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Online Learning Algorithms Can Converge
Comparably Fast as Batch Learning

Junhong Lin and Ding-Xuan Zhou

Abstract— Online learning algorithms in a reproducing kernel
Hilbert space associated with convex loss functions are studied.
We show that in terms of the expected excess generalization error,
they can converge comparably fast as corresponding kernel-
based batch learning algorithms. Under mild conditions on loss
functions and approximation errors, fast learning rates and
finite sample upper bounds are established using polynomially
decreasing step-size sequences. For some commonly used loss
functions for classification, such as the logistic and the p-norm
hinge loss functions with p € [1, 2], the learning rates are the
same as those for Tikhonov regularization and can be of order
0 (T~1/210g T), which are nearly optimal up to a logarithmic
factor. Our novelty lies in a sharp estimate for the expected values
of norms of the learning sequence (or an inductive argument to
uniformly bound the expected risks of the learning sequence in
expectation) and a refined error decomposition for online learning
algorithms.

Index Terms— Approximation error, learning theory, online
learning, reproducing kernel Hilbert space (RKHS).

I. INTRODUCTION

ONPARAMETRIC regression or classification aims at

learning predictors from samples. To measure the per-
formance of a predictor, one may use a loss function and
its induced generalization error. Given a prediction function
f : X — R, defined on a separable metric space X (input
space), a loss function V : R? — R, gives a local error
V(y, f(x)) at (x,y) € Z := X x Y with an output space
Y C R. The generalization error € = £ V" associated with the
loss V and a Borel probability measure p on Z, defined as

E(f) = /Z V. f()dps

measures the performance of f.

Kernel methods provide efficient nonparametric learning
algorithms for dealing with nonlinear features, where repro-
ducing kernel Hilbert spaces (RKHSs) are often used as
hypothesis spaces in the design of learning algorithms. With
suitable choices of kernels, RKHSs can be used to approximate
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functions in LZX, the space of square integrable functions with
respect to the marginal probability measure px. A reproducing
kernel K : X x X — R is a symmetric function such that
(K(ui,u j))f: =1 is positive semidefinite for any finite set of
points {u;}{_, in X. The RKHS (Hk, ||-||x) is the completion
of the linear span of the set {K, := K(x,:) : x € X} with
respect to the inner product given by (K, K,)x = K(x, u).

Batch learning algorithms perform learning tasks by using a
whole batch of sample z = {z; = (x;, y;) € Z }iT:1~ Throughout
this paper, we assume that the sample {z; = (x;,yi)}; is
drawn independently according to the measure p on Z. A large
family of batch learning algorithms are generated by Tikhonov
regularization

fz,, = argmin

1 T
— > V(y, +AIfI% L, >0 (1
tg mi T; O fE) + A f Ik s 4> 0. (1)

Tikhonov regularization scheme (1) associated with convex
loss functions has been extensively studied in the literature,
and sharp learning rates have been well developed due to
many results, as described in the books (see [1], [2], and
references therein). But in practice, it may be difficult to
implement when the sample size T is extremely large, as its
standard complexity is about O (T'3) for many loss functions.
For example, for the hinge loss V(y, f) = (1 — yf)+ =
max{1 — yf, 0} or the square hinge loss V (y, f) = (1 — yf)i
in classification corresponding to support vector machines,
solving the scheme (1) is equivalent to solving a constrained
quadratic program, with complexity of order O (7).

With complexity O(T) or O(T?), online learning repre-
sents an important family of efficient and scalable machine
learning algorithms for large-scale applications. Over the past
years, a variety of online learning algorithms have been
proposed (see [3]-[7] and references therein). Most of them
take the form of regularized online learning algorithms, i.e.,
given f1 =0,

fiv1 = fi=m(V iy i) K, +40 /1), t=1,...,T—1

2

where {/;} is a regularization sequence and {r, > 0} is a
step-size sequence. In particular, {4,} is chosen as a constant
sequence {4 > 0} in [4] and [5] or as a time-varying regu-
larization sequence in [8] and [9]. Throughout this paper, we
assume that V is convex with respect to the second variable.
That is, for any fixed y € Y, the univariate function V(y, -)
on R is convex. Hence, its left derivative V' (y, f) exists at
every f € R and is nondecreasing.

We study the following online learning algorithm without
regularization.

2162-237X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Definition 1: The online learning algorithm without reg-
ularization associated with the loss V and the kernel K is
defined by f1 =0 and

fir1 = fi =V (Or, fi(x) Ky,

where {7; > 0} is a step-size sequence.

Let fpv be a minimizer of the generalization error £(f)
among all measurable functions f : X — Y. The main
purpose of this paper is to estimate the expected excess gen-
eralization error E[E(fr)—E(f pv)], where fr is generated by
the unregularized online learning algorithm (3) with a convex
loss V. Under a mild condition on approximation errors and
a growth condition on the loss V, we derive upper bounds for
the expected excess generalization error using polynomially
decaying step-size sequences. Our bounds are independent of
the capacity of the RKHS Hg, and are comparable to those
for Tikhonov regularization (1), see more details in Section III.
In particular, for some loss functions, such as the logistic loss,
the p-absolute value loss, and the p-hinge loss with p € [1, 2],
our learning rates are of order O(T (/2 logT), which is
nearly optimal in the sense that up to a logarithmic factor,
it matches the minimax rates of order O(T_(l/ 2)) in [10]
for stochastic approximation in the nonstrongly convex case.
In our approach, an inductive argument is involved, to develop
sharp estimates for the expected values of || f,||%<, which is
better than uniform bounds in the existing literature, or to
bound the expected values of £(f;) uniformly. Our second
novelty is a refined error decomposition, which might be used
for other online or gradient descent algorithms [11], [12] and
is of independent interest.

The rest of this paper is organized as follows. We intro-
duce in Section II some basic assumptions that underlie
our analysis, and give our main results as well as exam-
ples, illustrating our upper bounds for the expected excess
generalization error for different kinds of loss functions in
learning theory. Section III contributes to discussions and
comparisons with previous results, mainly on online learning
algorithms with or without regularization, and the common
Tikhonov regularization batch learning algorithms. Section IV
deals with the proof of our main results, which relies on
an error decomposition as well as the lemmas proved in the
Appendix. Finally, in Section V, we will discuss the numerical
simulation of the studied algorithms, and give some numerical
simulations, which complements our theoretical results.

t=1,...,T—-1 (3)

II. MAIN RESULTS

In this section, we first state our main assumptions, follow-
ing with some comments. We then present our main results
with simple discussions.

A. Assumptions on the Kernel and Loss Function

Throughout this paper, we assume that the kernel is bounded
on X x X with the constant

x = sup max(y/ K (x, x),1) < oo

xeX

“)

and that |V]g

conditions on K and V are common in learning theory.

= sup,ey V(y,0) < oo. These bounded
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They are satisfied when X is compact and Y is a bounded
subset of R. Moveover, the condition |V|gp < oo implies that
E(fpv) is finite

ey =0 = [ Vo0dp <1V

The assumption on the loss function V is a growth condition
for its left derivative V' (y, -).

Assumption 1.a: Assume that for some ¢ > 0 and constant
¢q > 0, there holds

V.0, I =cqg+1f19), VfeR,yer. (5)

The growth condition (5) is implied by the requirement for
the loss function to be Nemitiski [2], [13]. It is weaker than,
either assuming the loss or its gradient, to be Lipschitz in its
second variable as often done in learning theory, or assuming
the loss to be a-activating with o € (0, 1] in [14].

An alterative to Assumption 1.a made for V in the literature
is the following assumption [15], [16].

Assumption 1.b: Assume that for some ay, by > 0, there
holds

V., P <avV(y, f)+by, VfeRyeY. (6)

Assumption 1.b is satisfied for most loss functions commonly
used in learning theory, when Y is a bounded subset of R.
In particular, when V(y,-) is smooth, it is satisfied with
by = 0 and some appropriate ay [16, Lemma 2.1].

B. Assumption on the Approximation Error

The performance of online learning algorithm (3) depends
on how well the target function f, pV can be approximated by
functions from the hypothesis space Hg. For our purpose of
estimating the excess generalization error, the approximation
is measured by E(f) — E(fpv) with f € Hg. Moreover, the

output function fr produced by the online learning algorithm
lies in a ball of Hg with the radius increasing with 7 (as
shown in Lemma 7). So we measure the approximation ability
of the hypothesis space Hx with respect to the generalization
error £(f) and fpv by penalizing the functions with their norm
squares [17] as follows.

Definition 2: The approximation error associated with the
triplet (p, V, K) is defined by

D) = inf {£(/)—E(f))+AfIk}. A>0. (D
feHk

When fpv € Hg, we can take f = fpV in (7) and
find D(2) < IIf)/ kA = O(). When £(f) — £(f))
can be arbitrarily small as f runs over Hg, we know that
DA) — 0 as 2 — 0. To derive explicit convergence
rates for the studied online algorithm, we make the fol-
lowing assumption on the decay of the approximation error
to be 0(1F).

Assumption 3: Assume that for some f € (0,1] and
cp > 0, the approximation error satisfies

D) <cpif, Vi>o. (8)
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C. Alternative Conditions on the Approximation Error

Assumption (8) on the approximation error is standard in
analyzing both Tikhonov regularization schemes [1], [2] and
online learning algorithms [8], [9], [18]. It is independent of
the sample, and measures the approximation ability of the
space Hg to fpv with respect to (p, V). It may be replaced
by alterative simple conditions for specified loss functions.

For a Lipschitz continuous loss function meaning that

sup p =
ey, f,f'eR Lf =1l

it is easy to see that E(f)—é'(fpv) < l||f—fpV||L}) , and thus
X

a sufficient condition for (8) is

nf {1 = 51wy, + A7) = 0.

| <o

In particular, for the hinge loss in classification, we have [ = 1.
Such a condition measures quantitatively the approximation
of the function fpv in the space L/l)x by functions from the
RKHS Hg, and can be characterized [2], [17] by requiring
fpV to lie in some interpolation space between Hg and L })X.

For the least squares loss, fpv = f, and there holds £(f) —
Efp) =1IIf - fp||i2 . Here, f, is the regression function

PX

defined at x € X to be the expectation of the conditional
distribution p(y|x) given x. In this case, condition (8) is
exactly

Jnt {174 ||’§%X +Allf %} = 0.

This condition is about the approximation of the function f)
in the space L/21x by functions from the RKHS Hg. It can be

characterized [17] by requiring that f, lies in L/*(L2 ), the

range of the operator Li/ 2. Recall that the integral operator
Lk : L/21x — L%X is defined by

LK(f)Z/Xf(X)depx, fels,.

Since K is a reproducing kernel with finite x, the operator

. . . . B/2
.L k is symmetric, compact, and positive, and its power L’/
is well defined.

D. Stating Main Results

Our first main result of this paper, to be proved in
Section IV, is stated as follows.

Theorem 1: Under Assumption 1.a, let 7, = n1t~? with
max((1/2),q/(q +1)) <6 <1 and 5 satisfying

0<m=mn( L =DA=0 _1-0 )
= 1262(1+ k)2472¢* 2(1 + 2[V1o)

where we denote ¢* = 20 — (1 —#) - max(0,g — 1) > 0. Then
ey o.er €)= E(£))} = CDE@H + 1771} (10)

where C is a positive constant depending on 71, ¢, x, and 6
(independent of T and given explicitly in the proof).
Combining Theorem 1 with Assumption 3, we get the follow-
ing explicit learning rates.

Corollary 2: Under the conditions of Theorem 1 and
Assumption 3, we have

Ez2,zr {5(fT) — E(fpv)} = O(T*(lfe)ﬂ).

Replacing Assumption 1.a by Assumption 1.b, we can relax
the restriction on 6 in Theorem 1 as 8 € (0, 1), which thus
improves the learning rates. Concretely, we have the following
convergence results.

Theorem 3: Under Assumption 1.b, let 7, = 51=? with
0 <8 < 1 and 7 satisfying

min(@, 1 — 6)
0<m=<—F—5—. (11)
2ayk
Then
Em,zz,...,zr—l {8(fT) - g(fpv)}
S 6/{D(T9~1) + Tfmin(e,lfé))}logT (12)

where C' is a positive constant depending on %1, ay, by,

and @ (independent of 7" and given explicitly in the proof).
Corollary 4: Under the conditions of Theorem 3 and

Assumption 3, let 8 = f/(f + 1). Then, we have

By s A€ = E(£Y)} = O P log T),

To illustrate the above-mentioned results, we give the fol-
lowing examples of commonly used loss functions in learning
theory with corresponding learning rates for online learning
algorithms (3).

Example 1: Assume |y| < M, and conditions (4) and (8)
hold with 0 < f < 1. For the least squares loss V(y,a) =
(y —a)?, the p-norm loss V(y,a) = |y —al|? with p € [1,2),
the hinge loss V (v, a) = (1—ya), the logistic loss V(y, a) =
log(1 4+ ¢77%), and the p-norm hinge loss V(y,a) = ((1 —
ya);)P with p € (1,2], choosing 7, = nit P+ with
satisfying (11), we have

Bz 2z {g(fT) - g(fpv)} = O(Ti% logT)

which is of order O(T~1/?1ogT) if g = 1.

Example 1 follows from Corollary 4, while the conclusion
of the next example is seen from Corollary 2.

Example 2: Under the assumption of Example 1, for the
p-norm loss V(y,a) = |y — a|” and the p-norm hinge
loss V(y,a) = ((1 — ya)4+)? with p > 2, selecting 7, =
mt~(P=D/p+e) with € € (0, (1/p)) and 5, such that (9) holds
with ¢ = p — 1, we have

Bacsenir €0 — E(1)} = 0~ G-)

which is of order O(T€~(/P)) if g = 1.

Remark 1: 1) The learning rates given in Example 1 are
optimal in the sense that they are the same as those for
the Tikhonov regularization [2, Ch. 7].

2) According to Example 1, the optimal learning rates are
achieved when #; ~ r=#/048)_Since f is not known in
general, in practice, a hold-out cross-validation method
can be used to tune the ideal exponential parameter 6.

3) Our analysis can be extended to the case of constant step
sizes. In fact, following our proofs given in the follow-
ing, the readers can see that, when 7, = T—A/B+D) for
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t =1,...,T — 1, the results stated in Example 1 still
hold.

E. Classification Problem

The binary classification problem in learning theory is a
special case of our learning problems. In this case, ¥ =
{1, —1}. A classifier for classification is a function f from
X to Y and its misclassification error R(f) is defined as the
probability of the event {(x,y) € Z : y # f(x)} of making
wrong predictions. A minimizer of the misclassification error
is the Bayes rule f. : X — Y given by

L ifp(y=1x)=1/2

—1, otherwise.

fc(x) = [

The performance of a classification algorithm can be measured
by the excess misclassification error R(f) — R(f;). For
the online learning algorithms (3), our classifier is given by

sign(fr)

1, if fr(x)=0

—1, otherwise.

sign(fr)(x) = {

So our error analysis aims at the excess misclassification error

R(sign(f1)) — R(fe)-

This can be often done [15], [19], [20] by bounding the
excess generalization error £(f) — &( fpv) and using the so-
called comparison theorems. For example, for the hinge loss
Viy, f(x)) = (1 — yf(x))+, it was shown in [21] that
f pv = f. and the comparison theorem in [15] asserts that

R(sign(f) = R(fe) = E(f) —E(fe)

for any measurable function f. For the least squares loss,
the logistic loss, and the p-norm hinge loss with p > 1,
the comparison theorem [19], [20] states that there exists a
constant cy such that for any measurable function f

Rsign(f)) — R(fe) < evy[E) — E(f)).

Furthermore, if the distribution p satisfies a Tsybakov
noise condition, then there is a refined comparison relation
for a so-called admissible loss function, see more details
in [19] and [20].

IIT. RELATED WORK AND DISCUSSION

There is a large amount of work on online learning
algorithms and, more generally, stochastic approximations
(see [3]-[9], [12], [14]-[16], [18], [22], [23], and the refer-
ences therein). In this section, we discuss some of the previous
results related to this paper.

The regret bounds for online algorithms have been well
studied in the literature [22]-[24]. Most of these results
assume that the hypothesis space is of finite dimension, or the
gradient is bounded, or the objective functions are strongly
convex. Using an “online-to-batch” approach, generalization
error bounds can be derived from the regret bounds.

For the nonparametric regression or classification setting,
online algorithms have been studied in [3]-[6], [8], [9], [14],
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and [18]. Recently, Ying and Zhou [14] showed that for a loss
function V satisfying

V., )=V (.9 <LIf—¢gl* VyeY, f,geR

13)

for some 0 < a <1 and 0 < L < oo, under the assumption
of existence of arginf .9y, E(f) = fry € Hk, by selecting
ne = nit~2/ @+ there holds

Eeyoo,or 1 [ECfT) = Efrp)] = O(T~792).

It is easy to see that such a loss function always satisfies the
growth condition (5) with ¢ = a, when sup, .y |V (y,0)| <
00. Therefore, as shown in Corollary 2, our learning rates for
such a loss function are of order O(T ~#/2+€) which reduces
to O(T ~1/2+€)_if we further assume the existence of f (=
arginf ;c3q, €(f) € Hg, as in [14]. Note that in general, fp,
may not exist, thus our results require weaker assumptions,
involving approximation errors in the error bounds. Also, our
obtained upper bounds are better and are especially of great
improvements when o is close to 0. In the cases of f = 1,
these bounds are nearly optimal and up to a logarithmic factor,
coincide with the minimax rates of order O (T ~1/2) in [10]
for stochastic approximations in the nonstrongly convex case.
Besides, in comparison with [14], where only loss functions
satisfying (13) with a € (0, 1] are considered, a broader class
of convex loss functions are considered in this paper. At last,
let us mention that for the least squares loss, the obtained
learning rate O(T—A/B+D log T) from Example 1 is the same
as that derived in [18].

Our learning rates are also better than those for online
classification in [5] and [8]. For example, for the hinge
loss, the upper bound obtained in [5] is of the form

O(Tf_ﬁ/(z(m‘l))), while the bound in Example 1 is of the
form O(T~#/0+8) 1og T), which is better. For a p-norm hinge
loss with p > 1, the bound obtained in [5] is of order
O(T<~F/QIC=Fp+38D) while the bounds in Examples 1 and 2
are of order O (7€~ (#/max(p.2))y,

We now compare our learning rates with those for batch
learning algorithms. For general convex loss functions, the
method for which sharp bounds are available is Tikhonov
regularization (1). If no noise condition is imposed, the best
capacity-independent error bounds for (1) with Lipschitz loss
functions [2, Ch. 7], are of order O(T’ﬂ/ (ﬁ“)). The obtained
bounds in Example 1 for Lipschitz loss functions are the same
as the best one available for the Tikhonov regularization, up
to a logarithmic factor.

We conclude this section with some possible future work.
First, it would be interesting to prove sharper rates by con-
sidering the capacity assumptions on the hypothesis spaces.
Second, in this paper, we only consider the i.i.d. (independent
identically distributed) setting. However, our analysis can be
extended to some non-i.i.d. settings, such as the setting with
Markov sampling as in [25] and [26]. Finally, our analysis
may also be applied to other stochastic learning models, such
as online learning with random features [27], which will be
studied in our future work.
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IV. PROOF OF MAIN RESULTS

In this section, we prove our main results, Theorems 1 and 3.

A. Preliminary Lemmas

To prove Theorems 1 and 3, we need several lemmas to be
proved in the Appendix.

Lemma 1 is key and will be used several times for the
proof of Theorem 1. It is inspired by the recent work
in [14], [28], and [29].

Lemma 1: Under Assumption l.a, for any f € Hg, and

r=1,...,T—1
Ifivr = Flk < Ifi = £k + PG}
+2n [V (e, f(x0) — Vi, fi(xe))] (14)
where
Gy =rcq(1+ 7 £ill%). (15)

Using Lemma 1 and an inductive argument, we can estimate
the expected value E;, [l fi+1 ||%(] and provide a novel
bound as follows. For notational simplicity, we denote by
AC(fx) the excess generalization error of f, € Hg with respect
to (p,V) as

A(f) = E(f) — E(f))- (16)

Lemma 2: Under Assumption l.a, let 7, = #7? with
max((1/2),q/(q +1)) < 8 < 1 and #; satisfying (9). Then,

for an arbitrarily fixed f, € Hx andt=1,...,T — 1
Ezp.o [l fist i ] < 6l Al + AL +4 (17)

and

Bz e [GE ] < Gl felk + 240 0 43) 0 + 1)

(18)

where ¢g* is defined in Theorem 1.

Lemma 2 asserts that for a suitable choice of decaying step
sizes, E;, - [ll fi+1 ||%(] can be well bounded if there exists
some f, € Hg such that A(f;) is small. It improves uniform
bounds found in the existing literature.

Replacing Assumption 1l.a with Assumption 1.b in
Lemma 1, we can prove the following result.

Lemma 3: Under Assumption 1.b, we have for any arbitrary
feHk,andt=1,...,T —1

I firr = fll% < Wfi— FI%+nic?by + avn?e?V (v, fi(x0)
+20:(V (e, fG) = VO, fixe))]. (19)

Using Lemma 3, and an induction argument, we can bound
the expected risks of the learning sequence as follows.
Lemma 4: Under Assumption 1.b, let 7, = 1t~? with 0 €
(0, 1) and #; such that (11). Then, forany r =1,...,T — 1,
there holds
Eey.0n €(fi) = B (20)

where B is a positive constant depending only on 71, 8, by, k2,
and |V |p (given explicitly in the proof).

We also need the following elementary inequalities, which,
for completeness, will be proved in the Appendix using a
similar approach as that in [28].

Lemma 5: For any g* > 0, there holds

Furthermore, if g* > 1, then

T-1

Zk(k+1)

t

9" <277 Min(ha" jog(eT).
—k

T-1 | T 7
> Lo fz(zqu )Tl.
P k(k+1) T g*—1

B. Deriving Convergence From Averages

An essential tool in our error analysis is to derive the
convergence of a sequence {u;}; from its averages of the
form (1/T) X 5_ uj and (1/k) X F_; .\ u;. Lemma 6 is
elementary for sequences and the idea is from [7]. We provide
a proof in the Appendix.

Lemma 6: Let {u;}; be a real-valued sequence. We have

T
Zu,—l—z Z (wj —ur—). 2
k(k+1)] i
From Lemma 6, we see that if the average

(1/T) ZJT=1 uj tends to some u* and the moving average

it e+ 1) X
then uy tends to u™ as well.

Recall that our goal is to derive upper bounds for
the expected excess generalization error E;, .. [E(fr) —
E( fpv)]. We can easily bound the weighted average
(1/T) Xy 20 Esy,or  [E(f)—E(f))] from (14) [or (19)].
This, together with Lemma 6, demonstrates how to bound the
weighted excess generalization error 247E;, .. [E(fT) —
E( fpv)] in terms of the weighted average and the moving
weighted average. Interestingly, the bounds on the weighted
average and the moving weighted average are essentially the
same, as shown in Sections IV-D and IV-E.

— ur—k) tends to zero,

C. Error Decomposition

Our proofs rely on a novel error decomposition derived from
Lemma 6. In what follows, we shall use the notation E for
,,,,, 2r_- Choosing u, = 25, E{E(f;) —S(fpv)} in Lemma 6,
we get

20 E{E(fr) - £(1)))}
T
_ % > 2 E{E(f) - £(£)))

j=1

1
+ Z k(k + 1) i ;(+1(2;7]E{8(f]) - (fp )}
£(4,)h

- 2’7T7kE{g(fok) -
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which can be rewritten as

2nrE{E(fr) — 5(fpv)}

1 T
== sz{aﬁ) -
t=T— k+1

|

+zk(k+ )
T—1

+ Ne — NT—k
i 2 o]

x E{E(fr-x) — S(f,Y)}.

Since, E(fr—k) — E(fpv) > 0 and that {#,};cN is a nonincreas-
ing sequence, we know that the last term of (22) is at most
zero. Therefore, we get

20rB{E(fr) — E£(£))}

£(£,)}

Z 20 BLE(S) — E(fr—i)}

(22)

1 T
< 7 2. 2nE{EW) — £(1)))
t=1

T

> mE{Ef) — E(fr-n}. 23)

t=T—k+1

T-1 1
* k; k(k + 1)

D. Proof of Theorem 1

In this section, we prove Theorem 1. We first prove the
following general result, from which we can derive Theorem 1.

Theorem 5: Under Assumption l.a, let 5, = n1~? with
max((1/2),q/(q +1)) < 8 < 1 and #; satisfying (9). Then,
for any fixed fi € Hg

Eey...or () — E(£)))

< CLA(S) + Gl fllxg T+ G170 24
where Cy, Cs, and C3 are positive constants depending on
n,q,k, and @ (independent of T or f, and given explicitly
in the proof).

Proof: Let us first bound the average error, the first term
of (23). Choosing f = fi in (14), taking expectation on both
sides, and noting that f; depends only on z1,z2,...,2/—1, We
have

E:p...zo[ I fier = fillk]
<Eqze 1[||ft - f*”%{] + 77th1 21 [Gzz]
+2m B, o 1[5(f*) - 5(ft)]
=E;, .z [”ft - f*”]{] + n; E e Zi—1 [Gzz]

+ 2, A(fx) — 2 E 2l seeesZi—1 [g(ft) - g(fpV)] (25)

which implies
2mE[ECf) - E(f))]

< E[lIfi — ful%] = E[ll fitr
+ 20 A(f) + nPE[G2].

— %]
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T, with fi =0 and 5, = 177

isz[e(m —£(4))]

t=1

Summing over t =1, ...,

T
< I fllk +2mAf) D177

=1
This together with (18) yields

T
+ > nE[G]]
=1

T
> 2mE[Ef) - E(f))]
t=1

T
< Ifellx +2m AL D177

t=1
T
+ (Bl fellk + 24T 0 +3) D> 17
t=1

Applying the elementary inequalities

tlfﬁ/
- i
; / . / T—o" when 0’ < 1
Zj_e < 1+/ u?du < {log(et), when 6’ = 1
S 1 /
X 9— hen 0’ > 1
o—1 "
(26)
with ' = @ and ¢* > 1, we have
T
> 2nE[E) —£(f))]
=1
2m 2q* -0 2 q*
< (1—6’+q* )A(f*)T + (41 fell% +3)q*—1’

Dividing both sides by T, we get a bound for the first term
of (23) as

T

%22'7:15[501) —£(1))]

*
- 2m n 2q
“\1-0 gqg*-1

) AT

T

+ (@£l + 3)q*" 27)

-1

Then, we turn to the moving average error, the second term
of (23). Let k € {1,..., T — 1}. Note that fr_; depends only
on z1,...,27—k—1. Taking expectation on both sides of (14),
and rearranging terms, we have that forr > T — k

2 EIEf) — E(fr—k)]
< E[Ifi — fr—ilx] = E[I fis1 — fr—el%] + n'E[G?].

Using this inequality repeatedly fort = T —k, ..., T, we have

1 T
L 2nBLES) — EUfr-i)}
k=1 k(k+1) t:Tzk+1
T—1 | T
2l 32
> nE[G]]
k=1 ke+1) =Tk

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524



525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

LIN AND ZHOU: ONLINE LEARNING ALGORITHMS CAN CONVERGE COMPARABLY FAST AS BATCH LEARNING 7

Combining this with (18) implies

T—1 | T
PRTREEETY 20 B{E(S) — E(fr-1)}
T—1 T
= Gl + 24007 43) 3 5, k(k o
Applying Lemma 5, we have
T—1 T
2nB{E(S) — E(fT-1)}

<2 (24* + q*"_ 1) Bllfllx + 24T +3)T7"
(28)

Finally, putting (27) and (28) into the error decomposition

(23), and then dividing both sides by 257 = 2m T, by a
direct calculation, we get our desired bound (24) with
_ 1 3g* 29" +1
C = + +
1-0  m(g*—1 m
- 5q* 3.24"
_
ng* —1) n
and
- 9g* 3.24"
= 4 +
2ni(g* —1) n
The proof is complete. (]

We are in a position to prove Theorem 1.
Proof of Theorem 1: By Theorem 5, we have

E{&(fr) —£(f))}
< Cr+C){ESL) = E(F)) + I flx T} + G107

Since the constants C_'l, C,, and 6_’3 are independent of
f« € Hk, we take the infimum over f. € Hg on both sides,
and conclude that

E{E(fr) — £(f))} = (C1+ C)D@?") + G171

The proof of Theorem 1 is
C=C+C+Cs.

complete by taking

E. Proof of Theorem 3

In this section, we give the proof of Theorem 3. It follows
from the following more general theorem, as shown in the
proof of Theorem 1.

Theorem 6: Under Assumption 1.b, let 7, = n=? with
0 < 0 < 1 and 7 satisfying (11). Then, for any fixed f, € Hg

EZl,...,ZT—l {g(fT) - g(fpv)}
< (AR + @) T Ik T+ BT ) log T
(29)
where Bj is a positive constant depending only on

n,ay,by,x, and 6 (independent of T or f, and given
explicitly in the proof).

Proof: The proof parallels to that of Theorem 5. Note
that we have the error decomposition (23). We only need to
estimate the last two terms of (23).

To bound the first term of the right-hand side of (23), we
first apply Lemma 3 with a fixed f € Hx and subsequently
take the expectation on both sides of (19) to get

E[ll fis1 — f1%]
<E[Ifi — fI%]

+ e @vEIE ()] + by) + 2mEE(f) — E(fi). (30)

By Lemma 4, we have (20). Introducing (20) into (30) with
f = f«, and rearranging terms

2nEES) — E(£))) < B[IA — flk — I frer — £llk]
+2mA(fx) + i’ (av B + by).

Summing up over / = 1, ..., T, rearranging terms, and then
dividing both sides by T, we get

1 T
= D 2mEE(f) = E(1))
=1

Il £l 2771 —0 2 =
< A(f*)zt +nix?(av B+by)— Zz
By using the elementary inequality with ¢ > 0,7 > 3

T

Z 71 < Tmax(l—q,O) ZT: t_l

t=1 t=1

< 2Tmax(1—q,0) log T

one can get

1 T
T Z 2mEE(fi) = £(f)

||f*||2 »
+4mA(f)T P log T

+ 73 2K (ay B + by)T~ ™0 D 100 T 3D

To bound the last term of (23), welet 1 <k <t —1 and
i €f{t—k,...,t}. Note that f; depends only on z1,...,Zzi—1
when i > 1. We apply Lemma 3 with f = f;_4, and then
take the expectation on both sides of (19) to derive

2 BIE(Sf) — E(fi—i)]
<E[lIfi — fi-il% = I fis1 — frmxl%]
+ 726> (ayEIE(f)] + by).

Summing up overi =t —k,...,t

t t
> 2EIE(S) — ESfi) <6* D nFavEIESH)] + by).

i=t—k i=t—k
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Note that the left-hand side is exactly Z§=sz+1 nE[E(fi) —
E(fi—x)]. We thus know that

t—1 t

1
D X MEEC) — ()
ké K+ D) i=§+1
x2 1—1 1 t )
=7 D 2 VB b)

2 t—1 t

K 1
< = (av sup ELEMDI+by) D — > 1k,
2 k(k +1) i=t—k

I<i<t —

With 5, = 1t~?, by using Lemma 5, this can be relaxed as

t—1 t
1
S——— > REES) - Efi0]
k=1 k(k + 1) i=t—k+1
< mi2 ™D oo (er) (ay sup E[E(f)] +by). (32)

l<i<t

Introducing (31) and (32) into (23), plugging with (20), and
dividing both sides by 277 = 2 T, one can prove the
desired result with By = 2;711c2(avB + by). O

V. NUMERICAL SIMULATIONS

The simplest case to implement online learning
algorithm (3) is when X = R? for some d € N and
K is the linear kernel given by K(x,w) = w!x. In this

case, it is straightforward to see that f;,1(x) = w,,

X with
w; =0 e R? and

-
w1 = we — V(e w0, x0)x, t=1,...,T.

For a general kernel, by induction, it is easy to see that
T .
Jrr1(x) = zjzl C,+1K(x,Xj) with

T
cr1=c¢ —n V. y,,Zc,’K(x,,xj) e, t=1,...,T
j=1

for c; =0 € RT. Here, ¢; = (¢},...,el)T for 1 <t < T,
and {e1,...,er} is a standard basis of R”. Indeed, it is
straightforward to check by induction that

T
frov =Dl Ky — V. (s fir () Ko,
j=1

T
= > K (c] — V(s fixj)e]).
j=I

To see how the step-size decaying rate indexed by 6 affects
the performance of the studied algorithm, we carry out simple
numerical simulations on the Adult' data set with the hinge
loss and the Gaussian kernel with kernel width ¢ = 4. We
consider a subset of Adult with 7T = 1000, and run the
algorithm for different 8 values with #; = 1/4. The test and
training errors (with respect to the hinge loss) for different 6
values are shown in Fig. 1. We see that the minimal test error
(with respect to the hinge loss) is achieved at some 0* < 1/2,

I The data set can be downloaded from archive.ics.uci.edu/ml and
www.csle.ntu.edu.tw/cjlin/libsvmtools/
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0.36

Training
Test

L L L I T L L ,
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
¢}

Fig. 1. Test and training errors for online learning with different € values
on Adult (T = 1000).

TABLE I

COMPARISON OF ONLINE LEARNING USING
CROSS VALIDATION WITH LIBSVM

Algorithm test classification error  training time
online learning 16.2 £ 0.2% 54+0.3
LIBSVM 18.7 £ 0.0% 5.8+ 0.5

which complements our obtained results. We also compare the
performance of online learning algorithm (3) in terms of test
error and training time with that of LIBSVM, a state-of-the-
art batch learning algorithm for classification [30]. The test
classification error and training time, for the online learning
algorithm using cross validation (for choosing the best ) and
LIBSVM, are summarized in Table I, from which we see that
the online learning algorithm is comparable to LIBSVM on
both test error and running time.

APPENDIX

In this appendix, we prove the lemmas stated before.
Proof of Lemma 1: Since f;41 is given by (3), by expanding
the inner product, we have

| fist = fll% = 1fe = ik + a7 1V G fr ) Ko Iz
+2771Vi(yr, St Ky, f— fi)k-
Observe that || Ky, ||k = (K (x;, x;))"/? < x and that
Ifllo < xllfllk, Yf €Hk.
These together with the incremental condition (5) yield
Iv. e, [ix) Ky,
< klV_ (e, fi(x0))]
< keq(L+ 1 fi(x)?) < keq(1+ 70 fil1%).
Therefore, || fi+1 — f|% is bounded by
Lfe = fllx + 712G+ 20V, (e, fi )N Ko, f — fi)k.
Using the reproducing property, we get
I fivr = % < I fi = flik + 07 G?
+ 20V (yes fr e (f (1) — fi(x0)). (33)
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Since V (y;, -) is a convex function, we have

Vi(yfaa)(b - a) = V(yfab) - V(yl"a),

Using this relation to (33), we get our desired result.

In order to prove Lemma 2, we first bound the learning
sequence uniformly as follows.

Lemma 7: Under Assumption l.a, let 0 < 6 < 1 satisfy
0 > 4 and 5, = 1t~ with #; satisfying

q+
J1-0 1-6
, . (34
V8cq (i + 1)t 4V]o
Then, fort =1,...,T — 1

Va,b € R.

0<m§min{

1-6
| frrillgk <t72. (35)

Proof: We prove our statement by induction.
Taking f = 0 in Lemma 1, we know that

I fistl% < Ifill% + 72G? + 20 [V (31, 0) — V (31, fi (x0))]
< Ifillk + w2 GE+ 20,V o. (36)

Since fi = 0, G is given by (15) and by (34), n%c§x2 +
2n11V]p < 1, we thus get (35) for the case t = 1.
Now, assume || fi||x < (t — 1)1=9/2 with t > 2. Then

Gy

IA

2
g (1+ k) max (1, | £ilI)
Ack(c + 122 — 1)1~

A

37)

where for the last inequality, we used xk < x+1 and 1 +x7 <
2(x 4+ 1)?. Hence, using (36)

I fisll
< (= D"+ g 4c (e + )220 2y v

=10 {(1 — 1)1_6 + nideg (x + 1)+ 2'71|V|0}
; )

(@ +Do+1—¢ P
Since (1 — (1/1))!=? <1 — (1 —0)/r and the condition § >
q/(g + 1) implies (g +1)8 +1—¢g > 1, we see that ||f,+1||%<
is bounded by

1—0 24C2(K+1 2g+2 o) v
tl—@{l_ +’71 q ) n mlVio .

t t t

Finally, we use the restriction (34) for #; and find || f;+1 ||%< <
t1=0. This completes the induction procedure and proves our
conclusion. ]
Now, we are ready to prove Lemma 2.
Proof of Lemma 2: Recall an iterative relation (25) of error
terms in the proof of Theorem 5. It follows from £(f;) >
E(f)) that

Eopvz [ fos1 = £illk] < Bepn [ILF = Fell%]
+ W?Eu ..... 21 [Gtz] + 200 A(fe)-
(38)

Since G; is given by (15), applying Schwarz’s inequality

E.,...c i [GH] < 2622 (1 4+ k2E,, .o, [1£13])-

If g <1, using Holder’s inequality

IA

(Bzp e [1A1% ]
L+ By e [Ifi0E ]

2q
By 111G

IA

If g > 1, noting that (9) implies (34), we have (35) and thus

2 _ _
Eopvoz [1A1E] < Baye [I fill% ] DED
=B o [I£0%]0

Combining the above-mentioned two cases yields

’7;2E11,---,Zz71 [Gtz]
<2t (1+ k(1 + By o [ILA 1R D))
< 2ctnp (14246207
(14 2Bz, e [ = AR ]+ 201 401%))
< CL(1H+Es e [l = AT IAIR) T (39)

where

C1 = 4dnicy(141)72 (40)

Putting (39) into (38) yields

E.oz [l fier = £ill%]
< Eo o[l = £l ] +2me 0 ACK)
F O (V+E o [ = £I%] + AR

Applying this inequality iteratively, with f; = 0, we derive

t
< N fllk +2mAf) D i™°

j=1
+C (1 + 1A%
+ 'H%aX tEm,...,ij][”fj - f*”%(]) Zj_q*.

J=1 =1

Note that & € (1/2,1) and that from the restriction on 6,
q* > 1. Applying the elementary inequality (26) to bound
j=1d 77 and 305, 70 we get

Eu ..... z,[||ft+l - f*”%{]

2
< Ifl% + 2 A

1-0
Cig*
qg*—1 L...,

+

Now, we derive upper bounds for E;, . [l fi+1 — f*||%(] by
induction for 7 = 1,..., T — 1. Assume that E, .. ,[|lfj —

L3 < 231f0% + A(f)G — D2 + 1) holds for
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j=1,...,t. Then
EZ],---,Z:[||ﬁ+1 - f*”%{]

C *
< Il + q*lf -G 430 fllk + 240000
2m 1-6
+ g AL
3C1q*
< (1+ q*l_ql) L+ 1£01%)
2Ci1q* 2m 1—0
+ (q*—l + 1_Q)A(ﬁk)t .

Recall that C; is given by (40). We see from (9) that
3C1g*/(g* —1)<1—-6 <1 and 251 /(1 —6) < 1. It follows
that

Eopa [l fier = fellk] < 2(0 £l + AFO 0 + 1) @)

From the above-mentioned induction procedure, we conclude
that forr = 1,..., T — 1, the bound (41) holds, which leads
to the desired bound (17) using || fil% < 2Ifi — fil% +
2||f*||%(. Applying (41) into (39), and noting that C; < 1 by
the restriction (9), we get the other desired bound (18). The
proof is complete.

Proof of Lemma 3: Following the proof of Lemma 1, we
have:

I fes1 — fI% < Ifi = Fl% + 022 1V_(r, fiGe)) I
+2n; Ve, f(x0) = Vi, fi(xe))].

Applying Assumption 1.b to the above, we get the desired
result.
Proof of Lemma 4: The proof is divided into several steps.
Basic Decomposition: We choose w; = n/E[E(f;)] in
Lemma 6 to get

mELE(f)]
1 t
=~ D mEIE)]
i=1
t—1 1 '
+ 1; kk+ 1) izgﬂ(me(ﬁ)] — 5 kEIE(fi—1)]).

Since {#;}; is decreasing and E[E( f;—x)] is nonnegative, the
above can be relaxed as

1 t
WEIE(] < - > miBIEC)]
i=1
t—1 t
+ 2 T WEIE(fi) — E(fi-)]-
(42)

In the rest of the proof, we will bound the last two terms in
the above-mentioned estimate.

Bounding the Average: To bound the first term on the right-
hand side of (42), we apply (30) with f =0 to get

E[ll fi+11%] < E[Ilfillk] + nix?(@vEIE(f)] + by)
+2mE(E©0) — E(f)).
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Rearranging terms, and using the fact that £(0) < |V |

mQ2 —aymx)EE(f)]
< ElIfil% = I fis1 1% 1+ by nix® + 2|V o.

It thus follows from ay mxz < 1, implied by (11), that

mEIEDT < B[l fillk — I fir1 %]+ bvape® +2m|Vio.
(43)
Summing up over [ = 1,...,t, introducing f; = 0,

||f,+1||%{ > 0, and then multiplying both sides by 1/¢, we
get

t

1 < 1 <
- l;mE[cf(fz)] <= ; (by P>+ 2m1 Vo).

Since #7; = 1t ¢, we have

>t

=1

~ | —

1 t
— D> mEIEC] < (bvrite® + 2m Vo)
=1

Using (26), we get

by nix? + 2 Vio
1—-0 '

1 t
> mBIE()] < (44)
=1

Bounding the Moving Average: To bound the last term
of 42), we let 1 < k <t —1andi € {t —k,...,t}.
Recall the inequality (32) in the proof of Theorem 6. Applying
the basic inequality e™ < (ex)™!,x > 0, which implies
1~ min@.1-0) 159 (er) < (1/min(@, 1 — 0)), we see that the last
term of (42) can be upper bounded by

L
min(@, 1 — 6)

1<i<t

=0 (av sup E[E(fi)] + bv).

Induction: Introducing (32) and (44) into the decomposition

(42), and then dividing both sides by #7; = 5177, we get
E[E(f)] = A sup E[E(f)]+ B

I<i<t

(45)

where we set A = (71ayx?/ min(@, 1 — 0)) and
_ bymr?+2|V] mbyx?
B 1-6 min(4, 1 — 6)’

The restriction (11) on #; tells us that A < 1/2. Then, using
(45) with an inductive argument, we find that for all t < T

B

E[E(f)] =2B (46)

which leads to the desired result with B = 2B. In fact, the
case t+ = 2 can be verified directly from (43), by plugging
with f1 = 0. Now, assume that (46) holds for any k <t — 1,
where ¢ > 3. Under this hypothesis condition, if E[E(f;)] <
Supy<;<,—1 E[E(fi)], then using the hypothesis condition, we
know that E[E(f;)] < 2B. If E[E(fi)] > sup;<;<,—1 E[E(fD)],
we use (45) to get

E[E(f1)] < AE[E(f)] + B < E[E(f)]/2+ B
which implies E[E(f;)] < 2B. The proof is thus complete.

766

767

768

769

770

77

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803



804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

8:

N
=

N

825

8!

N

6

827

828

829

830

8!

@

1

LIN AND ZHOU: ONLINE LEARNING ALGORITHMS CAN CONVERGE COMPARABLY FAST AS BATCH LEARNING 11

Proof of Lemma 5: Exchanging the order in the sum, we
have

T-1 | T
2y =
k=1 kk + l)t T—k
T-1 T-1 |
-3 3 e S
tlthk(k—i—l) klk(k—i—l)
T—1
1 1 x 1 x
=> —= )+ (11— )T
T—t T T
=1
-1
< 4
=1
What remains is to estimate the term Z,T:_ll ﬁt‘q*. Note

that
T-1

max(l q*, O)Z
(T — t)t

1 +1
T —1t t

par T — Z(T—t)t

and that by (26)

-1 | T
;m:_z

T
=1
T—-1
2 2
= 252 < ZogleD).
T &0 = = 7 log(eT)

From the above-mentioned analysis, we see the first statement
of the lemma.

To prove the second part of the lemma, we split the term
ZITJII 1/(T — 1)t~ into two parts

T-1

= Z Tl_tt_q*_’_ Z Tl_tt_q*

T/2<t<T—1 1<t<T)2

1 %
— 427! t71
T —t + Z
T/2<t<T-1

1<t<T/2

ot
1<t<T/2 1<t<T/2

24 74"

IA

— 24" 4"

Applying (26) to the above and then using 79 t1log T <
1/(2(g* — 1)), we see the second statement of Lemma 5.

Proof of Lemma 6: For k =1, T—-1
1 T T
LY e Y
j=T—k+1 j=T—k
1 T T
=———dk+D) D wuj—k D uj
klk+ 1) j=T—k+1 j=T—k

= k(k+1) Z (j = ur—i)-

=T—k+1

Summing over k = 1,
get (21).

T — 1, and rearranging terms, we
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Online Learning Algorithms Can Converge
Comparably Fast as Batch Learning

Junhong Lin and Ding-Xuan Zhou

Abstract— Online learning algorithms in a reproducing kernel
Hilbert space associated with convex loss functions are studied.
We show that in terms of the expected excess generalization error,
they can converge comparably fast as corresponding Kkernel-
based batch learning algorithms. Under mild conditions on loss
functions and approximation errors, fast learning rates and
finite sample upper bounds are established using polynomially
decreasing step-size sequences. For some commonly used loss
functions for classification, such as the logistic and the p-norm
hinge loss functions with p € [1, 2], the learning rates are the
same as those for Tikhonov regularization and can be of order
O(T_(l/ 2) log T'), which are nearly optimal up to a logarithmic
factor. Our novelty lies in a sharp estimate for the expected values
of norms of the learning sequence (or an inductive argument to
uniformly bound the expected risks of the learning sequence in
expectation) and a refined error decomposition for online learning
algorithms.

Index Terms— Approximation error, learning theory, online
learning, reproducing kernel Hilbert space (RKHS).

I. INTRODUCTION

ONPARAMETRIC regression or classification aims at

learning predictors from samples. To measure the per-
formance of a predictor, one may use a loss function and
its induced generalization error. Given a prediction function
f + X = R, defined on a separable metric space X (input
space), a loss function V : R*> — R, gives a local error
V(y, f(x)) at (x,y) € Z := X x Y with an output space
Y C R. The generalization error €& = £V associated with the
loss V and a Borel probability measure p on Z, defined as

E(f) = /Z V(. f()dps

measures the performance of f.

Kernel methods provide efficient nonparametric learning
algorithms for dealing with nonlinear features, where repro-
ducing kernel Hilbert spaces (RKHSs) are often used as
hypothesis spaces in the design of learning algorithms. With
suitable choices of kernels, RKHSs can be used to approximate
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functions in LIZ)X, the space of square integrable functions with
respect to the marginal probability measure px. A reproducing
kernel K : X x X — R is a symmetric function such that
(K (uj, u j))f, =1 is positive semidefinite for any finite set of
points {ui}f:l in X. The RKHS (Hkg, || ||x) is the completion
of the linear span of the set {K, := K(x,-) : x € X} with
respect to the inner product given by (K, K,)x = K(x, u).

Batch learning algorithms perform learning tasks by using a
whole batch of sample z = {z; = (xj, y;) € Z }l.T: |- Throughout
this paper, we assume that the sample {z; = (x;, y;)}; is
drawn independently according to the measure p on Z. A large
family of batch learning algorithms are generated by Tikhonov
regularization

fz,7 = argmin
feHk

1 T
7 2 VO fe)) + 21 f I f. 2> 0. ()
t=1

Tikhonov regularization scheme (1) associated with convex
loss functions has been extensively studied in the literature,
and sharp learning rates have been well developed due to
many results, as described in the books (see [1], [2], and
references therein). But in practice, it may be difficult to
implement when the sample size T is extremely large, as its
standard complexity is about O(73) for many loss functions.
For example, for the hinge loss V(y, f) = (1 — yf)4+ =
max{1 — yf, 0} or the square hinge loss V (y, f) = (1 — yf)i
in classification corresponding to support vector machines,
solving the scheme (1) is equivalent to solving a constrained
quadratic program, with complexity of order O(T?).

With complexity O(T) or O(T?), online learning repre-
sents an important family of efficient and scalable machine
learning algorithms for large-scale applications. Over the past
years, a variety of online learning algorithms have been
proposed (see [3]-[7] and references therein). Most of them
take the form of regularized online learning algorithms, i.e.,
given f1 =0,

ft+1 = ft_rlt(vl(yta ﬁ(xt))er+;Lt.ﬁ)a = 1a ] T_l

(@)

where {4;} is a regularization sequence and {7, > 0} is a
step-size sequence. In particular, {1,} is chosen as a constant
sequence {4 > 0} in [4] and [5] or as a time-varying regu-
larization sequence in [8] and [9]. Throughout this paper, we
assume that V is convex with respect to the second variable.
That is, for any fixed y € Y, the univariate function V(y, -)
on R is convex. Hence, its left derivative V' (y, f) exists at
every f € R and is nondecreasing.

We study the following online learning algorithm without
regularization.

2162-237X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Definition 1: The online learning algorithm without reg-
ularization associated with the loss V and the kernel K is
defined by f1 =0 and

fir1=fi — ﬂtVL()’ta ft(xt))Kx,s

where {#; > 0} is a step-size sequence.

Let fpV be a minimizer of the generalization error £(f)
among all measurable functions f : X — Y. The main
purpose of this paper is to estimate the expected excess gen-
eralization error E[E(fr)—&( fpv)], where fr is generated by
the unregularized online learning algorithm (3) with a convex
loss V. Under a mild condition on approximation errors and
a growth condition on the loss V, we derive upper bounds for
the expected excess generalization error using polynomially
decaying step-size sequences. Our bounds are independent of
the capacity of the RKHS Hk, and are comparable to those
for Tikhonov regularization (1), see more details in Section III.
In particular, for some loss functions, such as the logistic loss,
the p-absolute value loss, and the p-hinge loss with p € [1, 2],
our learning rates are of order O(T~(/?logT), which is
nearly optimal in the sense that up to a logarithmic factor,
it matches the minimax rates of order O (T~ (/ 2) in [10]
for stochastic approximation in the nonstrongly convex case.
In our approach, an inductive argument is involved, to develop
sharp estimates for the expected values of || f,||%(, which is
better than uniform bounds in the existing literature, or to
bound the expected values of £(f;) uniformly. Our second
novelty is a refined error decomposition, which might be used
for other online or gradient descent algorithms [11], [12] and
is of independent interest.

The rest of this paper is organized as follows. We intro-
duce in Section II some basic assumptions that underlie
our analysis, and give our main results as well as exam-
ples, illustrating our upper bounds for the expected excess
generalization error for different kinds of loss functions in
learning theory. Section III contributes to discussions and
comparisons with previous results, mainly on online learning
algorithms with or without regularization, and the common
Tikhonov regularization batch learning algorithms. Section IV
deals with the proof of our main results, which relies on
an error decomposition as well as the lemmas proved in the
Appendix. Finally, in Section V, we will discuss the numerical
simulation of the studied algorithms, and give some numerical
simulations, which complements our theoretical results.

t=1,....,T—1 (3)

II. MAIN RESULTS

In this section, we first state our main assumptions, follow-
ing with some comments. We then present our main results
with simple discussions.

A. Assumptions on the Kernel and Loss Function

Throughout this paper, we assume that the kernel is bounded
on X x X with the constant

x = sup max(v/ K (x, x), 1) < oo

xeX

“)

and that |V]g

conditions on K and V are common in learning theory.

= sup,ey V(y,0) < oo. These bounded

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

They are satisfied when X is compact and Y is a bounded
subset of R. Moveover, the condition |V |y < co implies that
E(f)) is finite

ey =0 = [ Vo.0dp <1V

The assumption on the loss function V is a growth condition
for its left derivative V' (y, -).

Assumption I.a: Assume that for some g > 0 and constant
¢q > 0, there holds

V.0, I =eqg+1f19), VfeRyer. ®)

The growth condition (5) is implied by the requirement for
the loss function to be Nemitiski [2], [13]. It is weaker than,
either assuming the loss or its gradient, to be Lipschitz in its
second variable as often done in learning theory, or assuming
the loss to be a-activating with o € (0, 1] in [14].

An alterative to Assumption 1.a made for V in the literature
is the following assumption [15], [16].

Assumption 1.b: Assume that for some ay, by > 0, there
holds

V. (y, AP <avV(y, f)+by, VfeR,yeY. (6

Assumption 1.b is satisfied for most loss functions commonly
used in learning theory, when Y is a bounded subset of R.
In particular, when V(y,-) is smooth, it is satisfied with
by = 0 and some appropriate ay [16, Lemma 2.1].

B. Assumption on the Approximation Error

The performance of online learning algorithm (3) depends
on how well the target function fpV can be approximated by
functions from the hypothesis space Hg. For our purpose of
estimating the excess generalization error, the approximation
is measured by £(f) — E(fpv) with f € Hg. Moreover, the

output function fr produced by the online learning algorithm
lies in a ball of Hg with the radius increasing with T (as
shown in Lemma 7). So we measure the approximation ability
of the hypothesis space Hg with respect to the generalization
error £(f) and fpV by penalizing the functions with their norm
squares [17] as follows.

Definition 2: The approximation error associated with the
triplet (p, V, K) is defined by
e —&(f)) + 211k} 2> 0.

D) = ; )

inf
feHxk

When fpV € Hg, we can take f = fpV in (7) and
find D(2) < [fYI%4 = O@). When E(f) — E(f))
can be arbitrarily small as f runs over Hg, we know that
D) — 0 as 4 — 0. To derive explicit convergence
rates for the studied online algorithm, we make the fol-
lowing assumption on the decay of the approximation error
to be 0(1F).

Assumption 3: Assume that for some f € (0,1] and
¢p > 0, the approximation error satisfies

D) <cpif, Vi>o. (®)
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C. Alternative Conditions on the Approximation Error

Assumption (8) on the approximation error is standard in
analyzing both Tikhonov regularization schemes [1], [2] and
online learning algorithms [8], [9], [18]. It is independent of
the sample, and measures the approximation ability of the
space Hg to fpV with respect to (p, V). It may be replaced
by alterative simple conditions for specified loss functions.

For a Lipschitz continuous loss function meaning that

sup y =
yev, f,f'eR lf = f
it is easy to see that E(f)—E(f)) < UIf = £ 11 »and thus

a sufficient condition for (8) is

fie%f{,( {lr=75 ”L})X + 2 £1%} = 00P).

| <o

In particular, for the hinge loss in classification, we have / = 1.
Such a condition measures quantitatively the approximation
of the function fpv in the space L}JX by functions from the
RKHS Hg, and can be characterized [2], [17] by requiring
fpV to lie in some interpolation space between Hx and Llle.

For the least squares loss, fpv = f, and there holds £(f) —
ESfp) = If — f,,,||i/21 . Here, f, is the regression function

X

defined at x € X to be the expectation of the conditional
distribution p(y|x) given x. In this case, condition (8) is
exactly

Jnt {17 = £l + 2071k} = 06,

This condition is about the approximation of the function f,
in the space L%X by functions from the RKHS Hg. It can be

characterized [17] by requiring that f), lies in L’? 2(Lf,x), the

range of the operator Li/ 2. Recall that the integral operator
Lk : L%X — L%X is defined by

Le(h) = [ F0Kdpx. f L},

Since K is a reproducing kernel with finite x, the operator
Lk is symmetric, compact, and positive, and its power Li/ 2
is well defined.

D. Stating Main Results

Our first main result of this paper, to be proved in
Section 1V, is stated as follows.

Theorem 1: Under Assumption l.a, let 7, = mt~? with
max((1/2),q/(g + 1)) <6 <1 and 5 satistying

. (g* — (1 —0) 1-9
bemsmn (\/12c§(1 +x)2 27 2(1 + 2|V|0)) v

where we denote ¢g* = 20 — (1 —0) -max(0, g — 1) > 0. Then
Ezi oocr AT — E(F))} = CIDIT Y + 971} (10)

where C is a positive constant depending on 71, ¢, x, and 6
(independent of T and given explicitly in the proof).
Combining Theorem 1 with Assumption 3, we get the follow-
ing explicit learning rates.

Corollary 2: Under the conditions of Theorem 1 and
Assumption 3, we have

EZI,ZZ,W,ZT—l{g(fT) — g(fpv)} = O(T*(I*(’)ﬂ)_

Replacing Assumption 1.a by Assumption 1.b, we can relax
the restriction on € in Theorem 1 as # € (0, 1), which thus
improves the learning rates. Concretely, we have the following
convergence results.

Theorem 3: Under Assumption 1.b, let 4, = n1t~¢ with
0 <6 <1 and 5 satisfying

. 1 —
0 < g < 0G.1-0) (11
2ayi?
Then
EZ],Zz,m,qu {g(fT) - g(fpV)}
S 5/{D(T0f1) + Tfmin(H,lfﬁ)}logT (12)

where C' is a positive constant depending on #1,ay, byk,

and 0 (independent of 7 and given explicitly in the proof).
Corollary 4: Under the conditions of Theorem 3 and

Assumption 3, let & = f/(f + 1). Then, we have

Ezpor,.ora {EUT) = g(f,)v)} = 0(T77’% log T).

To illustrate the above-mentioned results, we give the fol-
lowing examples of commonly used loss functions in learning
theory with corresponding learning rates for online learning
algorithms (3).

Example 1: Assume |y| < M, and conditions (4) and (8)
hold with 0 < S < 1. For the least squares loss V(y,a) =
(y —a)?, the p-norm loss V(y,a) = |y —al? with p € [1,2),
the hinge loss V (y, a) = (1—ya), the logistic loss V (v, a) =
log(1 4+ e7%), and the p-norm hinge loss V(y,a) = ((1 —
ya) )P with p e (1,2], choosing 7, = 5yt~ #/F+D) with
satisfying (11), we have

Eey.22,m2r-1 {g(fT) - g(fpv)} = 0(T77‘% logT)

which is of order O(T~1/21ogT) if g = 1.

Example 1 follows from Corollary 4, while the conclusion
of the next example is seen from Corollary 2.

Example 2: Under the assumption of Example 1, for the
p-norm loss V(y,a) = |y — a|? and the p-norm hinge
loss V(y,a) = ((1 — ya)4+)? with p > 2, selecting #, =
mt~((P=D/P+e) with € € (0, (1/p)) and 51 such that (9) holds
with ¢ = p — 1, we have

EZI’ZZ,W,ZTfl {8(fT) — 5(fpv)} — O(T*(%*e)ﬂ)

which is of order O(T€~(/P) if g = 1.

Remark 1: 1) The learning rates given in Example 1 are
optimal in the sense that they are the same as those for
the Tikhonov regularization [2, Ch. 7].

2) According to Example 1, the optimal learning rates are
achieved when #; ~ r=#/(0+#)_Since f is not known in
general, in practice, a hold-out cross-validation method
can be used to tune the ideal exponential parameter 6.

3) Our analysis can be extended to the case of constant step
sizes. In fact, following our proofs given in the follow-
ing, the readers can see that, when 7, = T—A/B+D for
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t =1,...,T — 1, the results stated in Example 1 still
hold.

E. Classification Problem

The binary classification problem in learning theory is a
special case of our learning problems. In this case, ¥ =
{1, —1}. A classifier for classification is a function f from
X to Y and its misclassification error R(f) is defined as the
probability of the event {(x,y) € Z : y # f(x)} of making
wrong predictions. A minimizer of the misclassification error
is the Bayes rule f. : X — Y given by

I, ifply=1]x)>1/2

—1, otherwise.

fex) = {

The performance of a classification algorithm can be measured
by the excess misclassification error R(f) — R(f;). For
the online learning algorithms (3), our classifier is given by

sign(fr)

L if fr(x) =0

—1, otherwise.

sign(fr)(x) = [

So our error analysis aims at the excess misclassification error

R(sign(f1)) — R(fe).

This can be often done [15], [19], [20] by bounding the
excess generalization error £(f) — &( fpv) and using the so-
called comparison theorems. For example, for the hinge loss
Vi, f(x)) = (1 — yf(x))4, it was shown in [21] that
f pV = f. and the comparison theorem in [15] asserts that

R(sign(f) — R(fe) = E(f) —E(fe)

for any measurable function f. For the least squares loss,
the logistic loss, and the p-norm hinge loss with p > 1,
the comparison theorem [19], [20] states that there exists a
constant cy such that for any measurable function f

Rsign(f)) — R(fe) < evy[E) — E(fY).

Furthermore, if the distribution p satisfies a Tsybakov
noise condition, then there is a refined comparison relation
for a so-called admissible loss function, see more details
in [19] and [20].

III. RELATED WORK AND DISCUSSION

There is a large amount of work on online learning
algorithms and, more generally, stochastic approximations
(see [3]-[9], [12], [14]-[16], [18], [22], [23], and the refer-
ences therein). In this section, we discuss some of the previous
results related to this paper.

The regret bounds for online algorithms have been well
studied in the literature [22]-[24]. Most of these results
assume that the hypothesis space is of finite dimension, or the
gradient is bounded, or the objective functions are strongly
convex. Using an “online-to-batch” approach, generalization
error bounds can be derived from the regret bounds.

For the nonparametric regression or classification setting,
online algorithms have been studied in [3]-[6], [8], [9], [14],
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and [18]. Recently, Ying and Zhou [14] showed that for a loss
function V satisfying

|Vi(yaf)_vi(yag)|§L|f_g|a7 VyEYafagER

13)

for some 0 < @ <1 and 0 < L < oo, under the assumption
of existence of arginf sy, E(f) = fr, € Hk, by selecting
ne = mt 2@+ there holds

Eei oo 1 [ECfT) = E(frg)] = O(T~792).

It is easy to see that such a loss function always satisfies the
growth condition (5) with ¢ = a, when sup,y [V (y,0)] <

oo. Therefore, as shown in Corollary 2, our learning rates for
such a loss function are of order O(T ~#/2+€) which reduces
to O(T~(1/2+€)_if we further assume the existence of SHy =
arginf ;.9 E(f) € Hk, as in [14]. Note that in general, fy,
may not exist, thus our results require weaker assumptions,
involving approximation errors in the error bounds. Also, our
obtained upper bounds are better and are especially of great
improvements when a is close to 0. In the cases of f = 1,
these bounds are nearly optimal and up to a logarithmic factor,
coincide with the minimax rates of order O(T’(l/ 2)) in [10]
for stochastic approximations in the nonstrongly convex case.
Besides, in comparison with [14], where only loss functions
satisfying (13) with a € (0, 1] are considered, a broader class
of convex loss functions are considered in this paper. At last,
let us mention that for the least squares loss, the obtained
learning rate O(T —#/(A+D Jog T') from Example 1 is the same
as that derived in [18].

Our learning rates are also better than those for online
classification in [5] and [8]. For example, for the hinge
loss, the upper bound obtained in [5] is of the form

O(T<A/QWB+D)) " while the bound in Example 1 is of the
form O (T ~#/0+F) 1og T'), which is better. For a p-norm hinge
loss with p > 1, the bound obtained in [5] is of order
O (T <~ #/@C=Fp+38D) while the bounds in Examples 1 and 2
are of order O (7€~ (#/max(p.2))y,

We now compare our learning rates with those for batch
learning algorithms. For general convex loss functions, the
method for which sharp bounds are available is Tikhonov
regularization (1). If no noise condition is imposed, the best
capacity-independent error bounds for (1) with Lipschitz loss
functions [2, Ch. 7], are of order 0(T’ﬂ/ (ﬁ“)). The obtained
bounds in Example 1 for Lipschitz loss functions are the same
as the best one available for the Tikhonov regularization, up
to a logarithmic factor.

We conclude this section with some possible future work.
First, it would be interesting to prove sharper rates by con-
sidering the capacity assumptions on the hypothesis spaces.
Second, in this paper, we only consider the i.i.d. (independent
identically distributed) setting. However, our analysis can be
extended to some non-i.i.d. settings, such as the setting with
Markov sampling as in [25] and [26]. Finally, our analysis
may also be applied to other stochastic learning models, such
as online learning with random features [27], which will be
studied in our future work.
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IV. PROOF OF MAIN RESULTS

In this section, we prove our main results, Theorems 1 and 3.

A. Preliminary Lemmas

To prove Theorems 1 and 3, we need several lemmas to be
proved in the Appendix.

Lemma 1 is key and will be used several times for the
proof of Theorem 1. It is inspired by the recent work
in [14], [28], and [29].

Lemma 1: Under Assumption l.a, for any f € Hg, and

t=1,...,T -1
Ifivr = fllk < Ifi = fllk + 07 G
+ 27V ey f(x0)) = V(s fr ()] (14)
where
G = rcy(1+ 1 £11%). (15)

Using Lemma 1 and an inductive argument, we can estimate
the expected value E;, Z,[||f,_|r1||%<] and provide a novel
bound as follows. For notational simplicity, we denote by
AC(fx) the excess generalization error of f, € Hg with respect
to (p,V) as

A(f) = E(f) = E(F))- (16)

Lemma 2: Under Assumption l.a, let 7, = mt~? with
max((1/2),q/(g +1)) <8 < 1 and #; satisfying (9). Then,

for an arbitrarily fixed f, €e Hg andt =1,...,T — 1
E:y..ooe [ St 1% ] < Ol fullk +4ACSE0 +4 A7)
and
By [GEA ] < BlLANE + 2Af) 0 43) (¢ + 1)1
(18)
where ¢g* is defined in Theorem 1.

Lemma 2 asserts that for a suitable choice of decaying step
sizes, ]Ezl,‘_‘,z,[||ﬁ+1||%(] can be well bounded if there exists
some fx € Hg such that A(fx) is small. It improves uniform
bounds found in the existing literature.

Replacing Assumption 1l.a with Assumption 1.b in
Lemma 1, we can prove the following result.

Lemma 3: Under Assumption 1.b, we have for any arbitrary
feHk,andr=1,...,T —1

I firr — fll% < Wfi— FI% +02c2by + avn?e®V (v, fi(x0)
+ zﬂt[v(yts f(xt)) - V()’t» fl(xt))]- (19)

Using Lemma 3, and an induction argument, we can bound
the expected risks of the learning sequence as follows.
Lemma 4: Under Assumption 1.b, let 7, = 1t~? with 6 €
(0, 1) and #; such that (11). Then, forany r =1,...,T — 1,
there holds
E.,..0n E(fi) < B

where B is a positive constant depending only on #1, 8, by, K2,
and |V |p (given explicitly in the proof).

(20)

We also need the following elementary inequalities, which,
for completeness, will be proved in the Appendix using a
similar approach as that in [28].

Lemma 5: For any g* > 0, there holds

Furthermore, if ¢* > 1, then

T—-1

Zk(k+1)

t

tfq* < 2T7min(1,(1*) 10g(eT)
—k

T-1 | T 7
> s 2= (e )
k=1 k(k+1) 1=T—k qr—1

B. Deriving Convergence From Averages

An essential tool in our error analysis is to derive the
convergence of a sequence {u;}; from its averages of the
form (1/7) Z]T=1“j and (1/k) Z]T'=T—k+1 uj. Lemma 6 is
elementary for sequences and the idea is from [7]. We provide
a proof in the Appendix.

Lemma 6: Let {u;}; be a real-valued sequence. We have

T T

;Zuﬁzk(kH) > wj—ur). @D

j=T—k+1

From Lemma 6, we see that if the average
(1/T7) Zle u;j tends to some u* and the moving average
)R VGRS ) Iy
then ur tends to u™® as well.

Recall that our goal is to derive upper bounds for
the expected excess generalization error E;, ., [E(fr) —
E( fpv)]. We can easily bound the weighted average
(/T) Xy 20 Esy, o or  [E(f)—E(f))] from (14) [or (19)].
This, together with Lemma 6, demonstrates how to bound the
weighted excess generalization error 2y7E;, ., [E(fr) —
E( fpV)] in terms of the weighted average and the moving
weighted average. Interestingly, the bounds on the weighted
average and the moving weighted average are essentially the
same, as shown in Sections IV-D and IV-E.

— ur—y) tends to zero,

C. Error Decomposition

Our proofs rely on a novel error decomposition derived from
Lemma 6. In what follows, we shall use the notation [E for
E;,,...zr_;- Choosing u; = 25 E{E(f;) — 5(fpv)} in Lemma 6,
we get

20rB{E(fr) — (1))}

1 T
= = 2 E{E) — E(f)))

j=1

T—-1 1 T )
" Z kG +1) §+1(2”1E{5(fj) - £(1))}
()P

- zﬂTka{g(fok) -
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which can be rewritten as

2rB{E(fr) — £(£))}
1 T
= = > 2E{EU) - £(£))
t=1

T—-1

1 T
+ ; D > 2mBLES) — E(fr-p))

tTk+1
T—1
I [ > m—m}
k= k+l t=T—k+1

X E{s(fH) - &(1))} (22)
Since, E(fr—i) — E(fpv) > 0 and that {#;};c i a nonincreas-
ing sequence, we know that the last term of (22) is at most
zero. Therefore, we get

297 E{E(fT) — g(fpv)}
LI
= = 2 2mE{E) —£(1))
t=1

T—1 1
+ ;Z‘ Kk + 1)

T

> mE{Ef) — E(fr-n}. 23)

t=T—k+1

D. Proof of Theorem 1

In this section, we prove Theorem 1. We first prove the
following general result, from which we can derive Theorem 1.

Theorem 5: Under Assumption 1.a, let 5, = n1t~¢ with
max((1/2),q/(g +1)) <8 < 1 and #; satisfying (9). Then,
for any fixed f, € Hg

Ezi,.zro1 {g(fT) - g(fﬂv)}

< CLAf) + Call fullxg T + G170 24)
where C 1, C,, and C3 are positive constants depending on
m,q,x, and € (independent of T or fi and given explicitly
in the proof).

Proof: Let us first bound the average error, the first term
of (23). Choosing f = fi in (14), taking expectation on both

sides, and noting that f; depends only on z1, 22, ..., 2;—1, We
have
Eey, oo [ fr1 = Fell%]
< By o [Ilf = fellk ]+ mPEey 1 [GT]

+2mEy o 1[5(f*) = &(fr) ]
=E;, 7 1[||ft—f*||K]+’71E11 T 1[G2]
+2n: A = 2nEyy ey 1[g(fl)_ (fpv)] (25)

which implies

2mE[E(f) - E(f))]
< E[lIfi — ful%] = E[ll fitr
+ 20, A(f) + n?E[G?).

— full%]

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Summing over t = 1,..., T, with fj =0 and #, = mt’g

ZT“ZmE[E(ft) —€(/,)]

t=1

T
< I fellk +2mAf) D 17"

t=1
This together with (18) yields

T
+ > nE[G]].
t=1

izmm[am — ()]

=1

T
< I fellk +2m AL D177

t=1
T
+ BIAlR +2A0T' 0 +3) D7
t=1

Applying the elementary inequalities

(=0
——, when8' <1
d ’ 4 0 1-0
>it< 1+/ u™du < log(et), when 0 = 1
=1 1 9/
——, when 8’ > 1
0 -1
(26)
with 8’ = 6 and ¢* > 1, we have
T
> wE[els) — £(£))]
=1
2m 2q* -0 4 2 q*
< (1 i )A(f*)T + (4l fell% +3)q* —

Dividing both sides by T, we get a bound for the first term
of (23) as

1 T
= 2 2nE[E() = £(£))]
t=1

2m 2q* 9
< (1 o o 1)A(ﬁk)T
+ (@ £k +3)qf’_ T @7)

Then, we turn to the moving average error, the second term
of (23). Let k € {1,..., T — 1}. Note that fr_; depends only
on z1,...,27—k—1. laking expectation on both sides of (14),
and rearranging terms, we have that fort > T — k

2 EIE(f) — E(fr—i)]
< E[Ifi — fr—il%] = E[l fis1 — fr—ell%] + n’E[G?].

Using this inequality repeatedly fort = T —k, ..., T, we have

-1 T
2 BLE(f) — E(fT—1)}
kz e, Z

- T

+1

k=1 t=T—k
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Combining this with (18) implies

T-1 T
; k(k ey Tzk 20 BAE(f) = E(fr-i)}
= t=T—k+1
- T

< (Il +24007" + gj O Wy 2
Applying Lemma 5, we have
T-1 1 T

PR 2n B{E(S) — E(fT-1)}

<2 (2Q* + q:’_ 1) Gllfllk + 24T 0 +3)T77
(28)

Finally, putting (27) and (28) into the error decomposition

(23), and then dividing both sides by 247 = 2T, by a
direct calculation, we get our desired bound (24) with
_ 1 3g* 2q*+1
G = + +
1—=0  m(g*—1) n
- 5q* 3.207
_ s,
ni(g* —1) "
and
- 9g* 3.20"
= 4 +
2ni(g* — 1) "
The proof is complete. O

We are in a position to prove Theorem 1.
Proof of Theorem 1: By Theorem 5, we have

E{E(fr) - £(£,)}
< (Cr+OES) —E(f)) + 1A IE T + G107

Since the constants Cj, Cy, and C3 are independent of
f« € Hk, we take the infimum over f. € Hg on both sides,
and conclude that

E{E(fr) —£(f))} = (C1+ C)DT* ) + G370

The proof of Theorem 1 is
C=C1+Cy+Cs.

complete by taking

E. Proof of Theorem 3

In this section, we give the proof of Theorem 3. It follows
from the following more general theorem, as shown in the
proof of Theorem 1.

Theorem 6: Under Assumption 1.b, let 7, = n1t~? with
0 < 8 < 1and #; satisfying (11). Then, for any fixed fi € Hg

EZ],‘.‘,zrfl {g(fT) - g(fpV)}
< (A + @) I flZ T+ BT O D) log 7
(29)
where Bj is a positive constant depending only on
m,ay,by,x, and 6 (independent of T or f, and given
explicitly in the proof).

Proof: The proof parallels to that of Theorem 5. Note
that we have the error decomposition (23). We only need to
estimate the last two terms of (23).

To bound the first term of the right-hand side of (23), we
first apply Lemma 3 with a fixed f € Hg and subsequently
take the expectation on both sides of (19) to get

E[ll fis1 — flI%]
< E[llfi — £I%]

+ i (avEIE(f)] + by) + 20EE(f) — E(fi)). (30)

By Lemma 4, we have (20). Introducing (20) into (30) with
f = f«, and rearranging terms

2nE(E) = E(£))) < E[Ifi = fllk — I fisr — fulk]
+2mA(f) + nix?(ay B + by).

Summing up over / = 1, ..., T, rearranging terms, and then
dividing both sides by T, we get

1 T
T Zzan(S(m —£(12))

”f*”]( 2m

- A(f*)zt +’71K2(av3+bv)—zl -

By using the elementary inequality with ¢ > 0,7 > 3
T

Z 171 < Tmax(l—q,O) i l‘_l

=1 t=1

S 2Tmax(l—q,0) log T

one can get

1 T
T Z 2mE(E(fi) = E(£2))

2
< Wl y A 108 T

+;112K (ay B 4 by)T~ ™00 160 T (31)

To bound the last term of (23), we let 1 <k <t — 1 and
i €{t—k,...,t}. Note that f; depends only on zy,...,zi—|
when i > 1. We apply Lemma 3 with f = f;_, and then
take the expectation on both sides of (19) to derive

2 EIE(f) — E(fi—k)]
< JE[IIﬁ — fimkll% = Il fis1 —
+ e (avEIE(fi)] + by).

fi-ill%]

Summing up overi =t —k,...,t

> 2EIE(S) — ESfi) <6 D nFavEIES)] + by).

i=t—k i=t—k
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Note that the left-hand side is exactly >/, .| mEIE(fi) —
E(fi—k)]. We thus know that

t—1 t

1
PRI mEIE(fi) — E(fi-1)]
t—1 t

K2 1
< 5 Z m Z ﬂiz(aVE[g(fi)] +by)

k=1 i=t—k
) t—1 1 t
< —(ay sup E[E(f)]+ b _ Z.
7 (av sup ELE()]+bv) ; D ,:,Z_k ;
With #; = mt‘e, by using Lemma 5, this can be relaxed as
t—1 1 t
Do > mEIEW) = E(fip)]
k=1 k(k +1) i=t—k+1
< k= min0D 1o0(er)(ay sup E[E(f)]+bv). (32)

1<i<t
Introducing (31) and (32) into (23), plugging with (20), and
dividing both sides by 2nr = 2 T-%, one can prove the
desired result with B = 251x%(ay B + by). O

V. NUMERICAL SIMULATIONS

The simplest case to implement online learning
algorithm (3) is when X = R? for some d € N and
K is the linear kernel given by K(x,w) = w’x. In this

case, it is straightforward to see that f;11(x) = szHx with
w; =0 e R? and

w1 = wr — 0V Gy w0 x)xe, t=1,...,T.
For a general kernel, by induction, it is easy to see that
T .
fre1) =25 ¢ K (x, x)) with

T

Ct-l—l:Ct_”tVL YtaZC{K(xtaxj) eta t=19)T
j=1

for c; =0 € RT. Here, ¢; = (¢},...,eD)T for 1 <t < T,

and {ej,...,er} is a standard basis of RT. Indeed, it is
straightforward to check by induction that

T 5

st = D ¢l Ky — V. G, fix))Kx,
j=1
T N .
= D> Ky(c = VIO, fitx)))e]).
j=1

To see how the step-size decaying rate indexed by 6 affects
the performance of the studied algorithm, we carry out simple
numerical simulations on the Adult' data set with the hinge
loss and the Gaussian kernel with kernel width ¢ = 4. We
consider a subset of Adult with T = 1000, and run the
algorithm for different 6 values with #; = 1/4. The test and
training errors (with respect to the hinge loss) for different
values are shown in Fig. 1. We see that the minimal test error
(with respect to the hinge loss) is achieved at some 6* < 1/2,

I The data set can be downloaded from archive.ics.uci.edu/ml and
www.csie.ntu.edu.tw/cjlin/libsvmtools/
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0

Fig. 1. Test and training errors for online learning with different 6 values
on Adult (T = 1000).

TABLE I

COMPARISON OF ONLINE LEARNING USING
CROSS VALIDATION WITH LIBSVM

Algorithm test classification error  training time
online learning 16.2 + 0.2% 544+0.3
LIBSVM 18.7+ 0.0% 5.8+ 0.5

which complements our obtained results. We also compare the
performance of online learning algorithm (3) in terms of test
error and training time with that of LIBSVM, a state-of-the-
art batch learning algorithm for classification [30]. The test
classification error and training time, for the online learning
algorithm using cross validation (for choosing the best 8) and
LIBSVM, are summarized in Table I, from which we see that
the online learning algorithm is comparable to LIBSVM on
both test error and running time.

APPENDIX

In this appendix, we prove the lemmas stated before.
Proof of Lemma 1: Since f;4] is given by (3), by expanding
the inner product, we have

I fivr = fllk = e = & + w21V O foGe)) K I
+ 20 VErs fr ) (Ko f = fi)k-
Observe that | Ky, ||k = (K (x;, x:))"/? < i and that
[ flloo = xllfllx, Yf e Hk.
These together with the incremental condition (5) yield
”VL (yta ft(xt))er ”K
< x|V (e, fr(x0)]
< keg(L+ /i)l ?) < keg(T+671 fillk)-
Therefore, || fi+1 — f ||%( is bounded by
I fe = fllk + 17 GF +2m V. (e, fi ) (Ko, f = fi)k-
Using the reproducing property, we get

I fes1 — fI% < Ifs — fll% +n?G?
+20, V. (e [r))(f Gr) = fi(xe)). (33)
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Since V (y, ) is a convex function, we have
V. (yi,a)(b—a) < V(yi,b) — V(y,a),

Using this relation to (33), we get our desired result.

In order to prove Lemma 2, we first bound the learning
sequence uniformly as follows.

Lemma 7: Under Assumption l.a, let 0 < 6§ < 1 satisfy
0 > q+1 and 5, = 1t~? with #; satisfying

Va,b € R.

V1 -0 1-6
0 < 71 < min R . (34)
\/gcq(lc + 1)atl 4{V]o
Then, fort =1,...,T — 1
1-0
I frillk <272 (35)
Proof: We prove our statement by induction.
Taking f = 0 in Lemma 1, we know that
I fivilli < Ifellx + 07 GE + 20,1V (7, 0) = V (vr, fi (x1)]
< Ifillk + /G + 2m|V - (36)

Since fi = 0, G is given by (15) and by (34), ;72c21c2 +
2m|Vl]o < 1, we thus get (35) for the case r = 1.
Now, assume || fi||x < (t — 1)1=9/2 with t > 2. Then

Gy

IA

2
e (1+ x> max (1, [ £ 1)
Acg (e + DX — 1)(1=04

A

(37)

where for the last inequality, we used x < x+1 and 1 +x7 <
2(x 4+ 1)?. Hence, using (36)

I fis1ll%
< (= D'+ 324 (c + D200 4 270 v

=10 [(1 — 1)1_9 + nideg (e + 120+ 2771|V|o]
; .

tg+1)0+1—¢ P
Since (1 — (1/1))'=? <1 — (1 —@)/t and the condition >
q/(gq + 1) implies (g +1)0 + 1 —¢g > 1, we see that || f;+1 ||%<
is bounded by

B 1-6 7A@+ 1%+ oy v
9[1_t+1qt _i_mllo.

Finally, we use the restriction (34) for #; and find || f;+1 112 % =
1'=0_ This completes the induction procedure and proves our
conclusion. O
Now, we are ready to prove Lemma 2.
Proof of Lemma 2: Recall an iterative relation (25) of error
terms in the proof of Theorem 5. It follows from £(f;) >
&( f/,") that

sz [ fit1 = filk] S Eapoe [ = Fellk]

+ 1Bz [GE] + 200 ACSY).
(38)

Since G, is given by (15), applying Schwarz’s inequality

Eyyoozy l[GZ]<2x2c2(1+K2qEZl ,,,,, . 1[||ft|| 7).

If g <1, using Holder’s inequality

IA

(Ezpooees [1£:1% D)
<1+E,, . [Ifi1%]

Epoz (113

If g > 1, noting that (9) implies (34), we have (35) and thus

ezt I fe % Je @~ D00
= Ez, ,,,,, o [ 032209

By (1413 <

Combining the above-mentioned two cases yields

’7;2E11, JZi— 1[G2]
< 222 (1 + 621+ By o [IA1%])0)
< 2232 2(1+K2qt20 q*
(V2B [ = PRI+ 20 A01%))
< C(U+E; o [l = £A%]+ AR (39)

where
C1 = 4nicl (1 +1)%%2, (40)
Putting (39) into (38) yields

Eopoa |l fist — fill%]
< B o[l = £llk] +2me 0 A
+CL(L+Eey, o [ = FEIR ]+ I fllR )4

Applying this inequality iteratively, with f; = 0, we derive

E.,oz [l fier = fillk]

t
< I fllk +2mAf) D i7°
j=1
+Ci(1+ 1 £k

‘|‘jn%ax Ezl ..... Zj— 1[||fj

r* ||K])i -

Note that 8 € (1/2,1) and that from the restriction on 6,
q* > 1. Applying the elementary inequality (26) to bound

th:1 j~7 and Z;Zl 70, we get
Eep o[ firn = fillk]
2m -
< Ifelli + T A
Clq* 2 *112
T (L Il max By U5 = S k]).
Now, we derive upper bounds for E;, . [ll fi+1 — fxll%1 by

induction forr =1, ..., T — 1. Assume that E;, .. [l fj —
LR = 200415 + AGDG — D+ 1) holds for
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j=1,...,t. Then
E. ozl fier = fill%]

C *
< A%+ q*lf -G+ 31 fullg + 24017
2m 1-0
A
3C1q*
< (1+ — )(1+||f*II%<)
qg*—1
2Cig* | 2m -
+ (—q* 1 + T—o —H)A(f*)t .

Recall that C; is given by (40). We see from (9) that
3C1g*/(g* — 1) <1—-6 <1 and 251 /(1 —6) < 1. It follows
that

Eon [ fisr = fellk] < 201 fllk + A0 + 1) 4D

From the above-mentioned induction procedure, we conclude
that for r = 1,..., T — 1, the bound (41) holds, which leads
to the desired bound (17) using | fi|32 < 2| f; — f*ll%< +
2||f*||%(. Applying (41) into (39), and noting that C; < 1 by
the restriction (9), we get the other desired bound (18). The
proof is complete.

Proof of Lemma 3: Following the proof of Lemma 1, we
have:

I fes1 — fI% < Ife = Fll% + 022 1V_(r, fi o))
+200 [V (s £(x0)) = V Gy fr )]

Applying Assumption 1.b to the above, we get the desired
result.
Proof of Lemma 4: The proof is divided into several steps.
Basic Decomposition: We choose u; = n:E[E(f;)] in
Lemma 6 to get

HELEf)]
1 t
= ;ﬂiE[g(fi)]
t—1 1 ¢
X i X B BIE D,

Since {#;}; is decreasing and E[€(f;—k)] is nonnegative, the
above can be relaxed as

1 t
MELEf] < - ng[é’(ﬁ')]

t

t—1 1
+;k(k—+l). Z nEIE(fi) — E(fi-i)]

i=t—k+1
(42)

In the rest of the proof, we will bound the last two terms in
the above-mentioned estimate.

Bounding the Average: To bound the first term on the right-
hand side of (42), we apply (30) with f =0 to get

E[ll fi+11%] < E[Ilfill%] + nix?(avEIEfi)] + by)
+2mE(E0) — E(f)).
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Rearranging terms, and using the fact that £(0) < |V

mQ2 — aymx)EE(f)]
< Elfillk = I fis1 %] + bymi® + 2|V o.

It thus follows from ay 7111c2 < 1, implied by (11), that

mEIEMT < E[Ifilk — I fivt %] + bvaic® +2m|Vlo.
(43)
Summing up over I = 1,...,¢, introducing f; = O,
||f,+1||%( > 0, and then multiplying both sides by 1/t, we
get

t

1< 1
- ; MEIE)] < < ; (bynic® +2m| Vo).

Since 7; = 7111"9, we have

1 < 1<
> MEIE(D] < (bvrie® +2mVio) - D17

=1 =1
Using (26), we get

bynix® +2m Vio g
1-6 ’

1 t
- > mEIE()] < (44)

=1

Bounding the Moving Average: To bound the last term
of 42), we let 1 < k <t —1andi € {t — k,...,t}.
Recall the inequality (32) in the proof of Theorem 6. Applying
the basic inequality e™ < (ex)~!,x > 0, which implies
¢t~ min@.1=0) 1og(er) < (1/min(@, 1 — 6)), we see that the last
term of (42) can be upper bounded by

et
min(@, 1 — 9)

1<i<t

0 (av sup E[E(.ﬁ)]+bv).

Induction: Introducing (32) and (44) into the decomposition

(42), and then dividing both sides by #7; = 51177, we get
E[E(f)] = A sup E[E(fi)]+ B

1<i<t

(45)

where we set A = (mav}cz/ min(d, 1 — 0)) and
_ bv711K2—|—2|V|() 771va2
N 1—0 min(@, 1 —6)’

The restriction (11) on #; tells us that A < 1/2. Then, using
(45) with an inductive argument, we find that for all r < T

B

E[E(f)] = 2B (46)

which leads to the desired result with B = 2B. In fact, the
case t+ = 2 can be verified directly from (43), by plugging
with f; = 0. Now, assume that (46) holds for any k <7 — 1,
where ¢ > 3. Under this hypothesis condition, if E[E(f;)] <
SuUp;<;<,—1 E[E(fi)], then using the hypothesis condition, we
know that E[£(f,)] < 2B.Tf E[E(f)] = sup; ;,_; EIE(f)],
we use (45) to get

E[E(f)] = AEIE(f)]1+ B = E[E(f)]/2+ B
which implies E[E(f;)] < 2B. The proof is thus complete.

766

767

768

769

770

77

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803



804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

8:

N
i

8:

N

5

8:

N

6

827

828

829

830

8:

@

1

LIN AND ZHOU: ONLINE LEARNING ALGORITHMS CAN CONVERGE COMPARABLY FAST AS BATCH LEARNING 11

Proof of Lemma 5: Exchanging the order in the sum, we
have

T-1 T
Zk(k+ )tzkt .
= — 71 4+ T4
= .5 tk(k—i—l) P k(k+1)

T—
zz(T
<Z L o,
= L7,

t=1

1 .
=4 1——)71771
) +( T)

What remains is to estimate the term ZIT:_ll %t‘q*. Note

that

-1 T-1 g T-1
t—q* — I Tmax(l q*,0)

ZT—t Z(T—t)t_ Z(T—t)t

=1 t=1

and that by (26)

T-1 T-1
1 1 1 1
;—(T_,y——zl(w;)

t=

T
T-1
2 1 2

t=1
From the above-mentioned analysis, we see the first statement
of the lemma.
To prove the second part of the lemma, we split the term
—_ * o,
SN /T — 07 into two parts
T-1

x 1 %
71+ 174
—t 15;/2 T—1t
2

1 x
— 421! iy
T t + Z
T/2<t<T—1

B 1<t<T/2
Z 427!

> o
1<t<T/2

1<t<T/2

- 3

T/2<t<T—1

24 T4

IA

Applying (26) to the above and then using T4+ logT <
1/(2(g* — 1)), we see the second statement of Lemma 5.

Proof of Lemma 6: Fork=1,...,T — 1
1 T T

DI “

J=T—k+1 j=T—k
1 T T
j=T—k+1 j=T—k
= Z (uj = ur—1)-
k(k + 1) =T—k+1

Summing over k = 1,
get (21).

T — 1, and rearranging terms, we
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