Adult (T = 1000).

TABLE I

COMPARISON OF ONLINE LEARNING USING

CROSS VALIDATION WITH LIBSVM

which complements our obtained results. We also compare the 629

performance of online learning algorithm (3) in terms of test 630

error and training time with that of LIBSVM, a state-of-the- 631

art batch learning algorithm for classification [30]. The test 632

classification error and training time, for the online learning 633

algorithm using cross validation (for choosing the best θ ) and 634

LIBSVM, are summarized in Table I, from which we see that 635

the online learning algorithm is comparable to LIBSVM on 636

both test error and running time. 637

APPENDIX 638

In this appendix, we prove the lemmas stated before. 639

Proof of Lemma 1: Since ft+1 is given by (3), by expanding 640

the inner product, we have 641

‖ ft+1 − f ‖2
K = ‖ ft − f ‖2

K + η2
t ‖V ′−(yt , ft (xt ))Kxt ‖2

K 642

+ 2ηt V
′−(yt , ft (xt ))〈Kxt , f − ft 〉K . 643

Observe that ‖Kxt ‖K = (K (xt , xt ))
1/2 ≤ κ and that 644

‖ f ‖∞ ≤ κ‖ f ‖K , ∀ f ∈ HK . 645

These together with the incremental condition (5) yield 646

‖V ′−(yt , ft (xt ))Kxt ‖K 647

≤ κ |V ′−(yt , ft (xt ))| 648

≤ κcq(1 + | ft (xt )|q) ≤ κcq
(
1 + κq‖ ft ‖q

K

)
. 649

Therefore, ‖ ft+1 − f ‖2
K is bounded by 650

‖ ft − f ‖2
K + η2

t G2
t + 2ηt V ′−(yt , ft (xt ))〈Kxt , f − ft 〉K . 651

Using the reproducing property, we get 652

‖ ft+1 − f ‖2
K ≤ ‖ ft − f ‖2

K + η2
t G2

t 653

+ 2ηt V
′−(yt , ft (xt ))( f (xt ) − ft (xt )). (33) 654
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Since V (yt , ·) is a convex function, we have655

V ′−(yt , a)(b − a) ≤ V (yt , b) − V (yt , a), ∀a, b ∈ R.656

Using this relation to (33), we get our desired result.657

In order to prove Lemma 2, we first bound the learning658

sequence uniformly as follows.659

Lemma 7: Under Assumption 1.a, let 0 ≤ θ < 1 satisfy660

θ ≥ q
q+1 and ηt = η1t−θ with η1 satisfying661

0 < η1 ≤ min

{ √
1 − θ√

8cq(κ + 1)q+1
,

1 − θ

4|V |0

}
. (34)662

Then, for t = 1, . . . , T − 1663

‖ ft+1‖K ≤ t
1−θ

2 . (35)664

Proof: We prove our statement by induction.665

Taking f = 0 in Lemma 1, we know that666

‖ ft+1‖2
K ≤ ‖ ft‖2

K + η2
t G2

t + 2ηt [V (yt , 0) − V (yt , ft (xt ))]667

≤ ‖ ft‖2
K + η2

t G2
t + 2ηt |V |0. (36)668

Since f1 = 0, G1 is given by (15) and by (34), η2
1c2

qκ2 +669

2η1|V |0 ≤ 1, we thus get (35) for the case t = 1.670

Now, assume ‖ ft‖K ≤ (t − 1)(1−θ)/2 with t ≥ 2. Then671

G2
t ≤ κ2c2

q(1 + κq)2 max
(
1, ‖ ft‖2q

K

)
672

≤ 4c2
q(κ + 1)2q+2(t − 1)(1−θ)q (37)673

where for the last inequality, we used κ ≤ κ +1 and 1+κq ≤674

2(κ + 1)q . Hence, using (36)675

‖ ft+1‖2
K676

≤ (t − 1)1−θ + η2
1t−2θ 4c2

q(κ + 1)2q+2t(1−θ)q + 2η1t−θ |V |0677

= t1−θ

{(
1 − 1

t

)1−θ

+ η2
14c2

q(κ + 1)2q+2

t(q+1)θ+1−q
+ 2η1|V |0

t

}
.678

Since (1 − (1/t))1−θ ≤ 1 − (1 − θ)/t and the condition θ ≥679

q/(q + 1) implies (q + 1)θ + 1 − q ≥ 1, we see that ‖ ft+1‖2
K680

is bounded by681

t1−θ

{
1 − 1 − θ

t
+ η2

14c2
q(κ + 1)2q+2

t
+ 2η1|V |0

t

}
.682

Finally, we use the restriction (34) for η1 and find ‖ ft+1‖2
K ≤683

t1−θ . This completes the induction procedure and proves our684

conclusion. �685

Now, we are ready to prove Lemma 2.686

Proof of Lemma 2: Recall an iterative relation (25) of error687

terms in the proof of Theorem 5. It follows from E( ft ) ≥688

E( f V
ρ ) that689

Ez1,...,zt

[‖ ft+1 − f∗‖2
K

] ≤ Ez1,...,zt−1

[‖ ft − f∗‖2
K

]
690

+ η2
t Ez1,...,zt−1

[
G2

t

]+ 2ηtA( f∗).691

(38)692

Since Gt is given by (15), applying Schwarz’s inequality693

Ez1,...,zt−1

[
G2

t

] ≤ 2κ2c2
q

(
1 + κ2q

Ez1,...,zt−1

[‖ ft‖2q
K

])
.694

If q ≤ 1, using Hölder’s inequality 695

Ez1,...,zt−1

[‖ ft‖2q
K

] ≤ (
Ez1,...,zt−1

[‖ ft ‖2
K

])q
696

≤ 1 + Ez1,...,zt−1

[‖ ft‖2
K

]
. 697

If q > 1, noting that (9) implies (34), we have (35) and thus 698

Ez1,...,zt−1

[‖ ft ‖2q
K

] ≤ Ez1,...,zt−1

[‖ ft‖2
K

]
t(q−1)(1−θ)

699

= Ez1,...,zt−1

[‖ ft‖2
K

]
t2θ−q∗

. 700

Combining the above-mentioned two cases yields 701

η2
t Ez1,...,zt−1

[
G2

t

]
702

≤ 2κ2c2
qη2

t

(
1 + κ2q(1 + Ez1,...,zt−1

[‖ ft‖2
K

])
t2θ−q∗)

703

≤ 2κ2c2
qη2

t

(
1 + κ2qt2θ−q∗

704

· (1 + 2Ez1,...,zt−1

[‖ ft − f ∗‖2
K

]+ 2‖ f∗‖2
K

))
705

≤ C1
(
1 + Ez1,...,zt−1

[‖ ft − f ∗‖2
K

]+ ‖ f∗‖2
K

)
t−q∗

(39) 706

where 707

C1 = 4η2
1c2

q(1 + κ)2q+2. (40) 708

Putting (39) into (38) yields 709

Ez1,...,zt

[‖ ft+1 − f∗‖2
K

]
710

≤ Ez1,...,zt−1

[‖ ft − f∗‖2
K

]+ 2η1t−θA( f∗) 711

+ C1
(
1 + Ez1,...,zt−1

[‖ ft − f ∗‖2
K

]+ ‖ f∗‖2
K

)
t−q∗

. 712

Applying this inequality iteratively, with f1 = 0, we derive 713

Ez1,...,zt

[‖ ft+1 − f∗‖2
K

]
714

≤ ‖ f∗‖2
K + 2η1A( f∗)

t∑
j=1

j−θ
715

+ C1
(
1 + ‖ f∗‖2

K 716

+ max
j=1,...,t

Ez1,...,z j−1

[‖ f j − f ∗‖2
K

]) t∑
j=1

j−q∗
. 717

Note that θ ∈ (1/2, 1) and that from the restriction on θ , 718

q∗ > 1. Applying the elementary inequality (26) to bound 719∑t
j=1 j−q∗

and
∑t

j=1 j−θ , we get 720

Ez1,...,zt

[‖ ft+1 − f∗‖2
K

]
721

≤ ‖ f∗‖2
K + 2η1

1 − θ
A( f∗)t1−θ

722

+ C1q∗

q∗ − 1

(
1 + ‖ f∗‖2

K + max
j=1,...,t

Ez1,...,z j−1

[‖ f j − f ∗‖2
K

])
. 723

Now, we derive upper bounds for Ez1,...,zt [‖ ft+1 − f∗‖2
K ] by 724

induction for t = 1, . . . , T − 1. Assume that Ez1,...,z j−1[‖ f j − 725

f∗‖2
K ] ≤ 2(‖ f∗‖2

K + A( f∗)( j − 1)1−θ + 1) holds for 726
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j = 1, . . . , t . Then727

Ez1,...,zt

[‖ ft+1 − f∗‖2
K

]
728

≤ ‖ f∗‖2
K + C1q∗

q∗ − 1
(3 + 3‖ f∗‖2

K + 2A( f∗)t1−θ ])729

+ 2η1

1 − θ
A( f∗)t1−θ

730

≤
(

1 + 3C1q∗

q∗ − 1

)
(1 + ‖ f∗‖2

K )731

+
(

2C1q∗

q∗ − 1
+ 2η1

1 − θ

)
A( f∗)t1−θ .732

Recall that C1 is given by (40). We see from (9) that733

3C1q∗/(q∗ − 1) ≤ 1 − θ ≤ 1 and 2η1/(1 − θ) ≤ 1. It follows734

that735

Ez1,...,zt

[‖ ft+1 − f∗‖2
K

] ≤ 2
(‖ f∗‖2

K + A( f∗)t1−θ + 1
)
. (41)736

From the above-mentioned induction procedure, we conclude737

that for t = 1, . . . , T − 1, the bound (41) holds, which leads738

to the desired bound (17) using ‖ ft‖2
K ≤ 2‖ ft − f∗‖2

K +739

2‖ f∗‖2
K . Applying (41) into (39), and noting that C1 ≤ 1 by740

the restriction (9), we get the other desired bound (18). The741

proof is complete.742

Proof of Lemma 3: Following the proof of Lemma 1, we743

have:744

‖ ft+1 − f ‖2
K ≤ ‖ ft − f ‖2

K + η2
t κ

2|V−(yt , ft (xt ))|2745

+ 2ηt [V (yt , f (xt )) − V (yt , ft (xt ))] .746

Applying Assumption 1.b to the above, we get the desired747

result.748

Proof of Lemma 4: The proof is divided into several steps.749

Basic Decomposition: We choose μt = ηt E[E( ft )] in750

Lemma 6 to get751

ηt E[E( ft )]752

= 1

t

t∑
i=1

ηi E[E( fi )]753

+
t−1∑
k=1

1

k(k + 1)

t∑
i=t−k+1

(ηi E[E( fi )] − ηt−kE[E( ft−k)]).754

Since {ηt }t is decreasing and E[E( ft−k)] is nonnegative, the755

above can be relaxed as756

ηt E[E( ft )] ≤ 1

t

t∑
i=1

ηi E[E( fi )]757

+
t−1∑
k=1

1

k(k + 1)

t∑
i=t−k+1

ηi E[E( fi ) − E( ft−k)].758

(42)759

In the rest of the proof, we will bound the last two terms in760

the above-mentioned estimate.761

Bounding the Average: To bound the first term on the right-762

hand side of (42), we apply (30) with f = 0 to get763

E
[‖ fl+1‖2

K

] ≤ E
[‖ fl‖2

K

]+ η2
l κ2(aV E[E( fl )] + bV )764

+ 2ηlE(E(0) − E( fl)).765

Rearranging terms, and using the fact that E(0) ≤ |V |0 766

ηl(2 − aV ηlκ
2)E[E( fl )] 767

≤ E[‖ fl‖2
K − ‖ fl+1‖2

K ] + bV η2
l κ2 + 2ηl |V |0. 768

It thus follows from aV ηlκ
2 ≤ 1, implied by (11), that 769

ηlE[E( fl)] ≤ E
[‖ fl‖2

K − ‖ fl+1‖2
K

]+ bV η2
l κ2 + 2ηl |V |0. 770

(43) 771

Summing up over l = 1, . . . , t , introducing f1 = 0, 772

‖ ft+1‖2
K ≥ 0, and then multiplying both sides by 1/t , we 773

get 774

1

t

t∑
l=1

ηlE[E( fl )] ≤ 1

t

t∑
l=1

(
bV η2

l κ2 + 2ηl |V |0
)
. 775

Since ηt = η1t−θ , we have 776

1

t

t∑
l=1

ηlE[E( fl)] ≤ (bV η2
1κ

2 + 2η1|V |0
)1

t

t∑
l=1

l−θ . 777

Using (26), we get 778

1

t

t∑
l=1

ηlE[E( fl)] ≤ bV η2
1κ

2 + 2η1|V |0
1 − θ

t−θ . (44) 779

Bounding the Moving Average: To bound the last term 780

of (42), we let 1 ≤ k ≤ t − 1 and i ∈ {t − k, . . . , t}. 781

Recall the inequality (32) in the proof of Theorem 6. Applying 782

the basic inequality e−x ≤ (ex)−1, x > 0, which implies 783

t− min(θ,1−θ) log(et) ≤ (1/ min(θ, 1 − θ)), we see that the last 784

term of (42) can be upper bounded by 785

η2
1κ

2

min(θ, 1 − θ)
t−θ

(
aV sup

1≤i≤t
E[E( fi )] + bV

)
. 786

Induction: Introducing (32) and (44) into the decomposition 787

(42), and then dividing both sides by ηt = η1t−θ , we get 788

E[E( ft )] ≤ A sup
1≤i≤t

E[E( fi )] + B (45) 789

where we set A = (η1aV κ2/ min(θ, 1 − θ)) and 790

B = bV η1κ
2 + 2|V |0

1 − θ
+ η1bV κ2

min(θ, 1 − θ)
. 791

The restriction (11) on η1 tells us that A ≤ 1/2. Then, using 792

(45) with an inductive argument, we find that for all t ≤ T 793

E[E( ft )] ≤ 2B (46) 794

which leads to the desired result with B̃ = 2B . In fact, the 795

case t = 2 can be verified directly from (43), by plugging 796

with f1 = 0. Now, assume that (46) holds for any k ≤ t − 1, 797

where t ≥ 3. Under this hypothesis condition, if E[E( ft )] ≤ 798

sup1≤i≤t−1 E[E( fi )], then using the hypothesis condition, we 799

know that E[E( ft )] ≤ 2B . If E[E( ft )] ≥ sup1≤i≤t−1 E[E( fi )], 800

we use (45) to get 801

E[E( ft )] ≤ AE[E( ft )] + B ≤ E[E( ft )]/2 + B 802

which implies E[E( ft )] ≤ 2B . The proof is thus complete. 803
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Proof of Lemma 5: Exchanging the order in the sum, we804

have805

T −1∑
k=1

1

k(k + 1)

T∑
t=T−k

t−q∗
806

=
T −1∑
t=1

T −1∑
k=T −t

1

k(k + 1)
t−q∗ +

T −1∑
k=1

1

k(k + 1)
T −q∗

807

=
T −1∑
t=1

(
1

T − t
− 1

T

)
t−q∗ +

(
1 − 1

T

)
T −q∗

808

≤
T −1∑
t=1

1

T − t
t−q∗

.809

What remains is to estimate the term
∑T −1

t=1
1

T −t t−q∗
. Note810

that811

T −1∑
t=1

1

T − t
t−q∗ =

T −1∑
t=1

t1−q∗

(T − t)t
≤ T max(1−q∗,0)

T −1∑
t=1

1

(T − t)t
812

and that by (26)813

T −1∑
t=1

1

(T − t)t
= 1

T

T −1∑
t=1

(
1

T − t
+ 1

t

)
814

= 2

T

T −1∑
t=1

1

t
≤ 2

T
log(eT ).815

From the above-mentioned analysis, we see the first statement816

of the lemma.817

To prove the second part of the lemma, we split the term818 ∑T −1
t=1 1/(T − t)t−q∗

into two parts819

T −1∑
t=1

1

T − t
t−q∗

820

=
∑

T/2≤t≤T−1

1

T − t
t−q∗ +

∑
1≤t<T/2

1

T − t
t−q∗

821

≤ 2q∗
T −q∗ ∑

T/2≤t≤T−1

1

T − t
+ 2T −1

∑
1≤t<T/2

t−q∗
822

= 2q∗
T −q∗ ∑

1≤t≤T/2

t−1 + 2T −1
∑

1≤t<T/2

t−q∗
.823

Applying (26) to the above and then using T −q∗+1 log T ≤824

1/(2(q∗ − 1)), we see the second statement of Lemma 5.825

Proof of Lemma 6: For k = 1, . . . , T − 1826

1

k

T∑
j=T −k+1

u j − 1

k + 1

T∑
j=T−k

u j827

= 1

k(k + 1)

⎧⎨
⎩(k + 1)

T∑
j=T−k+1

u j − k
T∑

j=T−k

u j

⎫⎬
⎭828

= 1

k(k + 1)

T∑
j=T−k+1

(u j − uT−k).829

Summing over k = 1, . . . , T − 1, and rearranging terms, we830

get (21).831
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Online Learning Algorithms Can Converge
Comparably Fast as Batch Learning

Junhong Lin and Ding-Xuan Zhou

Abstract— Online learning algorithms in a reproducing kernel1

Hilbert space associated with convex loss functions are studied.2

We show that in terms of the expected excess generalization error,3

they can converge comparably fast as corresponding kernel-4

based batch learning algorithms. Under mild conditions on loss5

functions and approximation errors, fast learning rates and6

finite sample upper bounds are established using polynomially7

decreasing step-size sequences. For some commonly used loss8

functions for classification, such as the logistic and the p-norm9

hinge loss functions with p ∈ [1, 2], the learning rates are the10

same as those for Tikhonov regularization and can be of order11

O(T−(1/2) log T ), which are nearly optimal up to a logarithmic12

factor. Our novelty lies in a sharp estimate for the expected values13

of norms of the learning sequence (or an inductive argument to14

uniformly bound the expected risks of the learning sequence in15

expectation) and a refined error decomposition for online learning16

algorithms.17

Index Terms— Approximation error, learning theory, online18

learning, reproducing kernel Hilbert space (RKHS).19

I. INTRODUCTION20

NONPARAMETRIC regression or classification aims at21

learning predictors from samples. To measure the per-22

formance of a predictor, one may use a loss function and23

its induced generalization error. Given a prediction function24

f : X → R, defined on a separable metric space X (input25

space), a loss function V : R
2 → R+ gives a local error26

V (y, f (x)) at (x, y) ∈ Z := X × Y with an output space27

Y ⊆ R. The generalization error E = EV associated with the28

loss V and a Borel probability measure ρ on Z , defined as29

E( f ) =
∫

Z
V (y, f (x))dρ,30

measures the performance of f .31

Kernel methods provide efficient nonparametric learning32

algorithms for dealing with nonlinear features, where repro-33

ducing kernel Hilbert spaces (RKHSs) are often used as34

hypothesis spaces in the design of learning algorithms. With35

suitable choices of kernels, RKHSs can be used to approximate36
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functions in L2
ρX

, the space of square integrable functions with 37

respect to the marginal probability measure ρX . A reproducing 38

kernel K : X × X → R is a symmetric function such that 39

(K (ui , u j ))
�
i, j=1 is positive semidefinite for any finite set of 40

points {ui }�i=1 in X . The RKHS (HK , ‖·‖K ) is the completion 41

of the linear span of the set {Kx := K (x, ·) : x ∈ X} with 42

respect to the inner product given by 〈Kx , Ku〉K = K (x, u). 43

Batch learning algorithms perform learning tasks by using a 44

whole batch of sample z = {zi = (xi , yi ) ∈ Z}T
i=1. Throughout 45

this paper, we assume that the sample {zi = (xi , yi )}i is 46

drawn independently according to the measure ρ on Z . A large 47

family of batch learning algorithms are generated by Tikhonov 48

regularization 49

fz,λ = arg min
f ∈HK

{
1

T

T∑
t=1

V (yt , f (xt )) + λ‖ f ‖2
K

}
, λ > 0. (1) 50

Tikhonov regularization scheme (1) associated with convex 51

loss functions has been extensively studied in the literature, 52

and sharp learning rates have been well developed due to 53

many results, as described in the books (see [1], [2], and 54

references therein). But in practice, it may be difficult to 55

implement when the sample size T is extremely large, as its 56

standard complexity is about O(T 3) for many loss functions. 57

For example, for the hinge loss V (y, f ) = (1 − y f )+ = 58

max{1 − y f, 0} or the square hinge loss V (y, f ) = (1 − y f )2+ 59

in classification corresponding to support vector machines, 60

solving the scheme (1) is equivalent to solving a constrained 61

quadratic program, with complexity of order O(T 3). 62

With complexity O(T ) or O(T 2), online learning repre- 63

sents an important family of efficient and scalable machine 64

learning algorithms for large-scale applications. Over the past 65

years, a variety of online learning algorithms have been 66

proposed (see [3]–[7] and references therein). Most of them 67

take the form of regularized online learning algorithms, i.e., 68

given f1 = 0, 69

ft+1 = ft −ηt (V ′−(yt , ft (xt ))Kxt +λt ft ), t = 1, . . . , T −1 70

(2) 71

where {λt } is a regularization sequence and {ηt > 0} is a 72

step-size sequence. In particular, {λt } is chosen as a constant 73

sequence {λ > 0} in [4] and [5] or as a time-varying regu- 74

larization sequence in [8] and [9]. Throughout this paper, we 75

assume that V is convex with respect to the second variable. 76

That is, for any fixed y ∈ Y , the univariate function V (y, ·) 77

on R is convex. Hence, its left derivative V ′−(y, f ) exists at 78

every f ∈ R and is nondecreasing. 79

We study the following online learning algorithm without 80

regularization. 81

2162-237X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Definition 1: The online learning algorithm without reg-82

ularization associated with the loss V and the kernel K is83

defined by f1 = 0 and84

ft+1 = ft − ηt V ′−(yt , ft (xt ))Kxt , t = 1, . . . , T − 1 (3)85

where {ηt > 0} is a step-size sequence.86

Let f V
ρ be a minimizer of the generalization error E( f )87

among all measurable functions f : X → Y . The main88

purpose of this paper is to estimate the expected excess gen-89

eralization error E[E( fT )−E( f V
ρ )], where fT is generated by90

the unregularized online learning algorithm (3) with a convex91

loss V . Under a mild condition on approximation errors and92

a growth condition on the loss V , we derive upper bounds for93

the expected excess generalization error using polynomially94

decaying step-size sequences. Our bounds are independent of95

the capacity of the RKHS HK , and are comparable to those96

for Tikhonov regularization (1), see more details in Section III.97

In particular, for some loss functions, such as the logistic loss,98

the p-absolute value loss, and the p-hinge loss with p ∈ [1, 2],99

our learning rates are of order O(T −(1/2) log T ), which is100

nearly optimal in the sense that up to a logarithmic factor,101

it matches the minimax rates of order O(T −(1/2)) in [10]102

for stochastic approximation in the nonstrongly convex case.103

In our approach, an inductive argument is involved, to develop104

sharp estimates for the expected values of ‖ ft ‖2
K , which is105

better than uniform bounds in the existing literature, or to106

bound the expected values of E( ft ) uniformly. Our second107

novelty is a refined error decomposition, which might be used108

for other online or gradient descent algorithms [11], [12] and109

is of independent interest.110

The rest of this paper is organized as follows. We intro-111

duce in Section II some basic assumptions that underlie112

our analysis, and give our main results as well as exam-113

ples, illustrating our upper bounds for the expected excess114

generalization error for different kinds of loss functions in115

learning theory. Section III contributes to discussions and116

comparisons with previous results, mainly on online learning117

algorithms with or without regularization, and the common118

Tikhonov regularization batch learning algorithms. Section IV119

deals with the proof of our main results, which relies on120

an error decomposition as well as the lemmas proved in the121

Appendix. Finally, in Section V, we will discuss the numerical122

simulation of the studied algorithms, and give some numerical123

simulations, which complements our theoretical results.124

II. MAIN RESULTS125

In this section, we first state our main assumptions, follow-126

ing with some comments. We then present our main results127

with simple discussions.128

A. Assumptions on the Kernel and Loss Function129

Throughout this paper, we assume that the kernel is bounded130

on X × X with the constant131

κ = sup
x∈X

max(
√

K (x, x), 1) < ∞ (4)132

and that |V |0 := supy∈Y V (y, 0) < ∞. These bounded133

conditions on K and V are common in learning theory.134

They are satisfied when X is compact and Y is a bounded 135

subset of R. Moveover, the condition |V |0 < ∞ implies that 136

E( f V
ρ ) is finite 137

E( f V
ρ ) ≤ E(0) =

∫
Z

V (y, 0)dρ ≤ |V |0. 138

The assumption on the loss function V is a growth condition 139

for its left derivative V ′−(y, ·). 140

Assumption 1.a: Assume that for some q ≥ 0 and constant 141

cq > 0, there holds 142

|V ′−(y, f )| ≤ cq(1 + | f |q), ∀ f ∈ R, y ∈ Y. (5) 143

The growth condition (5) is implied by the requirement for 144

the loss function to be Nemitiski [2], [13]. It is weaker than, 145

either assuming the loss or its gradient, to be Lipschitz in its 146

second variable as often done in learning theory, or assuming 147

the loss to be α-activating with α ∈ (0, 1] in [14]. 148

An alterative to Assumption 1.a made for V in the literature 149

is the following assumption [15], [16]. 150

Assumption 1.b: Assume that for some aV , bV ≥ 0, there 151

holds 152

|V ′−(y, f )|2 ≤ aV V (y, f ) + bV , ∀ f ∈ R, y ∈ Y. (6) 153

Assumption 1.b is satisfied for most loss functions commonly 154

used in learning theory, when Y is a bounded subset of R. 155

In particular, when V (y, ·) is smooth, it is satisfied with 156

bV = 0 and some appropriate aV [16, Lemma 2.1]. 157

B. Assumption on the Approximation Error 158

The performance of online learning algorithm (3) depends 159

on how well the target function f V
ρ can be approximated by 160

functions from the hypothesis space HK . For our purpose of 161

estimating the excess generalization error, the approximation 162

is measured by E( f ) − E( f V
ρ ) with f ∈ HK . Moreover, the 163

output function fT produced by the online learning algorithm 164

lies in a ball of HK with the radius increasing with T (as 165

shown in Lemma 7). So we measure the approximation ability 166

of the hypothesis space HK with respect to the generalization 167

error E( f ) and f V
ρ by penalizing the functions with their norm 168

squares [17] as follows. 169

Definition 2: The approximation error associated with the 170

triplet (ρ, V , K ) is defined by 171

D(λ) = inf
f ∈HK

{E( f ) − E( f V
ρ

)+ λ‖ f ‖2
K

}
, λ > 0. (7) 172

When f V
ρ ∈ HK , we can take f = f V

ρ in (7) and 173

find D(λ) ≤ ‖ f V
ρ ‖2

K λ = O(λ). When E( f ) − E( f V
ρ ) 174

can be arbitrarily small as f runs over HK , we know that 175

D(λ) → 0 as λ → 0. To derive explicit convergence 176

rates for the studied online algorithm, we make the fol- 177

lowing assumption on the decay of the approximation error 178

to be O(λβ). 179

Assumption 3: Assume that for some β ∈ (0, 1] and 180

cβ > 0, the approximation error satisfies 181

D(λ) ≤ cβλβ, ∀ λ > 0. (8) 182
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C. Alternative Conditions on the Approximation Error183

Assumption (8) on the approximation error is standard in184

analyzing both Tikhonov regularization schemes [1], [2] and185

online learning algorithms [8], [9], [18]. It is independent of186

the sample, and measures the approximation ability of the187

space HK to f V
ρ with respect to (ρ, V ). It may be replaced188

by alterative simple conditions for specified loss functions.189

For a Lipschitz continuous loss function meaning that190

sup
y∈Y, f, f ′∈R

|V (y, f ) − V (y, f ′)|
| f − f ′| = l < ∞191

it is easy to see that E( f )−E( f V
ρ ) ≤ l‖ f − f V

ρ ‖L1
ρX

, and thus192

a sufficient condition for (8) is193

inf
f ∈HK

{∥∥ f − f V
ρ

∥∥
L1

ρX
+ λ‖ f ‖2

K

} = O(λβ).194

In particular, for the hinge loss in classification, we have l = 1.195

Such a condition measures quantitatively the approximation196

of the function f V
ρ in the space L1

ρX
by functions from the197

RKHS HK , and can be characterized [2], [17] by requiring198

f V
ρ to lie in some interpolation space between HK and L1

ρX
.199

For the least squares loss, f V
ρ = fρ and there holds E( f )−200

E( fρ) = ‖ f − fρ‖2
L2

ρX
. Here, fρ is the regression function201

defined at x ∈ X to be the expectation of the conditional202

distribution ρ(y|x) given x . In this case, condition (8) is203

exactly204

inf
f ∈HK

{∥∥ f − fρ
∥∥2

L2
ρX

+ λ‖ f ‖2
K

} = O(λβ).205

This condition is about the approximation of the function fρ206

in the space L2
ρX

by functions from the RKHS HK . It can be207

characterized [17] by requiring that fρ lies in Lβ/2
K (L2

ρX
), the208

range of the operator Lβ/2
K . Recall that the integral operator209

L K : L2
ρX

→ L2
ρX

is defined by210

L K ( f ) =
∫

X
f (x)KxdρX , f ∈ L2

ρX
.211

Since K is a reproducing kernel with finite κ , the operator212

L K is symmetric, compact, and positive, and its power Lβ/2
K213

is well defined.214

D. Stating Main Results215

Our first main result of this paper, to be proved in216

Section IV, is stated as follows.217

Theorem 1: Under Assumption 1.a, let ηt = η1t−θ with218

max((1/2), q/(q + 1)) < θ < 1 and η1 satisfying219

0 < η1 ≤ min

(√
(q∗ − 1)(1 − θ)

12c2
q(1 + κ)2q+2q∗ ,

1 − θ

2(1 + 2|V |0)

)
(9)220

where we denote q∗ = 2θ − (1 − θ) ·max(0, q − 1) > 0. Then221

Ez1,z2,...,zT −1

{E( fT ) − E( f V
ρ

)} ≤ C̃{D(T θ−1) + T θ−1} (10)222

where C̃ is a positive constant depending on η1, q , κ , and θ223

(independent of T and given explicitly in the proof).224

Combining Theorem 1 with Assumption 3, we get the follow-225

ing explicit learning rates.226

Corollary 2: Under the conditions of Theorem 1 and 227

Assumption 3, we have 228

Ez1,z2,...,zT −1

{E( fT ) − E( f V
ρ

)} = O(T −(1−θ)β). 229

Replacing Assumption 1.a by Assumption 1.b, we can relax 230

the restriction on θ in Theorem 1 as θ ∈ (0, 1), which thus 231

improves the learning rates. Concretely, we have the following 232

convergence results. 233

Theorem 3: Under Assumption 1.b, let ηt = η1t−θ with 234

0 < θ < 1 and η1 satisfying 235

0 < η1 ≤ min(θ, 1 − θ)

2aV κ2 . (11) 236

Then 237

Ez1,z2,...,zT −1

{E( fT ) − E( f V
ρ

)}
238

≤ C̃ ′{D(T θ−1) + T − min(θ,1−θ)} log T (12) 239

where C̃ ′ is a positive constant depending on η1, aV , bV κ , 240

and θ (independent of T and given explicitly in the proof). 241

Corollary 4: Under the conditions of Theorem 3 and 242

Assumption 3, let θ = β/(β + 1). Then, we have 243

Ez1,z2,...,zT −1

{E( fT ) − E( f V
ρ

)} = O(T − β
β+1 log T ). 244

To illustrate the above-mentioned results, we give the fol- 245

lowing examples of commonly used loss functions in learning 246

theory with corresponding learning rates for online learning 247

algorithms (3). 248

Example 1: Assume |y| ≤ M , and conditions (4) and (8) 249

hold with 0 < β ≤ 1. For the least squares loss V (y, a) = 250

(y − a)2, the p-norm loss V (y, a) = |y − a|p with p ∈ [1, 2), 251

the hinge loss V (y, a) = (1−ya)+, the logistic loss V (y, a) = 252

log(1 + e−ya), and the p-norm hinge loss V (y, a) = ((1 − 253

ya)+)p with p ∈ (1, 2], choosing ηt = η1t−β/(β+1) with η1 254

satisfying (11), we have 255

Ez1,z2,...,zT −1

{E( fT ) − E( f V
ρ

)} = O(T − β
β+1 log T ) 256

which is of order O(T −(1/2) log T ) if β = 1. 257

Example 1 follows from Corollary 4, while the conclusion 258

of the next example is seen from Corollary 2. 259

Example 2: Under the assumption of Example 1, for the 260

p-norm loss V (y, a) = |y − a|p and the p-norm hinge 261

loss V (y, a) = ((1 − ya)+)p with p > 2, selecting ηt = 262

η1t−((p−1)/p+ε) with ε ∈ (0, (1/p)) and η1 such that (9) holds 263

with q = p − 1, we have 264

Ez1,z2,...,zT −1

{E( fT ) − E( f V
ρ

)} = O(T −( 1
p −ε)β

) 265

which is of order O(T ε−(1/p)) if β = 1. 266

Remark 1: 1) The learning rates given in Example 1 are 267

optimal in the sense that they are the same as those for 268

the Tikhonov regularization [2, Ch. 7]. 269

2) According to Example 1, the optimal learning rates are 270

achieved when ηt � t−β/(1+β). Since β is not known in 271

general, in practice, a hold-out cross-validation method 272

can be used to tune the ideal exponential parameter θ . 273

3) Our analysis can be extended to the case of constant step 274

sizes. In fact, following our proofs given in the follow- 275

ing, the readers can see that, when ηt = T −β/(β+1) for 276
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t = 1, . . . , T − 1, the results stated in Example 1 still277

hold.278

E. Classification Problem279

The binary classification problem in learning theory is a280

special case of our learning problems. In this case, Y =281

{1,−1}. A classifier for classification is a function f from282

X to Y and its misclassification error R( f ) is defined as the283

probability of the event {(x, y) ∈ Z : y �= f (x)} of making284

wrong predictions. A minimizer of the misclassification error285

is the Bayes rule fc : X → Y given by286

fc(x) =
{

1, if ρ(y = 1|x) ≥ 1/2

−1, otherwise.
287

The performance of a classification algorithm can be measured288

by the excess misclassification error R( f ) − R( fc). For289

the online learning algorithms (3), our classifier is given by290

sign( fT )291

sign( fT )(x) =
{

1, if fT (x) ≥ 0

−1, otherwise.
292

So our error analysis aims at the excess misclassification error293

R(sign( fT )) − R( fc).294

This can be often done [15], [19], [20] by bounding the295

excess generalization error E( f ) − E( f V
ρ ) and using the so-296

called comparison theorems. For example, for the hinge loss297

V (y, f (x)) = (1 − y f (x))+, it was shown in [21] that298

f V
ρ = fc and the comparison theorem in [15] asserts that299

R(sign( f )) − R( fc) ≤ E( f ) − E( fc)300

for any measurable function f . For the least squares loss,301

the logistic loss, and the p-norm hinge loss with p > 1,302

the comparison theorem [19], [20] states that there exists a303

constant cV such that for any measurable function f304

R(sign( f )) − R( fc) ≤ cV

√
E( f ) − E( f V

ρ ).305

Furthermore, if the distribution ρ satisfies a Tsybakov306

noise condition, then there is a refined comparison relation307

for a so-called admissible loss function, see more details308

in [19] and [20].309

III. RELATED WORK AND DISCUSSION310

There is a large amount of work on online learning311

algorithms and, more generally, stochastic approximations312

(see [3]–[9], [12], [14]–[16], [18], [22], [23], and the refer-313

ences therein). In this section, we discuss some of the previous314

results related to this paper.315

The regret bounds for online algorithms have been well316

studied in the literature [22]–[24]. Most of these results317

assume that the hypothesis space is of finite dimension, or the318

gradient is bounded, or the objective functions are strongly319

convex. Using an “online-to-batch” approach, generalization320

error bounds can be derived from the regret bounds.321

For the nonparametric regression or classification setting,322

online algorithms have been studied in [3]–[6], [8], [9], [14],323

and [18]. Recently, Ying and Zhou [14] showed that for a loss 324

function V satisfying 325

|V ′−(y, f ) − V ′−(y, g)| ≤ L| f − g|α, ∀y ∈ Y, f, g ∈ R 326

(13) 327

for some 0 < α ≤ 1 and 0 < L < ∞, under the assumption 328

of existence of arg inf f ∈HK
E( f ) = fHK ∈ HK , by selecting 329

ηt = η1t−2/(α+2), there holds 330

Ez1,z2,...,zT −1[E( fT ) − E( fHK )] = O(T − α
α+2 ). 331

It is easy to see that such a loss function always satisfies the 332

growth condition (5) with q = α, when supy∈Y |V ′−(y, 0)| < 333

∞. Therefore, as shown in Corollary 2, our learning rates for 334

such a loss function are of order O(T −(β/2)+ε), which reduces 335

to O(T −(1/2)+ε), if we further assume the existence of fHK = 336

arg inf f ∈HK
E( f ) ∈ HK , as in [14]. Note that in general, fHK 337

may not exist, thus our results require weaker assumptions, 338

involving approximation errors in the error bounds. Also, our 339

obtained upper bounds are better and are especially of great 340

improvements when α is close to 0. In the cases of β = 1, 341

these bounds are nearly optimal and up to a logarithmic factor, 342

coincide with the minimax rates of order O(T −(1/2)) in [10] 343

for stochastic approximations in the nonstrongly convex case. 344

Besides, in comparison with [14], where only loss functions 345

satisfying (13) with α ∈ (0, 1] are considered, a broader class 346

of convex loss functions are considered in this paper. At last, 347

let us mention that for the least squares loss, the obtained 348

learning rate O(T −β/(β+1) log T ) from Example 1 is the same 349

as that derived in [18]. 350

Our learning rates are also better than those for online 351

classification in [5] and [8]. For example, for the hinge 352

loss, the upper bound obtained in [5] is of the form 353

O(T ε−β/(2(β+1))), while the bound in Example 1 is of the 354

form O(T −β/(1+β) log T ), which is better. For a p-norm hinge 355

loss with p > 1, the bound obtained in [5] is of order 356

O(T ε−β/(2[(2−β)p+3β])), while the bounds in Examples 1 and 2 357

are of order O(T ε−(β/ max(p,2))). 358

We now compare our learning rates with those for batch 359

learning algorithms. For general convex loss functions, the 360

method for which sharp bounds are available is Tikhonov 361

regularization (1). If no noise condition is imposed, the best 362

capacity-independent error bounds for (1) with Lipschitz loss 363

functions [2, Ch. 7], are of order O(T −β/(β+1)). The obtained 364

bounds in Example 1 for Lipschitz loss functions are the same 365

as the best one available for the Tikhonov regularization, up 366

to a logarithmic factor. 367

We conclude this section with some possible future work. 368

First, it would be interesting to prove sharper rates by con- 369

sidering the capacity assumptions on the hypothesis spaces. 370

Second, in this paper, we only consider the i.i.d. (independent 371

identically distributed) setting. However, our analysis can be 372

extended to some non-i.i.d. settings, such as the setting with 373

Markov sampling as in [25] and [26]. Finally, our analysis 374

may also be applied to other stochastic learning models, such 375

as online learning with random features [27], which will be 376

studied in our future work. 377
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IV. PROOF OF MAIN RESULTS378

In this section, we prove our main results, Theorems 1 and 3.379

A. Preliminary Lemmas380

To prove Theorems 1 and 3, we need several lemmas to be381

proved in the Appendix.382

Lemma 1 is key and will be used several times for the383

proof of Theorem 1. It is inspired by the recent work384

in [14], [28], and [29].385

Lemma 1: Under Assumption 1.a, for any f ∈ HK , and386

t = 1, . . . , T − 1387

‖ ft+1 − f ‖2
K ≤ ‖ ft − f ‖2

K + η2
t G2

t388

+ 2ηt [V (yt , f (xt)) − V (yt , ft (xt ))] (14)389

where390

Gt = κcq
(
1 + κq‖ ft‖q

K

)
. (15)391

Using Lemma 1 and an inductive argument, we can estimate392

the expected value Ez1,...,zt [‖ ft+1‖2
K ] and provide a novel393

bound as follows. For notational simplicity, we denote by394

A( f∗) the excess generalization error of f∗ ∈ HK with respect395

to (ρ, V ) as396

A( f∗) = E( f∗) − E( f V
ρ

)
. (16)397

Lemma 2: Under Assumption 1.a, let ηt = η1t−θ with398

max((1/2), q/(q + 1)) < θ < 1 and η1 satisfying (9). Then,399

for an arbitrarily fixed f∗ ∈ HK and t = 1, . . . , T − 1400

Ez1,...,zt

[‖ ft+1‖2
K

] ≤ 6‖ f∗‖2
K + 4A( f∗)t1−θ + 4 (17)401

and402

η2
t+1Ez1,...,zt

[
G2

t+1

]≤(3‖ f∗‖2
K + 2A( f∗)t1−θ +3

)
(t + 1)−q∗

403

(18)404

where q∗ is defined in Theorem 1.405

Lemma 2 asserts that for a suitable choice of decaying step406

sizes, Ez1,...,zt [‖ ft+1‖2
K ] can be well bounded if there exists407

some f∗ ∈ HK such that A( f∗) is small. It improves uniform408

bounds found in the existing literature.409

Replacing Assumption 1.a with Assumption 1.b in410

Lemma 1, we can prove the following result.411

Lemma 3: Under Assumption 1.b, we have for any arbitrary412

f ∈ HK , and t = 1, . . . , T − 1413

‖ ft+1 − f ‖2
K ≤ ‖ ft − f ‖2

K +η2
t κ

2bV + aV η2
t κ

2V (yt , ft (xt ))414

+ 2ηt [V (yt , f (xt )) − V (yt , ft (xt ))]. (19)415

Using Lemma 3, and an induction argument, we can bound416

the expected risks of the learning sequence as follows.417

Lemma 4: Under Assumption 1.b, let ηt = η1t−θ with θ ∈418

(0, 1) and η1 such that (11). Then, for any t = 1, . . . , T − 1,419

there holds420

Ez1,...,zt−1E( ft ) ≤ B̃ (20)421

where B̃ is a positive constant depending only on η1, θ, bV , κ2,422

and |V |0 (given explicitly in the proof).423

We also need the following elementary inequalities, which, 424

for completeness, will be proved in the Appendix using a 425

similar approach as that in [28]. 426

Lemma 5: For any q∗ ≥ 0, there holds 427

T −1∑
k=1

1

k(k + 1)

T∑
t=T−k

t−q∗ ≤ 2T − min(1,q∗) log(eT ). 428

Furthermore, if q∗ > 1, then 429

T −1∑
k=1

1

k(k + 1)

T∑
t=T −k

t−q∗ ≤ 2

(
2q∗ + q∗

q∗ − 1

)
T −1. 430

B. Deriving Convergence From Averages 431

An essential tool in our error analysis is to derive the 432

convergence of a sequence {ut }t from its averages of the 433

form (1/T )
∑T

j=1 u j and (1/k)
∑T

j=T−k+1 u j . Lemma 6 is 434

elementary for sequences and the idea is from [7]. We provide 435

a proof in the Appendix. 436

Lemma 6: Let {ut }t be a real-valued sequence. We have 437

uT = 1

T

T∑
j=1

u j +
T −1∑
k=1

1

k(k + 1)

T∑
j=T −k+1

(u j − uT −k). (21) 438

From Lemma 6, we see that if the average 439

(1/T )
∑T

j=1 u j tends to some u∗ and the moving average 440∑T −1
k=1 1/(k(k + 1))

∑T
j=T −k+1(u j − uT −k) tends to zero, 441

then uT tends to u∗ as well. 442

Recall that our goal is to derive upper bounds for 443

the expected excess generalization error Ez1,...,zT −1[E( fT ) − 444

E( f V
ρ )]. We can easily bound the weighted average 445

(1/T )
∑

t=1 2ηt Ez1,...,zT −1[E( ft )−E( f V
ρ )] from (14) [or (19)]. 446

This, together with Lemma 6, demonstrates how to bound the 447

weighted excess generalization error 2ηT Ez1,...,zT −1[E( fT ) − 448

E( f V
ρ )] in terms of the weighted average and the moving 449

weighted average. Interestingly, the bounds on the weighted 450

average and the moving weighted average are essentially the 451

same, as shown in Sections IV-D and IV-E. 452

C. Error Decomposition 453

Our proofs rely on a novel error decomposition derived from 454

Lemma 6. In what follows, we shall use the notation E for 455

Ez1,...,zT −1 . Choosing ut = 2ηtE{E( ft )−E( f V
ρ )} in Lemma 6, 456

we get 457

2ηT E
{E( fT ) − E( f V

ρ

)}
458

= 1

T

T∑
j=1

2η j E
{E( f j ) − E( f V

ρ

)} 459

+
T −1∑
k=1

1

k(k + 1)

T∑
j=T −k+1

(2η j E
{E( f j ) − E( f V

ρ

)}
460

− 2ηT −kE
{E( fT −k) − E( f V

ρ

)}
) 461
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which can be rewritten as462

2ηT E
{E( fT ) − E( f V

ρ

)}
463

= 1

T

T∑
t=1

2ηt E
{E( ft ) − E( f V

ρ

)}
464

+
T −1∑
k=1

1

k(k + 1)

T∑
t=T −k+1

2ηt E{E( ft ) − E( fT −k)}465

+
T −1∑
k=1

1

k + 1

[
2

k

T∑
t=T−k+1

ηt − ηT −k

]
466

× E
{E( fT −k) − E( f V

ρ

)}
. (22)467

Since, E( fT −k)−E( f V
ρ ) ≥ 0 and that {ηt }t∈N is a nonincreas-468

ing sequence, we know that the last term of (22) is at most469

zero. Therefore, we get470

2ηT E
{E( fT ) − E( f V

ρ

)}
471

≤ 1

T

T∑
t=1

2ηt E
{E( ft ) − E( f V

ρ

)}
472

+
T −1∑
k=1

1

k(k + 1)

T∑
t=T −k+1

2ηt E
{E( ft ) − E( fT −k)

}
. (23)473

D. Proof of Theorem 1474

In this section, we prove Theorem 1. We first prove the475

following general result, from which we can derive Theorem 1.476

Theorem 5: Under Assumption 1.a, let ηt = η1t−θ with477

max((1/2), q/(q + 1)) < θ < 1 and η1 satisfying (9). Then,478

for any fixed f∗ ∈ HK479

Ez1,...,zT −1

{E( fT ) − E( f V
ρ

)}
480

≤ C̄1A( f∗) + C̄2‖ f∗‖2
K T −1+θ + C̄3T −1+θ (24)481

where C̄1, C̄2, and C̄3 are positive constants depending on482

η1, q, κ , and θ (independent of T or f∗ and given explicitly483

in the proof).484

Proof: Let us first bound the average error, the first term485

of (23). Choosing f = f∗ in (14), taking expectation on both486

sides, and noting that ft depends only on z1, z2, . . . , zt−1, we487

have488

Ez1,...,zt

[‖ ft+1 − f∗‖2
K

]
489

≤ Ez1,...,zt−1

[‖ ft − f∗‖2
K

]+ η2
t Ez1,...,zt−1

[
G2

t

]
490

+ 2ηtEz1,...,zt−1

[E( f∗) − E( ft )
]

491

= Ez1,...,zt−1

[‖ ft − f∗‖2
K

]+ η2
t Ez1,...,zt−1

[
G2

t

]
492

+ 2ηtA( f∗) − 2ηtEz1,...,zt−1

[E( ft ) − E( f V
ρ

)]
(25)493

which implies494

2ηtE
[E( ft ) − E( f V

ρ

)]
495

≤ E
[‖ ft − f∗‖2

K

]− E
[‖ ft+1 − f∗‖2

K

]
496

+ 2ηtA( f∗) + η2
t E
[
G2

t

]
.497

Summing over t = 1, . . . , T , with f1 = 0 and ηt = η1t−θ
498

T∑
t=1

2ηt E
[E( ft ) − E( f V

ρ

)]
499

≤ ‖ f∗‖2
K + 2η1A( f∗)

T∑
t=1

t−θ +
T∑

t=1

η2
t E
[
G2

t

]
. 500

This together with (18) yields 501

T∑
t=1

2ηtE
[E( ft ) − E( f V

ρ

)]
502

≤ ‖ f∗‖2
K + 2η1A( f∗)

T∑
t=1

t−θ
503

+ (3‖ f∗‖2
K + 2A( f∗)T 1−θ + 3

) T∑
t=1

t−q∗
. 504

Applying the elementary inequalities 505

t∑
j=1

j−θ ′ ≤ 1 +
∫ t

1
u−θ ′

du ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t1−θ ′

1 − θ ′ , when θ ′ < 1

log(et), when θ ′ = 1
θ ′

θ ′ − 1
, when θ ′ > 1

506

(26) 507

with θ ′ = θ and q∗ > 1, we have 508

T∑
t=1

2ηtE
[E( ft ) − E( f V

ρ

)]
509

≤
(

2η1

1 − θ
+ 2q∗

q∗ − 1

)
A( f∗)T 1−θ + (4‖ f∗‖2

K + 3
) q∗

q∗ − 1
. 510

Dividing both sides by T , we get a bound for the first term 511

of (23) as 512

1

T

T∑
t=1

2ηtE
[E( ft ) − E( f V

ρ

)]
513

≤
(

2η1

1 − θ
+ 2q∗

q∗ − 1

)
A( f∗)T −θ

514

+ (4‖ f∗‖2
K + 3

) q∗

q∗ − 1
T −1. (27) 515

Then, we turn to the moving average error, the second term 516

of (23). Let k ∈ {1, . . . , T − 1}. Note that fT −k depends only 517

on z1, . . . , zT −k−1. Taking expectation on both sides of (14), 518

and rearranging terms, we have that for t ≥ T − k 519

2ηtE[E( ft ) − E( fT −k)] 520

≤ E
[‖ ft − fT −k‖2

K

]− E
[‖ ft+1 − fT −k‖2

K

]+ η2
t E
[
G2

t

]
. 521

Using this inequality repeatedly for t = T −k, . . . , T , we have 522

T −1∑
k=1

1

k(k + 1)

T∑
t=T−k+1

2ηt E{E( ft ) − E( fT −k)} 523

≤
T −1∑
k=1

1

k(k + 1)

T∑
t=T −k

η2
t E
[
G2

t

]
. 524
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Combining this with (18) implies525

T −1∑
k=1

1

k(k + 1)

T∑
t=T −k+1

2ηt E{E( ft ) − E( fT −k)}526

≤ (
3‖ f∗‖2

K + 2A( f∗)T 1−θ + 3
) T −1∑

k=1

1

k(k + 1)

T∑
t=T−k

t−q∗
.527

Applying Lemma 5, we have528

T −1∑
k=1

1

k(k + 1)

T∑
t=T −k+1

2ηt E{E( ft ) − E( fT −k)}529

≤ 2

(
2q∗ + q∗

q∗ − 1

) (
3‖ f∗‖2

K + 2A( f∗)T 1−θ + 3
)
T −1.530

(28)531

Finally, putting (27) and (28) into the error decomposition532

(23), and then dividing both sides by 2ηT = 2η1T −θ , by a533

direct calculation, we get our desired bound (24) with534

C̄1 = 1

1 − θ
+ 3q∗

η1(q∗ − 1)
+ 2q∗+1

η1
535

C̄2 = 5q∗

η1(q∗ − 1)
+ 3 · 2q∗

η1
536

and537

C̄3 = 9q∗

2η1(q∗ − 1)
+ 3 · 2q∗

η1
.538

The proof is complete. �539

We are in a position to prove Theorem 1.540

Proof of Theorem 1: By Theorem 5, we have541

E
{E( fT ) − E( f V

ρ

)}
542

≤ (C̄1 + C̄2)
{E( f∗) − E( f V

ρ

)+ ‖ f∗‖2
K T θ−1}+ C̄3T θ−1.543

Since the constants C̄1, C̄2, and C̄3 are independent of544

f∗ ∈ HK , we take the infimum over f∗ ∈ HK on both sides,545

and conclude that546

E
{E( fT ) − E( f V

ρ

)} ≤ (C̄1 + C̄2)D(T θ−1) + C̄3T θ−1.547

The proof of Theorem 1 is complete by taking548

C̃ = C̄1 + C̄2 + C̄3.549

E. Proof of Theorem 3550

In this section, we give the proof of Theorem 3. It follows551

from the following more general theorem, as shown in the552

proof of Theorem 1.553

Theorem 6: Under Assumption 1.b, let ηt = η1t−θ with554

0 < θ < 1 and η1 satisfying (11). Then, for any fixed f∗ ∈ HK555

Ez1,...,zT −1

{E( fT ) − E( f V
ρ )
}

556

≤ (
2A( f∗) + (2η1)

−1‖ f∗‖2
K T −1+θ + B̄1T − min(θ,1−θ)

)
log T557

(29)558

where B̄1 is a positive constant depending only on559

η1, aV , bV , κ , and θ (independent of T or f∗ and given560

explicitly in the proof).561

Proof: The proof parallels to that of Theorem 5. Note 562

that we have the error decomposition (23). We only need to 563

estimate the last two terms of (23). 564

To bound the first term of the right-hand side of (23), we 565

first apply Lemma 3 with a fixed f ∈ HK and subsequently 566

take the expectation on both sides of (19) to get 567

E
[‖ fl+1 − f ‖2

K

]
568

≤ E
[‖ fl − f ‖2

K

]
569

+ η2
l κ

2(aV E[E( fl )] + bV ) + 2ηlE(E( f ) − E( fl)). (30) 570

By Lemma 4, we have (20). Introducing (20) into (30) with 571

f = f∗, and rearranging terms 572

2ηlE
(E( fl ) − E( f V

ρ

)) ≤ E
[‖ fl − f∗‖2

K − ‖ fl+1 − f∗‖2
K

]
573

+ 2ηlA( f∗) + η2
l κ2(aV B̃ + bV ). 574

Summing up over l = 1, . . . , T , rearranging terms, and then 575

dividing both sides by T , we get 576

1

T

T∑
l=1

2ηlE(E( fl ) − E( f∗)) 577

≤ ‖ f∗‖2
K

T
+ 2η1

T
A( f∗)

T∑
t=1

t−θ +η2
1κ

2(aV B̃+bV )
1

T

T∑
l=1

l−2θ . 578

By using the elementary inequality with q ≥ 0, T ≥ 3 579

T∑
t=1

t−q ≤ T max(1−q,0)
T∑

t=1

t−1 ≤ 2T max(1−q,0) log T 580

one can get 581

1

T

T∑
l=1

2ηlE(E( fl ) − E( f∗)) 582

≤ ‖ f∗‖2
K

T
+ 4η1A( f∗)T −θ log T 583

+ η2
12κ2(aV B̃ + bV )T − min(2θ,1) log T . (31) 584

To bound the last term of (23), we let 1 ≤ k ≤ t − 1 and 585

i ∈ {t − k, . . . , t}. Note that fi depends only on z1, . . . , zi−1 586

when i > 1. We apply Lemma 3 with f = ft−k , and then 587

take the expectation on both sides of (19) to derive 588

2ηiE[E( fi ) − E( ft−k)] 589

≤ E
[‖ fi − ft−k‖2

K − ‖ fi+1 − ft−k‖2
K

]
590

+ η2
i κ

2(aV E[E( fi )] + bV ). 591

Summing up over i = t − k, . . . , t 592

t∑
i=t−k

2ηi E[E( fi ) − E( ft−k)]≤κ2
t∑

i=t−k

η2
i (aV E[E( fi )] + bV ). 593
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Note that the left-hand side is exactly
∑t

i=t−k+1 ηi E[E( fi ) −594

E( ft−k)]. We thus know that595

t−1∑
k=1

1

k(k + 1)

t∑
i=t−k+1

ηiE[E( fi ) − E( ft−k)]596

≤ κ2

2

t−1∑
k=1

1

k(k + 1)

t∑
i=t−k

η2
i (aV E[E( fi )] + bV )597

≤ κ2

2

(
aV sup

1≤i≤t
E[E( fi )] + bV

) t−1∑
k=1

1

k(k + 1)

t∑
i=t−k

η2
i .598

With ηt = η1t−θ , by using Lemma 5, this can be relaxed as599

t−1∑
k=1

1

k(k + 1)

t∑
i=t−k+1

ηi E[E( fi ) − E( ft−k)]600

≤ η2
1κ

2t− min(2θ,1) log(et)(aV sup
1≤i≤t

E[E( fi )] + bV ). (32)601

Introducing (31) and (32) into (23), plugging with (20), and602

dividing both sides by 2ηT = 2η1T −θ , one can prove the603

desired result with B̄1 = 2η1κ
2(aV B̃ + bV ). �604

V. NUMERICAL SIMULATIONS605

The simplest case to implement online learning606

algorithm (3) is when X = R
d for some d ∈ N and607

K is the linear kernel given by K (x, w) = wT x . In this608

case, it is straightforward to see that ft+1(x) = w�
t+1x with609

w1 = 0 ∈ R
d and610

wt+1 = wt − ηt V
′−(yt , w

�
t xt)xt , t = 1, . . . , T .611

For a general kernel, by induction, it is easy to see that612

ft+1(x) =∑T
j=1 c j

t+1K (x, x j ) with613

ct+1 = ct − ηt V ′−

⎛
⎝yt ,

T∑
j=1

c j
t K (xt , x j )

⎞
⎠ et , t = 1, . . . , T614

for c1 = 0 ∈ R
T . Here, ct = (c1

t , . . . , cT
t )� for 1 ≤ t ≤ T ,615

and {e1, . . . , eT } is a standard basis of R
T . Indeed, it is616

straightforward to check by induction that617

ft+1 =
T∑

j=1

c j
t Kx j − ηt V ′−(yt , ft (xt ))Kxt618

=
T∑

j=1

Kx j

(
c j

t − ηt V
′−(y j , ft (x j ))e

j
t

)
.619

To see how the step-size decaying rate indexed by θ affects620

the performance of the studied algorithm, we carry out simple621

numerical simulations on the Adult1 data set with the hinge622

loss and the Gaussian kernel with kernel width σ = 4. We623

consider a subset of Adult with T = 1000, and run the624

algorithm for different θ values with η1 = 1/4. The test and625

training errors (with respect to the hinge loss) for different θ626

values are shown in Fig. 1. We see that the minimal test error627

(with respect to the hinge loss) is achieved at some θ∗ < 1/2,628

1The data set can be downloaded from archive.ics.uci.edu/ml and
www.csie.ntu.edu.tw/cjlin/libsvmtools/

Fig. 1. Test and training errors for online learning with different θ values
on Adult (T = 1000).

TABLE I

COMPARISON OF ONLINE LEARNING USING

CROSS VALIDATION WITH LIBSVM

which complements our obtained results. We also compare the 629

performance of online learning algorithm (3) in terms of test 630

error and training time with that of LIBSVM, a state-of-the- 631

art batch learning algorithm for classification [30]. The test 632

classification error and training time, for the online learning 633

algorithm using cross validation (for choosing the best θ ) and 634

LIBSVM, are summarized in Table I, from which we see that 635

the online learning algorithm is comparable to LIBSVM on 636

both test error and running time. 637

APPENDIX 638

In this appendix, we prove the lemmas stated before. 639

Proof of Lemma 1: Since ft+1 is given by (3), by expanding 640

the inner product, we have 641

‖ ft+1 − f ‖2
K = ‖ ft − f ‖2

K + η2
t ‖V ′−(yt , ft (xt ))Kxt ‖2

K 642

+ 2ηt V
′−(yt , ft (xt ))〈Kxt , f − ft 〉K . 643

Observe that ‖Kxt ‖K = (K (xt , xt ))
1/2 ≤ κ and that 644

‖ f ‖∞ ≤ κ‖ f ‖K , ∀ f ∈ HK . 645

These together with the incremental condition (5) yield 646

‖V ′−(yt , ft (xt ))Kxt ‖K 647

≤ κ |V ′−(yt , ft (xt ))| 648

≤ κcq(1 + | ft (xt )|q) ≤ κcq
(
1 + κq‖ ft ‖q

K

)
. 649

Therefore, ‖ ft+1 − f ‖2
K is bounded by 650

‖ ft − f ‖2
K + η2

t G2
t + 2ηt V ′−(yt , ft (xt ))〈Kxt , f − ft 〉K . 651

Using the reproducing property, we get 652

‖ ft+1 − f ‖2
K ≤ ‖ ft − f ‖2

K + η2
t G2

t 653

+ 2ηt V
′−(yt , ft (xt ))( f (xt ) − ft (xt )). (33) 654
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Since V (yt , ·) is a convex function, we have655

V ′−(yt , a)(b − a) ≤ V (yt , b) − V (yt , a), ∀a, b ∈ R.656

Using this relation to (33), we get our desired result.657

In order to prove Lemma 2, we first bound the learning658

sequence uniformly as follows.659

Lemma 7: Under Assumption 1.a, let 0 ≤ θ < 1 satisfy660

θ ≥ q
q+1 and ηt = η1t−θ with η1 satisfying661

0 < η1 ≤ min

{ √
1 − θ√

8cq(κ + 1)q+1
,

1 − θ

4|V |0

}
. (34)662

Then, for t = 1, . . . , T − 1663

‖ ft+1‖K ≤ t
1−θ

2 . (35)664

Proof: We prove our statement by induction.665

Taking f = 0 in Lemma 1, we know that666

‖ ft+1‖2
K ≤ ‖ ft‖2

K + η2
t G2

t + 2ηt [V (yt , 0) − V (yt , ft (xt ))]667

≤ ‖ ft‖2
K + η2

t G2
t + 2ηt |V |0. (36)668

Since f1 = 0, G1 is given by (15) and by (34), η2
1c2

qκ2 +669

2η1|V |0 ≤ 1, we thus get (35) for the case t = 1.670

Now, assume ‖ ft‖K ≤ (t − 1)(1−θ)/2 with t ≥ 2. Then671

G2
t ≤ κ2c2

q(1 + κq)2 max
(
1, ‖ ft‖2q

K

)
672

≤ 4c2
q(κ + 1)2q+2(t − 1)(1−θ)q (37)673

where for the last inequality, we used κ ≤ κ +1 and 1+κq ≤674

2(κ + 1)q . Hence, using (36)675

‖ ft+1‖2
K676

≤ (t − 1)1−θ + η2
1t−2θ 4c2

q(κ + 1)2q+2t(1−θ)q + 2η1t−θ |V |0677

= t1−θ

{(
1 − 1

t

)1−θ

+ η2
14c2

q(κ + 1)2q+2

t(q+1)θ+1−q
+ 2η1|V |0

t

}
.678

Since (1 − (1/t))1−θ ≤ 1 − (1 − θ)/t and the condition θ ≥679

q/(q + 1) implies (q + 1)θ + 1 − q ≥ 1, we see that ‖ ft+1‖2
K680

is bounded by681

t1−θ

{
1 − 1 − θ

t
+ η2

14c2
q(κ + 1)2q+2

t
+ 2η1|V |0

t

}
.682

Finally, we use the restriction (34) for η1 and find ‖ ft+1‖2
K ≤683

t1−θ . This completes the induction procedure and proves our684

conclusion. �685

Now, we are ready to prove Lemma 2.686

Proof of Lemma 2: Recall an iterative relation (25) of error687

terms in the proof of Theorem 5. It follows from E( ft ) ≥688

E( f V
ρ ) that689

Ez1,...,zt

[‖ ft+1 − f∗‖2
K

] ≤ Ez1,...,zt−1

[‖ ft − f∗‖2
K

]
690

+ η2
t Ez1,...,zt−1

[
G2

t

]+ 2ηtA( f∗).691

(38)692

Since Gt is given by (15), applying Schwarz’s inequality693

Ez1,...,zt−1

[
G2

t

] ≤ 2κ2c2
q

(
1 + κ2q

Ez1,...,zt−1

[‖ ft‖2q
K

])
.694

If q ≤ 1, using Hölder’s inequality 695

Ez1,...,zt−1

[‖ ft‖2q
K

] ≤ (
Ez1,...,zt−1

[‖ ft ‖2
K

])q
696

≤ 1 + Ez1,...,zt−1

[‖ ft‖2
K

]
. 697

If q > 1, noting that (9) implies (34), we have (35) and thus 698

Ez1,...,zt−1

[‖ ft ‖2q
K

] ≤ Ez1,...,zt−1

[‖ ft‖2
K

]
t(q−1)(1−θ)

699

= Ez1,...,zt−1

[‖ ft‖2
K

]
t2θ−q∗

. 700

Combining the above-mentioned two cases yields 701

η2
t Ez1,...,zt−1

[
G2

t

]
702

≤ 2κ2c2
qη2

t

(
1 + κ2q(1 + Ez1,...,zt−1

[‖ ft‖2
K

])
t2θ−q∗)

703

≤ 2κ2c2
qη2

t

(
1 + κ2qt2θ−q∗

704

· (1 + 2Ez1,...,zt−1

[‖ ft − f ∗‖2
K

]+ 2‖ f∗‖2
K

))
705

≤ C1
(
1 + Ez1,...,zt−1

[‖ ft − f ∗‖2
K

]+ ‖ f∗‖2
K

)
t−q∗

(39) 706

where 707

C1 = 4η2
1c2

q(1 + κ)2q+2. (40) 708

Putting (39) into (38) yields 709

Ez1,...,zt

[‖ ft+1 − f∗‖2
K

]
710

≤ Ez1,...,zt−1

[‖ ft − f∗‖2
K

]+ 2η1t−θA( f∗) 711

+ C1
(
1 + Ez1,...,zt−1

[‖ ft − f ∗‖2
K

]+ ‖ f∗‖2
K

)
t−q∗

. 712

Applying this inequality iteratively, with f1 = 0, we derive 713

Ez1,...,zt

[‖ ft+1 − f∗‖2
K

]
714

≤ ‖ f∗‖2
K + 2η1A( f∗)

t∑
j=1

j−θ
715

+ C1
(
1 + ‖ f∗‖2

K 716

+ max
j=1,...,t

Ez1,...,z j−1

[‖ f j − f ∗‖2
K

]) t∑
j=1

j−q∗
. 717

Note that θ ∈ (1/2, 1) and that from the restriction on θ , 718

q∗ > 1. Applying the elementary inequality (26) to bound 719∑t
j=1 j−q∗

and
∑t

j=1 j−θ , we get 720

Ez1,...,zt

[‖ ft+1 − f∗‖2
K

]
721

≤ ‖ f∗‖2
K + 2η1

1 − θ
A( f∗)t1−θ

722

+ C1q∗

q∗ − 1

(
1 + ‖ f∗‖2

K + max
j=1,...,t

Ez1,...,z j−1

[‖ f j − f ∗‖2
K

])
. 723

Now, we derive upper bounds for Ez1,...,zt [‖ ft+1 − f∗‖2
K ] by 724

induction for t = 1, . . . , T − 1. Assume that Ez1,...,z j−1[‖ f j − 725

f∗‖2
K ] ≤ 2(‖ f∗‖2

K + A( f∗)( j − 1)1−θ + 1) holds for 726
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j = 1, . . . , t . Then727

Ez1,...,zt

[‖ ft+1 − f∗‖2
K

]
728

≤ ‖ f∗‖2
K + C1q∗

q∗ − 1
(3 + 3‖ f∗‖2

K + 2A( f∗)t1−θ ])729

+ 2η1

1 − θ
A( f∗)t1−θ

730

≤
(

1 + 3C1q∗

q∗ − 1

)
(1 + ‖ f∗‖2

K )731

+
(

2C1q∗

q∗ − 1
+ 2η1

1 − θ

)
A( f∗)t1−θ .732

Recall that C1 is given by (40). We see from (9) that733

3C1q∗/(q∗ − 1) ≤ 1 − θ ≤ 1 and 2η1/(1 − θ) ≤ 1. It follows734

that735

Ez1,...,zt

[‖ ft+1 − f∗‖2
K

] ≤ 2
(‖ f∗‖2

K + A( f∗)t1−θ + 1
)
. (41)736

From the above-mentioned induction procedure, we conclude737

that for t = 1, . . . , T − 1, the bound (41) holds, which leads738

to the desired bound (17) using ‖ ft‖2
K ≤ 2‖ ft − f∗‖2

K +739

2‖ f∗‖2
K . Applying (41) into (39), and noting that C1 ≤ 1 by740

the restriction (9), we get the other desired bound (18). The741

proof is complete.742

Proof of Lemma 3: Following the proof of Lemma 1, we743

have:744

‖ ft+1 − f ‖2
K ≤ ‖ ft − f ‖2

K + η2
t κ

2|V−(yt , ft (xt ))|2745

+ 2ηt [V (yt , f (xt )) − V (yt , ft (xt ))] .746

Applying Assumption 1.b to the above, we get the desired747

result.748

Proof of Lemma 4: The proof is divided into several steps.749

Basic Decomposition: We choose μt = ηt E[E( ft )] in750

Lemma 6 to get751

ηt E[E( ft )]752

= 1

t

t∑
i=1

ηi E[E( fi )]753

+
t−1∑
k=1

1

k(k + 1)

t∑
i=t−k+1

(ηi E[E( fi )] − ηt−kE[E( ft−k)]).754

Since {ηt }t is decreasing and E[E( ft−k)] is nonnegative, the755

above can be relaxed as756

ηt E[E( ft )] ≤ 1

t

t∑
i=1

ηi E[E( fi )]757

+
t−1∑
k=1

1

k(k + 1)

t∑
i=t−k+1

ηi E[E( fi ) − E( ft−k)].758

(42)759

In the rest of the proof, we will bound the last two terms in760

the above-mentioned estimate.761

Bounding the Average: To bound the first term on the right-762

hand side of (42), we apply (30) with f = 0 to get763

E
[‖ fl+1‖2

K

] ≤ E
[‖ fl‖2

K

]+ η2
l κ2(aV E[E( fl )] + bV )764

+ 2ηlE(E(0) − E( fl)).765

Rearranging terms, and using the fact that E(0) ≤ |V |0 766

ηl(2 − aV ηlκ
2)E[E( fl )] 767

≤ E[‖ fl‖2
K − ‖ fl+1‖2

K ] + bV η2
l κ2 + 2ηl |V |0. 768

It thus follows from aV ηlκ
2 ≤ 1, implied by (11), that 769

ηlE[E( fl)] ≤ E
[‖ fl‖2

K − ‖ fl+1‖2
K

]+ bV η2
l κ2 + 2ηl |V |0. 770

(43) 771

Summing up over l = 1, . . . , t , introducing f1 = 0, 772

‖ ft+1‖2
K ≥ 0, and then multiplying both sides by 1/t , we 773

get 774

1

t

t∑
l=1

ηlE[E( fl )] ≤ 1

t

t∑
l=1

(
bV η2

l κ2 + 2ηl |V |0
)
. 775

Since ηt = η1t−θ , we have 776

1

t

t∑
l=1

ηlE[E( fl)] ≤ (bV η2
1κ

2 + 2η1|V |0
)1

t

t∑
l=1

l−θ . 777

Using (26), we get 778

1

t

t∑
l=1

ηlE[E( fl)] ≤ bV η2
1κ

2 + 2η1|V |0
1 − θ

t−θ . (44) 779

Bounding the Moving Average: To bound the last term 780

of (42), we let 1 ≤ k ≤ t − 1 and i ∈ {t − k, . . . , t}. 781

Recall the inequality (32) in the proof of Theorem 6. Applying 782

the basic inequality e−x ≤ (ex)−1, x > 0, which implies 783

t− min(θ,1−θ) log(et) ≤ (1/ min(θ, 1 − θ)), we see that the last 784

term of (42) can be upper bounded by 785

η2
1κ

2

min(θ, 1 − θ)
t−θ

(
aV sup

1≤i≤t
E[E( fi )] + bV

)
. 786

Induction: Introducing (32) and (44) into the decomposition 787

(42), and then dividing both sides by ηt = η1t−θ , we get 788

E[E( ft )] ≤ A sup
1≤i≤t

E[E( fi )] + B (45) 789

where we set A = (η1aV κ2/ min(θ, 1 − θ)) and 790

B = bV η1κ
2 + 2|V |0

1 − θ
+ η1bV κ2

min(θ, 1 − θ)
. 791

The restriction (11) on η1 tells us that A ≤ 1/2. Then, using 792

(45) with an inductive argument, we find that for all t ≤ T 793

E[E( ft )] ≤ 2B (46) 794

which leads to the desired result with B̃ = 2B . In fact, the 795

case t = 2 can be verified directly from (43), by plugging 796

with f1 = 0. Now, assume that (46) holds for any k ≤ t − 1, 797

where t ≥ 3. Under this hypothesis condition, if E[E( ft )] ≤ 798

sup1≤i≤t−1 E[E( fi )], then using the hypothesis condition, we 799

know that E[E( ft )] ≤ 2B . If E[E( ft )] ≥ sup1≤i≤t−1 E[E( fi )], 800

we use (45) to get 801

E[E( ft )] ≤ AE[E( ft )] + B ≤ E[E( ft )]/2 + B 802

which implies E[E( ft )] ≤ 2B . The proof is thus complete. 803
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Proof of Lemma 5: Exchanging the order in the sum, we804

have805

T −1∑
k=1

1

k(k + 1)

T∑
t=T−k

t−q∗
806

=
T −1∑
t=1

T −1∑
k=T −t

1

k(k + 1)
t−q∗ +

T −1∑
k=1

1

k(k + 1)
T −q∗

807

=
T −1∑
t=1

(
1

T − t
− 1

T

)
t−q∗ +

(
1 − 1

T

)
T −q∗

808

≤
T −1∑
t=1

1

T − t
t−q∗

.809

What remains is to estimate the term
∑T −1

t=1
1

T −t t−q∗
. Note810

that811

T −1∑
t=1

1

T − t
t−q∗ =

T −1∑
t=1

t1−q∗

(T − t)t
≤ T max(1−q∗,0)

T −1∑
t=1

1

(T − t)t
812

and that by (26)813

T −1∑
t=1

1

(T − t)t
= 1

T

T −1∑
t=1

(
1

T − t
+ 1

t

)
814

= 2

T

T −1∑
t=1

1

t
≤ 2

T
log(eT ).815

From the above-mentioned analysis, we see the first statement816

of the lemma.817

To prove the second part of the lemma, we split the term818 ∑T −1
t=1 1/(T − t)t−q∗

into two parts819

T −1∑
t=1

1

T − t
t−q∗

820

=
∑

T/2≤t≤T−1

1

T − t
t−q∗ +

∑
1≤t<T/2

1

T − t
t−q∗

821

≤ 2q∗
T −q∗ ∑

T/2≤t≤T−1

1

T − t
+ 2T −1

∑
1≤t<T/2

t−q∗
822

= 2q∗
T −q∗ ∑

1≤t≤T/2

t−1 + 2T −1
∑

1≤t<T/2

t−q∗
.823

Applying (26) to the above and then using T −q∗+1 log T ≤824

1/(2(q∗ − 1)), we see the second statement of Lemma 5.825

Proof of Lemma 6: For k = 1, . . . , T − 1826

1

k

T∑
j=T −k+1

u j − 1

k + 1

T∑
j=T−k

u j827

= 1

k(k + 1)

⎧⎨
⎩(k + 1)

T∑
j=T−k+1

u j − k
T∑

j=T−k

u j

⎫⎬
⎭828

= 1

k(k + 1)

T∑
j=T−k+1

(u j − uT−k).829

Summing over k = 1, . . . , T − 1, and rearranging terms, we830

get (21).831
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