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Abstract We study two learning algorithms generated by kernel partial least squares
(KPLS) and kernel minimal residual (KMR) methods. In these algorithms, regular-
ization against overfitting is obtained by early stopping, which makes stopping rules
crucial to their learning capabilities. We propose a stopping rule for determining the
number of iterations based on cross-validation, without assuming a priori knowledge
of the underlying probability measure, and show that optimal learning rates can be
achieved. Our novel analysis consists of a nice bound for thenumber of iterations in
a priori knowledge-based stopping rule for KMR and a stepping stone from KMR to
KPLS. Technical tools include a recently developed integral operator approach based
on a second order decomposition of inverse operators and an orthogonal polynomial
argument.
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1 Introduction

Thepartial least squares(PLS) method [19] is a popular and effective tool for solving
many statistical and learning problems (e.g. [6]). Its ideais to make use of correla-
tions between input and output vectors for creating orthogonal components while
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keeping variances of input vectors. This is essentially different from the classical
principle component regression which finds orthogonal components solely by input
vectors. Kernelizing PLS [17] benefits in allowing nonlinear features of data, while
avoiding to solve nonlinear optimization problems. The method of kernel partial least
squares (KPLS) has been widely used in gene sequence analysis, image processing,
face recognition, and many other applications [13]. We refer the readers to [11,17,2]
for the existing literature on its theory, implementations, and applications.

Some error analysis of KPLS for regression has been carried out in the literature
[2,3]. This paper aims at optimal learning rates of KPLS and answering an open
question raised in [3]. As a kernel method [8] stated in termsof a reproduced kernel
Hilbert space(RKHS) (HK ,‖ · ‖K) induced by a Mercer kernelK : X ×X → R

on a compact metric spaceX (input space), KPLS can be defined [2] for a sample
D = {(xi ,yi)}N

i=1 ⊂ X ×Y with the output spaceY ⊂ R and a nonnegative integer

parametermby f [0]
D,0 = 0 and

f [0]
D,m = argminf∈Km(K,D)‖y− f (x)‖ℓ2, m≥ 1, (1)

where theℓ2-norm is taken inRN for the difference of the vectorsy := (y1, . . . ,yN)T ,
and f (x) := ( f (x1), . . . , f (xN))T , and the minimization is taken over the Krylov sub-
space

Km(K,D) := span
{

fK,D,LK,D fK,D, . . . ,(LK,D)m−1 fK,D
}

(2)

of HK generated by the data dependent initial function

fK,D :=
1
N

N

∑
i=1

yiK(·,xi) (3)

and anempirical integral operator LK,D defined by

LK,D f =
1
N

N

∑
i=1

f (xi)K(·,xi), f ∈ HK . (4)

KPLS consists of a sequence{ f [0]
D,m}m of output functions defined by (1). A major

advantage of this method is its iterative nature [2] and easyimplementation (com-
pared with kernel regularized least squares [4] and kernel principle components anal-
ysis [15]): the output functions as linear combinations of{Kxi}N

i=1 can be computed
in terms of their coefficient vectors by only using forward multiplication of vectors
by the Gramian matrixK := [K(xi ,x j)]

N
i, j=1.

A crucial component of KPLS is to determinem, the number of iterations, by
some stopping rules which is equivalent to a regularization, as for some other iterative
methods such as kernel gradient descent algorithms [21]. Two nice stopping rules
were proposed in [2] to ensure universal consistency of the algorithm. However, there
lacks concrete learning rates, which was raised as an open question in [3]. Different
from previous work on early stopping of iterative algorithms [21,3,16,10] requiring
priori knowledge of the regression problem, we devote in this paper our main analysis
to learning rates of KPLS equipped with a posteriori selection of m based on cross-
validation, and answering the open question raised in [3].
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Our error analysis is based on an equivalence between KPLS and a kernel con-
jugate gradient (KCG) algorithm [7,2], an orthogonal polynomial approach of KCG
[11], and a recently developed integral operator approach [14,10]. Our key novelty is
a stepping stone to error bounds for KPLS from those for thekernel minimal residual
(KMR) method [11, Section 2.2], a special kernel conjugate gradient method defined

with theℓ2 norm in (1) replaced by theK-norm asf [1]
D,0 = 0 and

f [1]
D,m = argminf∈Km(K,D)‖LK,D f − fK,D‖K , m≥ 1, (5)

and a nice bound for the number of iterations in a priori knowledge-based stopping
rule for KMR. As a byproduct, we derive the optimal learning rate of KMR equipped
with cross-validation, which improves the learning rate in[3] from an almost optimal
one (with a logarithmic factor) to an optimal one.

2 Main Results

Our main results are stated in a standard learning theory framework for regression
[8]. Let D = {zi}N

i=1 = {(xi ,yi)}N
i=1 be drawn independently according to a Borel

probability measureρ on Z := X ×Y . Let ρX be the marginal distribution ofρ
on X and (L2

ρX
,‖ · ‖ρ) be the Hilbert space ofρX square integrable functions on

X . The primary objective of our study on KPLS for regression isto investigate the
convergence of the KPLS estimator, measured in theL2

ρX
-distance, to the regression

function fρ defined byfρ(x) =
∫
Y

ydρ(y|x), whereρ(y|x) denotes the conditional
distribution atx induced byρ . Throughout the paper we assume for some constant
M > 0 that|y| ≤ M almost surely. This implies thatfρ is supported on[−M,M]. It is
then natural for us to project an output functionf : X →R onto the interval[−M,M]
by the projection operatorπM defined [20] by

πM f (x) =





f (x), if −M ≤ f (x) ≤ M,
M, if f (x) > M,
−M, if f (x) < −M.

We now give ourstopping rulefor KPLS and KMR by using across-validation
method [5] to determine the number of iterations in (1) or (5). Throughout the paper
we assume that the data sizeN is even and the data setD is the disjoint union of
two data subsets,D1 (the training set) andD2 (the validation set), of equal cardinality
|D1| = |D2| = N/2.

Definition 1 Let v ∈ {0,1} and{ f [v]
D1,m}2N−1

m=0 be given with the training data subset
D1 by (1) for KPLS or (5) for KMR. We define the stopping rule as thestopping
iterationm∗ by means of the validation setD2 by

m∗ = arg min
0≤m≤2N−1

1
|D2| ∑

zi∈D2

(
πM f [v]

D1,m(xi)−yi

)2
. (6)
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The final estimator for regression is given byπM f [v]
D1,m∗ . Our error analysis esti-

mates the convergence of this estimator tofρ under assumptions on the regularity of
the target functionfρ and complexity of the hypothesis spaceHK .

Our regularization conditionfor fρ is defined in terms of the integral operatorLK

onL2
ρX

associated with the Mercer kernelK given by

LK( f ) =

∫

X
f (x)K(·,x)dρX .

It takes the following form as in [1,4,18,12]

fρ = Lr
K(hρ) for somer > 0 andhρ ∈ L2

ρX
, (7)

whereLr
K denotes ther-th power of the compact positive operatorLK onL2

ρX
.

Thecomplexityof HK with respect toρX is measured by theeffective dimension
N (λ ) defined to be the trace of the operator(λ I +LK)−1LK , i.e.,

N (λ ) = Tr((λ I +LK)−1LK), λ > 0.

Our complexity condition is given by quantitative increment of the effective dimen-
sionN (λ ) with a parameter 0< s≤ 1 and a constantC0 > 0 as

N (λ ) ≤C0λ−s, ∀λ > 0. (8)

Now we can state our main results which will be proved in Section 5. Here the

error estimates with the indexv= 0 are for the KPLS estimatorπM f [0]
D1,m∗ while those

with v = 1 are for the KMR estimatorπM f [1]
D1,m∗ .

Theorem 1 Assume (7) with r≥ 1/2 and (8) with0 < s≤ 1. Let v∈ {0,1} and
choose m∗ by (6). Then for any0 < δ < 1, with confidence at least1−δ , there holds

‖πM f [v]
D1,m∗ − fρ‖2

ρ ≤C

(
N− 2r

2r+s log6 12
δ

+
logN

N

)
, (9)

where C is a constant depending only on‖hρ‖ρ , r, s, C0, M, andκ :=
√

supx∈X K(x,x).
Moreover, we have

E
[
‖πM f [v]

D1,m∗ − fρ‖2
ρ

]
= O

(
N− 2r

2r+s

)
. (10)

By [4, Theorem 3], the learning rate in (10) withv= 0 for KPLS is optimal in the
minimax sense.

Consider the casev = 1 for KMR. A learning rate which is almost optimal was
presented in [3]. To be more specific, under conditions (7) and (8), it was proved in
[3] that if m̃ is the smallest positive integer satisfying

‖LK,D f [1]
D,m− fK,D‖K ≤ c0Mκ

(
4
√

c0κ−s

√
|D|

log
6
δ

) 2r+1
2r+s

(11)
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for some constantc0 > 3/2, then with confidence 1− δ , there holds

‖ f [1]
D,m̃− fρ‖2

ρ ≤C′|D|−2r/(2r+s) log
4r

2r+s(6/δ ), (12)

whereC′ is a constant independent ofδ or |D|. Since the stopping rule (11) depends
on the confidence levelδ , the error bound (12) yields only an almost optimal learn-
ing rate with an additional logarithmic factor rather than the optimal learning rate for
KMR. This was pointed out in [3, Section 5]. Furthermore, twoopen questions were
raised in [3] about how to removeδ in the stopping rule (11) while achieving the op-
timal learning rate and how to get optimal learning rates forKPLS. In Theorem 1, we
show that if a cross-validation based parameter selection strategy is employed, then
both questions are answered successfully and optimal learning rates are achieved.

3 Stepping Stone from KMR to KPLS

In this section, we present a stepping stone from KMR to KPLS (Theorem 2 below)
which will help us to achieve optimal learning rates for KPLSfrom those for KMR.

It aims at bounding the norm‖ f [0]
D,m̂− fρ‖ρ for the error of KPLS by‖ f [1]

D,m̂− fρ‖ρ
for the error of KMR. Here ˆm = m̂ρ ,K,D,λ is an early stopping rule depending on
priori knowledge of the probability measureρ and an auxiliary positive numberλ
which plays the role of a regularization parameter to be determined for getting explicit
learning rates later.

To introduce the priori knowledge-based early stopping rule m̂, we need three
quantities defined in terms of a parameterλ > 0 as

PD,λ = ‖(LK + λ I)−1/2( fK,D −LK,D fρ))‖K , (13)

QD,λ = ‖(LK + λ I)(LK,D + λ I)−1‖1/2, (14)

RD = ‖LK,D −LK‖. (15)

HereLK,D andLK are regarded as positive compact operators onHK . Then under
the regularity condition (7), ˆm is selected to be the smallest nonnegative integerm
satisfying

‖LK,D f [1]
D,m− fK,D‖K ≤ λ

1
2 Λρ ,λ ,r , (16)

whereΛρ ,λ ,r is a quantity depending onρ ,K,D,λ , r given by

Λρ ,λ ,r =





max
{

3QD,λ PD,λ ,3(4r +2)r+1/2Q2r−1
D,λ ‖hρ‖ρλ r

}
, if 1/2≤ r ≤ 3/2,

max

{
3QD,λ PD,λ ,3(4r +2)r+1/2‖hρ‖ρ λ r ,

6(r −1/2)κ2r−3‖hρ‖ρλ 1/2RD

}
, if r > 3/2.

(17)

Now our stepping stone can be stated as follows.
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Theorem 2 Assume the regularity condition (7). If̂m is the smallest nonnegative
integer satisfying (16), then we have

‖ f [0]
D,m̂− fρ‖ρ ≤ ‖ f [1]

D,m̂− fρ‖ρ +20QD,λΛρ ,λ ,r . (18)

Theorem 2 will be proved at the end of this section by an orthogonal polynomial
argument described for conjugate gradient type methods in [11] and for KPLS and

KMR in [3]. The existence ofm satisfying (16) follows from limm→∞ ‖LK,D f [1]
D,m−

fK,D‖K = 0, a limit proved in [11, Chapter 3] under the condition thatfK,D lies in the
range of the operatorLK,D. This condition is verified in the following lemma which
is well understood in the literature [1,15,9]. We give the proof for completeness.

Lemma 1 DenoteHK,x = span{K(·,xi)}N
i=1 for D ∈ Z N. Then fK,D ∈ HK,x. The

spaceHK,x equals the range of LK,D and is spanned by all eigenfunctions of LK,D

with positive eigenvalues. Its dimension equals the rank dx of the Gramian matrixK.

Proof Consider the linear mapF from R
N to (HK,x,‖ · ‖K) defined byF (c) =

∑N
i=1ciK(·,xi). It is onto, so its range isHK,x. A vectorc lies in the kernel of this

map if and only if‖∑N
i=1ciK(·,xi)‖2

K = cT
Kc = 0, i.e.,c is an eigenvector ofK with

eigenvalue 0. So the kernel of this map is exactly the same as the eigenspace of the
matrixK with eigenvalue 0 which has dimensionN−dx. It follows that the range of
F , HK,x, has dimensiondx.

Let {(σx
i ,φx

i )}i be a set of normalized eigenpairs ofLK,D with the eigenfunctions
{φx

i }i forming an orthonormal basis ofHK andσx
1 ≥ σx

2 ≥ . . . ≥ 0. It is well known
(see e.g. [9]) that the rankdx of K is the same as the number of positive eigenvalues
of LK,D. That is,σx

1 ≥ σx
2 ≥ σx

dx
> 0 andσx

i = 0 for i ≥ dx + 1. Hence for each

i ∈ {1, . . . ,dx}, φx
i = 1

σx
i
LK,D(φx

i ) lies in the range ofLK,D which is contained inHK,x

by the definition ofLK,D. Therefore, the range ofLK,D equalsHK,x and{φx
i }dx

i=1 forms
an orthonormal basis.

To prove Theorem 2, we introduce another auxiliary functiondefined by regular-

izing (1) and (5) asf [2]
D,0 = 0 and

f [2]
D,m = argminf∈Km(K,D)‖L1/2

K,D(LK,D f − fK,D)‖K , m≥ 1. (19)

As an element inKm(K,D), each off [0]
D,m, f [1]

D,m, f [2]
D,m can be expressed as

f [u]
D,m = q[u]

m−1(LK,D) fK,D, u∈ {0,1,2}, m∈ N0, (20)

whereq[u]
−1 = 0, q[u]

m−1 = q[u]
m−1,D is a polynomial of degree at mostm−1 andN0 =

N∪{0} is the set of nonnegative integer. The polynomialq[u]
m−1 depends on the sample

value vectory, which makes KPLS or KMR essentially different from kernel spectral
algorithms [15].

For eachu∈ {0,1,2}, let

p[u]
m (t) = 1− tq[u]

m−1(t), m∈ N0 (21)
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be the companion polynomial ofq[u]
m−1. Note that the constant term ofp[u]

m is 1. We
have

‖LK,D f [u]
D,m− fK,D‖2

K =
∥∥∥
(

I −LK,Dq[u]
m−1(LK,D)

)
fK,D

∥∥∥
2

K
= [p[u]

m , p[u]
m ][0], (22)

where the inner product[·, ·][0] is defined (withv = 0) for polynomialsφ andψ by

[φ ,ψ ][v] = 〈φ(LK,D) fK,D,Lv
K,Dψ(LK,D) fK,D〉K , v∈ {0,1,2}. (23)

The following two lemmas found in [11] describe some properties of p[u]
m and

q[u]
m−1.

Lemma 2 Let m∈ N0. The following identities hold

(p[1]
m )′(0)− (p[1]

m+1)
′(0) =

[p[1]
m , p[1]

m ][0] − [p[1]
m+1, p[1]

m+1][0]

[p[2]
m , p[2]

m ][1]

, (24)

(p[1]
m+1)

′(0)− (p[0]
m+1)

′(0) =
[p[1]

m+1, p[1]
m+1][0]

[p[2]
m , p[2]

m ][1]

, (25)

p[2]
m (t) =

p[1]
m+1(t)− p[0]

m+1(t)

t[(p[1]
m+1)

′(0)− (p[0]
m+1)

′(0)]
, ∀ 0 < t ≤ κ2, (26)

where(p[1]
m+1)

′(0) 6= (p[0]
m+1)

′(0).

The above three identities are stated in Corollary 2.6, Corollary 2.9, and Proposi-
tion 2.8 of [11].

Lemma 3 Let u∈ {0,1,2},m∈ N, and{t [u]
k,m}m

k=1 be the simple zeros of p[u]
m in the

increasing order. Then the following statements hold

0 < t [u]
k,m < t [u]

k,m−1 < t [u]
k+1,m, for m≥ 2, (27)

t [0]
k,m < t [1]

k,m < t [2]
k,m, (28)

q[u]
m−1(0) = −(p[u]

m )′(0) =
m

∑
k=1

(t [u]
k,m)−1 = max

0≤t≤t
[u]
1,m

q[u]
m−1(t), (29)

q[u]
m−1(0) ≤ q[u]

m (0) ≤ (t [u]
1,m+1)

−1 +q[u]
m−1(0). (30)

The first two statements above are stated in Corollary 2.7 of [11], while the last

two follow from the first statement and the representation ofp[u]
m in terms of its con-

stant term 1 and zeros as

p[u]
m (t) =

m

∏
k=1

(
1− t/t [u]

k,m

)
, m∈ N. (31)

To prove Theorem 2, we need the following proposition which will be proved in
the appendix.
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Proposition 1 Assume (7). Letλ > 0 andm̂ be the smallest nonnegative integer sat-
isfying (16). Ifm̂≥ 1, then

|(p[1]
m̂−1)

′(0)| ≤ 3
λ

, (32)

and for v∈ {1,2}, with ε = λ/3, we have

∥∥∥Fε

[
p[v]

m̂−1(LK,D) fK,D

]∥∥∥
K
≤ 1

2
[p[1]

m̂−1, p[1]
m̂−1]

1/2
[0]

,

where forµ > 0, Fµ denotes the orthogonal projection onto the subspace ofHK

spanned by the eigenvectors of LK,D associated with eigenvalues strictly less thanµ .

We are now in a position to prove the main result of this section.

Proof of Theorem 2.It is obvious that (18) holds when ˆm= 0, sincef [0]
D,0 = f [1]

D,0 = 0.
We then prove (18) when ˆm≥ 1. Observe from the identity (26) that

q[0]
m̂−1(t)−q[1]

m̂−1(t) =
p[1]

m̂ (t)− p[0]
m̂ (t)

t
=
[
(p[1]

m̂ )′(0)− (p[0]
m̂ )′(0)

]
p[2]

m̂−1(t).

It follows that

f [0]
D,m̂− f [1]

D,m̂ =
(

q[0]
m̂−1(LK,D)−q[1]

m̂−1(LK,D)
)

fK,D

=
[
(p[1]

m̂ )′(0)− (p[0]
m̂ )′(0)

]
p[2]

m̂−1(LK,D) fK,D.

Combining this with (25) yields

f [0]
D,m̂− f [1]

D,m̂ =
[p[1]

m̂ , p[1]
m̂ ][0]

[p[2]
m̂−1, p[2]

m̂−1][1]

p[2]
m̂−1(LK,D) fK,D. (33)

By the identity‖ f‖ρ = ‖L1/2
K f‖K for f ∈ L2

ρX
and the relation‖L1/2

K (LK +λ I)−1/2‖≤
1, we have

∥∥∥p[2]
m̂−1(LK,D) fK,D

∥∥∥
ρ

=
∥∥∥L1/2

K p[2]
m̂−1(LK,D) fK,D

∥∥∥
K

≤
∥∥∥(LK + λ I)1/2p[2]

m̂−1(LK,D) fK,D

∥∥∥
K

.

Recall (see e.g. [3, Lemma A.7]) that for any positive operatorsU andV on a Hilbert
space, there holds

‖UαVα‖ ≤ ‖UV‖α = ‖VU‖α , ∀α ∈ (0,1]. (34)

Applying this withα = 1/2 yields
∥∥∥p[2]

m̂−1(LK,D) fK,D

∥∥∥
ρ
≤ QD,λ

∥∥∥(L1/2
K,D + λ 1/2I)p[2]

m̂−1(LK,D) fK,D

∥∥∥
K

≤ QD,λ

{
[p[2]

m̂−1, p[2]
m̂−1]

1/2
[1] + λ 1/2[p[2]

m̂−1, p[2]
m̂−1]

1/2
[0]

}
, (35)
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where we have expressed‖p[2]
m̂−1(LK,D) fK,D‖K and‖L1/2

K,D p[2]
m̂−1(LK,D) fK,D‖K by the

definition of [·, ·][u]. To continue, we bound[p[2]
m̂−1, p[2]

m̂−1][0] by [p[2]
m̂−1, p[2]

m̂−1][1] by ap-
plying Proposition 1 withv = 2 and obtain withε = λ/3,

[p[2]
m̂−1, p[2]

m̂−1]
1/2
[0]

= ‖p[2]
m̂−1(LK,D) fK,D‖K

≤ ‖Fε p[2]
m̂−1(LK,D) fK,D‖K +‖F⊥

ε p[2]
m̂−1(LK,D) fK,D‖K

≤ 1
2
[p[1]

m̂−1, p[1]
m̂−1]

1/2
[0]

+ ε−1/2‖F⊥
ε p[2]

m̂−1(LK,D)L1/2
K,D fK,D‖K

≤ 1
2
[p[1]

m̂−1, p[1]
m̂−1]

1/2
[0]

+ ε−1/2[p[2]
m̂−1, p[2]

m̂−1]
1/2
[1]

,

whereF⊥
µ = I −Fµ . Sincef [1]

D,m̂−1 minimizes‖LK,D f − fK,D‖K overKm̂−1(K,D) and

f [2]
D,m̂−1 ∈ Km̂−1(K,D), we know that

[p[1]
m̂−1, p[1]

m̂−1][0] = ‖LK,D f [1]
D,m̂−1− fK,D‖2

K ≤ ‖LK,D f [2]
D,m̂−1− fK,D‖2

K = [p[2]
m̂−1, p[2]

m̂−1][0].

It follows that

[p[2]
m̂−1, p[2]

m̂−1]
1/2
[0] ≤ 1

2
[p[2]

m̂−1, p[2]
m̂−1][0] + ε−1/2[p[2]

m̂−1, p[2]
m̂−1]

1/2
[1]

which implies

[p[2]
m̂−1, p[2]

m̂−1]
1/2
[0] ≤ 2ε−1/2[p[2]

m̂−1, p[2]
m̂−1]

1/2
[1] . (36)

This together with (35) yields
∥∥∥p[2]

m̂−1(LK,D) fK,D

∥∥∥
ρ
≤ 5QD,λ [p[2]

m̂−1, p[2]
m̂−1]

1/2
[1]

.

Putting this estimate into (33), we get

∥∥∥ f [0]
D,m̂− f [1]

D,m̂

∥∥∥
ρ
≤

[p[1]
m̂ , p[1]

m̂ ][0]

[p[2]
m̂−1, p[2]

m̂−1][1]

5QD,λ [p[2]
m̂−1, p[2]

m̂−1]
1/2
[1]

.

Recall thatf [1]
D,m̂ minimizes‖LK,D f − fK,D‖K overKm̂(K,D) and f [2]

D,m̂−1 ∈Km̂(K,D),
we see again that

[p[1]
m̂ , p[1]

m̂ ]
1
2
[0]

= ‖LK,D f [1]
D,m̂− fK,D‖K ≤ ‖LK,D f [2]

D,m̂−1− fK,D‖K = [p[2]
m̂−1, p[2]

m̂−1]
1
2
[0]

.

It can be further bounded by 4λ− 1
2 [p[2]

m̂−1, p[2]
m̂−1]

1
2
[1]

according to (36). Hence,

‖ f [0]
D,m̂− f [1]

D,m̂‖ρ ≤ [p[1]
m̂ , p[1]

m̂ ]
1
2
[0]

20QD,λ λ− 1
2 .

Finally, we use the choice of ˆm by (16) and bound the norm[p[1]
m̂ , p[1]

m̂ ]
1
2
[0]

as

[p[1]
m̂ , p[1]

m̂ ]
1
2
[0] = ‖LK,D f [1]

D,m̂− fK,D‖K ≤ λ 1/2Λρ ,λ ,r .

Then the desired estimate follows from the triangle inequality

‖ f [0]
D,m̂− fρ‖ρ ≤ ‖ f [1]

D,m̂− fρ‖ρ +‖ f [0]
D,m̂− f [1]

D,m̂‖ρ .

The proof of Theorem 2 is complete. �
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4 Learning Rates of Priori Knowledge Based Algorithms

In this section, we use our recently developed integral operator approach [14,10] to
derive the following learning rates for the KPLS (withv = 0) and KMR (withv = 1)
algorithms with the early stopping rule (16) based on prioriknowledge.

Theorem 3 Assume (7) with r≥ 1/2. Letm̂ be the smallest nonnegative integer sat-
isfying (16) withλ = κ2|D|−1/(2r+s). If (8) is satisfied for some0 < s≤ 1, then for
v∈ {0,1} and any0 < δ < 1, with confidence at least1− δ , there holds

‖ f [v]
D,m̂− fρ‖ρ ≤ Ĉ log3(6/δ )|D|−r/(2r+s). (37)

HereĈ is a constant depending only onκ , C0, s,‖hρ‖ρ , M, and r.

Theorem 3 will be proved at the end of this section: we shall first provide the
learning rates for KMR, and then apply the stepping stone from KMR to KPLS es-
tablished in the previous section to get the learning rates for KPLS.

The main tools of our analysis include the following upper bound for|(p[1]
m̂ )′(0)|,

to be proved in the appendix, and an error decomposition technique developed in [3].

Proposition 2 Assume the regularization condition (7) with r≥ 1/2. Let λ > 0 and
m̂ be the smallest nonnegative integer satisfying (16). Thenwe have

|(p[1]
m̂ )′(0)| ≤ 15λ−1 (38)

and

‖ f [1]
D,m̂− fρ‖ρ ≤ 32QD,λ Λρ ,λ ,r .

To prove Theorem 3, we need the following bounds forQD,λ ,PD,λ andRD.

Lemma 4 Let D be a sample drawn independently according toρ and0 < δ < 1.
Then each of the following estimates holds with confidence atleast1− δ ,

QD,λ ≤
2
√

2(κ2 + κ)AD,λ log 2
δ√

λ
+
√

2, (39)

PD,λ ≤ 2(κ2+ κ)AD,λ log
(
2/δ

)
, (40)

RD ≤ 2κ2
√
|D|

log
2
δ

, (41)

where

A|D|,λ =
1√
|D|

{
1√
|D|λ

+
√

N (λ )

}
. (42)
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The proofs of (40), (41) and (39) can be found in [4], [21] and [10], respectively.
Compared with the suboptimal learning rates in [3], the mainreason why we can
derive optimal learning rates for KMR is the tight norm estimate (39) forQD,λ based
on a second order decomposition of operator differences presented in [14]. In fact, an
upper bound forQD,λ was presented in [3, Lemma A.5] asserting that if

‖(LK + λ I)−1/2(LK,D −LK)(LK + λ I)−1/2‖ < 1−η (43)

for some 0< η < 1, then

‖(λ I +LK)1/2(λ I +LK,D)−1/2‖ ≤ 1√
η

.

Since(LK +λ I)−1/2(LK,D −LK)(LK +λ I)−1/2 is a random variable, (43) holds only
with confidence. So the restriction 0< η < 1 requires the sample size|D| to be large
enough, which imposes a logarithmic factor in the error estimates for KMR given in
[3]. Our estimate (39) removes this restriction and provides a powerful tool to derive
optimal learning rates for KMR.

Proof of Theorem 3.Sincer +s≥ 1/2, we have fromλ = κ2|D|−1/(2r+s) and (8) that

AD,λ ≤ 1√
|D|

{
|D|− 1

2 |D| 1
4r+2s κ−1+

√
C0|D| s

4r+2s κ−s
}
≤ (κ−1+κ−s

√
C0)|D|− r

2r+s .

It follows from r ≥ 1/2 and (39) that there exists a subsetZ N
δ of Z N with measure

at least 1− δ such that forD ∈ Z N
δ ,

QD,λ ≤ 2
√

2(κ +1)(κ−1+ κ−s)|D|−
r+1/2
2r+s log

2
δ

+
√

2≤C1 log
2
δ

,

where
C1 := 2

√
2(
√

C0 +1)(κ +1)(κ−1+ κ−s)+
√

2.

Furthermore, (40) and (41) tell us that there exist two subsets (Z N
δ )′ and(Z N

δ )′′ of
Z N with measures at least 1− δ such that

PD,λ ≤ C2|D|− r
2r+s log

2
δ

, ∀D ∈ (Z N
δ )′,

RD ≤ 2κ2|D|−1/2 log
2
δ

, ∀D ∈ (Z N
δ )′′,

where
C2 := 2κ(κ +1)(κ−1+ κ−s)(

√
C0 +1).

Putting all the above bounds forQD,λ ,PD,λ ,RD into the expression (17) forΛρ ,λ ,r ,
we know that for12 ≤ r ≤ 3

2 andD ∈ Z N
δ ∩ (Z N

δ )′,

QD,λ Λρ ,λ ,r ≤ 3(Q2
D,λ PD,λ +(4r +2)r+1/2

Q
2r
D,λ λ r‖hρ‖ρ) ≤C3|D|− r

2r+s log3 2
δ

,
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while for r > 3/2 andD ∈ Z N
δ ∩ (Z N

δ )′∩ (Z N
δ )′′,

QD,λ Λρ ,λ ,r ≤ 3Q
2
D,λ PD,λ +3(4r +2)r+1/2‖hρ‖ρλ r

QD,λ

+6(r −1/2)κ2r−3‖hρ‖ρ λ 1/2
QD,λ RD ≤C4|D|− r

2r+s log3 2
δ

,

where

C3 := 3(C2
1C2 +(4r +2)r+1/2κ2r‖hρ‖ρC2r

1 ),

C4 := 3C2
1C2 +3(4r +2)r+1/2C1κ2r‖hρ‖ρ +12(r − 1

2
)κ3r−1‖hρ‖ρ .

For v = 1 corresponding to KMR, we apply Proposition 2 with the stopping rule
(16) and find

‖ f [1]
D,m̂− fρ‖ρ ≤ 32QD,λ Λρ ,λ ,r .

Forv = 0 corresponding to KPLS, we apply Theorem 2 and Proposition 2and find

‖ f [0]
D,m̂− fρ‖ρ ≤ ‖ f [1]

D,m̂− fρ‖ρ +20QD,λ Λρ ,λ ,r ≤ 52QD,λ Λρ ,λ ,r .

But our derived bounds forQD,λ Λρ ,λ ,r can be stated as

QD,λ Λρ ,λ ,r ≤
{

C3|D|− r
2r+s log3 2

δ , ∀D ∈ Z N
δ ∩ (Z N

δ )′, if 1
2 ≤ r ≤ 3

2,

C4|D|− r
2r+s log3 2

δ , ∀D ∈ Z N
δ ∩ (Z N

δ )′∩ (Z N
δ )′′, if r > 3

2.

Observe that the subsetZ N
δ ∩ (Z N

δ )′ ∩ (Z N
δ )′′ of Z N has measure at least 1−3δ .

Scalingδ to δ/3 and settingĈ = 52max{C3,C4}, we know that forv∈ {0,1}, with
confidence at least 1− δ , there holds forr ≥ 1/2,

‖ f [v]
D,m̂− fρ‖ρ ≤ Ĉ|D|− r

2r+s log3 6
δ

.

This verifies the learning rates for KMR (v = 1) and KPLS (v = 0). The proof of
Theorem 3 is complete. �

5 Proving Main Results

Theorem 3 gave learning rates of the KMR and KPLS algorithms with the stopping
rule (16) based on priori knowledge. In this section we use these learning rates and
the following lemma stated in [5, Proposition 11] to prove the optimal learning rates
for KPLS and KMR equipped with cross-validation.

Lemma 5 Let {ξi}n
i=1 be a sequence of real valued independent random variables

with meanµ , satisfying|ξi | ≤ B and E[(ξi − µ)2] ≤ τ2 for i ∈ {1,2, . . . ,n}. Then for
any a> 0 andε > 0, there hold

P

[
1
n

n

∑
i=1

ξi − µ ≥ aτ2 + ε

]
≤ e−

6naε
3+4aB ,



Optimal Learning Rates for Kernel Partial Least Squares 13

and

P

[
µ − 1

n

n

∑
i=1

ξi ≥ aτ2 + ε

]
≤ e−

6naε
3+4aB .

We also need the following inequalities for the zeros{t [1]
k,m}m

k=1 of the polynomial

p[1]
m of degreem∈N and the normκ2 of the operatorLK,D which can be found in [11,

page 18]:

0 < t [1]
1,m < .. . < t [1]

m,m ≤ κ2. (44)

We are in a position to prove our main results.

Proof of Theorem 1.Recall that the data setD of even sizeN is the disjoint union
of two data subsets,D1 andD2, of equal cardinality|D1| = |D2| = N/2. We divide
our proof into three steps. The training setD1 is used for defining the sequences

{ f [v]
D1,m}m∈N by (1) for KPLS withv = 0 and by (5) for KMR withv = 1. The valida-

tion setD2 will be used for estimating the sample error in the second step. In the first

step, we setλ = κ2|D1|−
1

2r+s in the priori knowledge-based stopping rule (16). Let
v∈ {0,1}.
Step 1. Boundinĝm by2N− 1. It is sufficient for us to bound ˆm by 2N− 1 when
m̂≥ 1. In this case, we apply Proposition 1 and find

|(p[1]
m̂−1)

′(0)| ≤ 3
λ

= 3κ−2|D1|
1

2r+s .

On the other hand,|(p[1]
m̂−1)

′(0)| can be expressed in terms of the zeros{t [1]
k,m̂−1}m̂−1

k=1

of the polynomialp[1]
m̂−1 as (29). It then follows from (44) that

|(p[1]
m̂−1)

′(0)| =
m̂−1

∑
k=1

(t [1]
k,m̂−1)

−1 ≥ (m̂−1)κ−2.

Combining the above upper and lower bounds for|(p[1]
m̂−1)

′(0)| yields

m̂≤ κ2|(p[1]
m̂−1)

′(0)|+1≤ 3|D1|
1

2r+s +1 < 3
|D|
2

+1≤ 2|D| = 2N.

Som̂≤ 2N−1. This proves that ˆm is bounded by 2N.
Step 2. Bounding the sample error for deriving learning rates. Fix D1 and m ∈
{0,1, . . . ,2N− 1}. Write the validation set asD2 = {(xi+N/2,yi+N/2)}N/2

i=1 . Define a

sequence{ξi}N/2
i=1 of real valued independent random variables by

ξi = (πM f [v]
D1,m(xi+N/2)−yi+N/2)

2− ( fρ(xi+N/2)−yi+N/2)
2.

They have the same mean

E[ξi ] = µm :=
∫

Z

(πM f [v]
D1,m(x)−y)2dρ −

∫

Z

( fρ (x)−y)2dρ =
∥∥∥πM f [v]

D1,m− fρ

∥∥∥
2

ρ
.
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Clearly,|ξi | ≤ 4M2 almost surely and

E[(ξi−µm)2]≤E[ξ 2
i ] =

∫

Z

(πM f [v]
D1,m(x)−y+ fρ(x)−y)2(πM f [v]

D1,m(x)− fρ(x))2dρ ≤ 16M2µm.

Applying Lemma 5 witha= 1/(32M2), B= 4M2 andτ2 = 16M2µ , we know that for

anyε > 0, there exists a subsetZ
N/2

ε,m of Z N/2 with measure at least 1−2exp
{
− 3Nε

128M2

}

such that for everyD2 ∈ Z
N/2

ε,m , there holds
∣∣∣∣∣

2
N ∑

zi∈D2

{(
πM f [v]

D1,m(xi)−yi

)2
− ( fρ(xi)−yi)

2
}
− µm

∣∣∣∣∣≤
µm

2
+ ε. (45)

Now we letmrun over{0,1, . . . ,2N−1}, and know that for everyD2 ∈∩2N−1
m=0 Z

N/2
ε,m ,

the bound (45) holds true for everym∈ {0,1, . . . ,2N−1}.
We first choosem= m∗ ∈ {0, . . . ,2N−1}, and see from (45) that for everyD2 ∈

∩2N−1
m=0 Z

N/2
ε,m ,

µm∗ = ‖πM f [v]
D1,m∗ − fρ‖2

ρ ≤ 4
N ∑

zi∈D2

{(
πM f [v]

D1,m∗(xi)−yi

)2
− ( fρ(xi)−yi)

2
}

+2ε.

According to the stopping rule (6),m∗ minimizes 4
N ∑zi∈D2

(
πM f [v]

D1,m(xi)−yi

)2
over

m∈ {0, . . . ,2N−1}. In particular, since ˆm∈ {0, . . . ,2N− 1} as proved in the first
step, we have

‖πM f [v]
D1,m∗ − fρ‖2

ρ ≤ 4
N ∑

zi∈D2

{(
πM f [v]

D1,m̂(xi)−yi

)2
− ( fρ(xi)−yi)

2
}

+2ε.

We then choosem= m̂ in (45) and see that for everyD2 ∈ ∩2N−1
m=0 Z

N/2
ε,m ,

2
N ∑

zi∈D2

{(
πM f [v]

D1,m̂(xi)−yi

)2
− ( fρ(xi)−yi)

2
}
≤ 3µm̂

2
+ ε.

Combining the above two estimates and notingµm̂ =
∥∥∥πM f [v]

D1,m̂− fρ

∥∥∥
2

ρ
, we know that

for everyD2 ∈ ∩2N−1
m=0 Z

N/2
ε,m ,

‖πM f [v]
D1,m∗ − fρ‖2

ρ ≤ 3
∥∥∥πM f [v]

D1,m̂− fρ

∥∥∥
2

ρ
+4ε.

Since the subset∩2N−1
m=0 Z

N/2
ε,m of Z N/2 has measure at least 1− 4Nexp

{
− 3Nε

128M2

}
,

we take

ε =
128M2

3N
log

4N
δ

,

and see that with confidence at least 1− δ , there holds

‖πM f [v]
D1,m∗ − fρ‖2

ρ ≤ 3‖πM f [v]
D1,m̂− fρ‖2

ρ +
171M2

N
log

4N
δ

.
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This together with Theorem 3 applied to the data subsetD1 implies that with confi-
dence at least 1−2δ ,

‖πM f [v]
D1,m∗ − fρ‖2

ρ ≤ 6Ĉ2N−2r/(2r+s) log6(6/δ )+
171M2

N
log

4N
δ

.

Since log4N
δ ≤ logN+ log 4

δ andN−1 ≤ N−2r/(2r+s), after scaling 2δ to δ , we know
that with confidence at least 1− δ , the bound (9) holds true where the constantC is
given by

C = 6Ĉ2 +171M2.

Step 3. Proving the learning rate (10) in expectation.From the confidence-based error

bound (9), we know that the nonnegative random variableξ = ‖πM f [v]
D1,m∗ − fρ‖2

ρ
satisfies

Prob[ξ > t] ≤ 12exp

{
−
[
C(N− 2r

2r+s +
logN

N
)

]−1/6

t
1
6

}

for anyt > C(log12)6
(

N−2r/(2r+s) + logN
N

)
. Applying this bound to the formula

E[ξ ] =

∫ ∞

0
Prob[ξ > t]dt

for nonnegative random variables, we obtain

E
[
‖πM f [v]

D1,m∗ − fρ‖2
ρ

]
≤ C(log12)6

(
N− 2r

2r+s +
logN

N

)

+12
∫ ∞

0
exp

{
−
[
C(N− 2r

2r+s +
logN

N
)

]−1/6

t
1
6

}
dt.

By a change of variable, we see that the above integration equals

6
[
C(N− 2r

2r+s +N−1 logN
]∫ ∞

0
u5exp{−u}du= 6!

[
C(N− 2r

2r+s +
logN

N

]
.

Hence

E
[
‖πM f [v]

D1,m∗ − fρ‖2
ρ

]
≤
(
(log12)6 +12·6!

)
C

(
N− 2r

2r+s +
logN

N

)
.

Sinces> 0, for some constantCr,s depending only onr andswe haveN
2r

2r+s−1 logN≤
Cr,s for anyN ≥ 2. It follows that

E
[
‖πM f [v]

D1,m∗ − fρ‖2
ρ

]
≤
(
(log12)6+12·6!

)
C(1+Cr,s)N

− 2r
2r+s .

This proves (10). The proof of Theorem 1 is complete. �



16 Shao-Bo Lin, Ding-Xuan Zhou

6 Appendix

This appendix provides technical proofs of two propositions concerning the priori
knowledge based learning algorithms.

Proof of Proposition 1.We start with proving the first statement (32). Sincep[1]
0 (t) = 1

and(p[1]
0 )′(t) = 0 for all t ∈ [0,κ2], (32) holds obviously for ˆm= 1. It then suffices to

prove (32) form̂≥ 2. It was presented in [11, p. 41] (see also [3, p. 16]) that

‖LK,D f [1]
D,m̂−1− fK,D‖K ≤ ‖F

t
[1]
1,m̂−1

φ [1]
m̂−1(LK,D) fK,D‖.

HereF
t[1]
1,m̂−1

φ [1]
m̂−1(LK,D) is the linear operator onHK defined in terms of the orthonor-

mal basis{φx
j } j and the orthogonal projectionF

t[1]
1,m̂−1

by spectral calculus as

F
t
[1]
1,m̂−1

φ [1]
m̂−1(LK,D)

(

∑
j

b jφx
j

)
= ∑

σx
j <t

[1]
1,m̂−1

φ [1]
m̂−1(σ

x
j )b jφx

j ,

whereφ [1]
m̂−1(t) is the function defined on[0, t [1]

1,m̂−1) by

φ [1]
m̂−1(t) = p[1]

m̂−1(t)


 t [1]

1,m̂−1

t [1]
1,m̂−1− t




1/2

, 0≤ t < t [1]
1,m̂−1.

Then we decomposefK,D as fK,D −LK,D fρ +LK,D fρ and bound the norm as

‖LK,D f [1]
D,m̂−1− fK,D‖K ≤ ‖F

t
[1]
1,m̂−1

φ [1]
m̂−1(LK,D)( fK,D −LK,D fρ)‖K

+‖F
t
[1]
1,m̂−1

φ [1]
m̂−1(LK,D)LK,D fρ‖K =: I + II . (46)

We continue our estimates by bounding the first termI . Applying (34) withα =
1/2 gives

I = ‖F
t
[1]
1,m̂−1

φ [1]
m̂−1(LK,D)(LK,D + λ I)1/2(LK,D + λ I)−1/2(LK + λ I)1/2

(LK + λ I)−1/2( fK,D −LK,D fρ )‖K

≤ ‖F
t
[1]
1,m̂−1

φ [1]
m̂−1(LK,D)(LK,D + λ I)1/2‖QD,λ PD,λ

≤



 sup
t∈[0,t

[1]
1,m̂−1)

t1/2|φ [1]
m̂−1(t)|+ λ 1/2 sup

t∈[0,t
[1]
1,m̂−1)

|φ [1]
m̂−1(t)|



QD,λ PD,λ .

Furthermore, the representation (31) forp[1]
m̂−1 and the definition ofφ [1]

m̂−1 yield

|φ [1]
m̂−1(t)| =

∣∣∣∣∣(1− t/t [1]
1,m̂−1)

1/2
m̂−1

∏
k=2

(1− t/t [1]
k,m̂−1)

∣∣∣∣∣≤ 1, ∀ 0≤ t < t [1]
1,m̂−1.



Optimal Learning Rates for Kernel Partial Least Squares 17

It was shown in [11, Equation (3.10)] that for an arbitraryν > 0,

sup
t∈[0,t

[1]
1,m̂−1)

tν(φ [1]
m̂−1(t))

2 ≤ νν |(p[1]
m̂−1)

′(0)|−ν . (47)

Combining the above three bounds yields an estimate for the first term of (46) as

I ≤ (|(p[1]
m̂−1)

′(0)|−1/2 + λ 1/2)QD,λ PD,λ . (48)

We now turn to the second termII of (46). By the regularity condition (7) for

fρ = Lr
Khρ and the identity‖L1/2

K hρ‖K = ‖hρ‖ρ , we find

II ≤ ‖F
t
[1]
1,m̂−1

φ [1]
m̂−1(LK,D)LK,DLr−1/2

K ‖‖hρ‖ρ ≤ ĨI ‖hρ‖ρ , (49)

where for simplicity we denote the norm as

ĨI := ‖F
t
[1]
1,m̂−1

φ [1]
m̂−1(LK,D)LK,D(LK + λ I)r−1/2‖.

When 1/2 ≤ r ≤ 3/2, we express(LK + λ I)r−1/2 as (LK,D + λ I)r−1/2(LK,D +

λ I)1/2−r(LK + λ I)r−1/2 and apply (34) withα = r −1/2 to get

ĨI ≤ ‖F
t[1]
1,m̂−1

φ [1]
m̂−1(LK,D)LK,D(LK,D + λ I)r−1/2‖Q2r−1

D,λ . (50)

Whenr > 3/2, we decompose the operator(LK + λ I)r−1/2 in ĨI as

(LK,D + λ I)r−1/2+
{
(LK + λ I)r−1/2− (LK,D + λ I)r−1/2

}
.

The bounds‖LK,D‖ ≤ κ2, ‖LK‖ ≤ κ2, and the Lipschitz property of the function
x 7→ xr−1/2 imply

‖Lr−1/2
K,D −Lr−1/2

K ‖ ≤ (r −1/2)κ2r−3‖LK,D −LK‖. (51)

Hence

ĨI ≤ ‖F
t
[1]
1,m̂−1

φ [1]
m̂−1(LK,D)LK,D(LK,D + λ I)r−1/2‖

+‖F
t
[1]
1,m̂−1

φ [1]
m̂−1(LK,D)LK,D‖(r −1/2)κ2r−3

RD.

Combining this with (50) and the following norm estimate with γ,β ≥ 0,

‖F
t
[1]
1,m̂−1

φ [1]
m̂−1(LK,D)Lγ

K,D(LK,D + λ I)β‖ = sup
t∈[0,t

[1]
1,m̂−1)

{
tγ(t + λ )β

∣∣∣φ [1]
m̂−1(t)

∣∣∣
}

≤ 2β max
{
(2γ +2β )γ+β |(p[1]

m̂−1)
′(0)|−(γ+β ),λ β (2γ)γ |(p[1]

m̂−1)
′(0)|−γ

}
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derived from spectral calculus and the inequality (47), we have with the notation

I = λ |(p[1]
m̂−1)

′(0)|,

ĨI ≤






(
2r− 1

2 (2r +1)r+ 1
2 I −(r+ 1

2 ) +2r+ 1
2 I −1

)
λ r+ 1

2 Q
2r−1
D,λ , when 1

2 ≤ r ≤ 3
2,

2r− 1
2 (2r +1)r+ 1

2 I −(r+ 1
2 )λ r+ 1

2

+I −1
(

2r+ 1
2 λ r+ 1

2 +2(r −1/2)κ2r−3λRD

)
, whenr > 3

2.

This together with (49), the bound (48) forI , (46), and the definition (16) of the
quantityΛρ ,λ ,r tells us that

‖LK,D f [1]
D,m̂−1− fK,D‖K ≤

(
1
3
I

− 1
2 +

1
3

+
1
6
I

−(r+ 1
2 ) +

1
3
I

−1
)

λ
1
2 Λρ ,λ ,r . (52)

On the other hand, ˆm≥ 2 is the smallest nonnegative integer satisfying (16), so for
the smaller integer ˆm−1, we must have

‖LK,D f [1]
D,m̂−1− fK,D‖K > λ

1
2 Λρ ,λ ,r .

This together with (52) implies

λ
1
2 Λρ ,λ ,r ≤

(
1
3
I

− 1
2 +

1
3

+
1
6
I

−(r+ 1
2 ) +

1
3
I

−1
)

λ
1
2 Λρ ,λ ,r

and thereby

I
− 1

2 +
1
2
I

−(r+ 1
2 ) +I

−1 ≥ 2.

One of the above terms in the summation is at least2
3. It follows thatI ≤ 9

4 < 3. It

follows that|(p[1]
m̂−1)

′(0)| = I

λ < 3
λ . This proves the first statement (32).

To prove the second statement, we first claim that forv∈ {1,2},

‖Fε [p
[v]
m̂−1(LK,D) fK,D]‖K ≤ ‖Fε [ fK,D]‖K . (53)

This claim is obviously true for ˆm= 1 with equality valid since in this casep[v]
m̂−1 ≡ 1

andp[v]
m̂−1(LK,D) is the identity operator.

Consider the case ˆm≥ 2. Sinceε = λ/3, we have from (32), (29) and (28) that

ε =
λ
3
≤ |(p[1]

m̂−1)
′(0)|−1 =

[
m̂−1

∑
k=1

(t [1]
k,m̂−1)

−1

]−1

≤ t [1]
1,m̂−1 < t [2]

1,m̂−1. (54)

It follows from (31) that forv∈ {1,2}, there holds

max
0≤t≤ε

p[v]
m̂−1(t) ≤ max

0≤t≤t
[v]
1,m̂−1

p[v]
m̂−1(t) = max

0≤t≤t
[v]
1,m̂−1

Π m̂−1
k=1

(
1− t/t [v]k,m̂−1

)
≤ 1.
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Recall the eigenpairs{(σx
i ,φx

i )}i of LK,D. ExpressingfK,D = ∑ j c jφx
j implies

‖Fε [p
[v]
m̂−1(LK,D) fK,D]‖K =

∥∥∥∥∥Fε

[

∑
j

p[v]
m̂−1(σ

x
j )c jφx

j

]∥∥∥∥∥
K

=

∥∥∥∥∥∥
∑

j :σx
j <ε

p[v]
m̂−1(σ

x
j )c jφx

j

∥∥∥∥∥∥
K

=

√
∑

j :σx
j <ε

[p[v]
m̂−1(σx

j )c j ]2

≤
√

∑
j :σx

j <ε
c2

j = ‖Fε [ fK,D]‖K .

So the claim (53) is also true in the case ˆm≥ 2. This proves the claim.
To prove the second statement of the proposition, we estimate the norm‖Fε [ fK,D]‖K .

Under the condition (7),

‖Fε [ fK,D]‖K ≤ ‖Fε [ fK,D −LK,D fρ ]‖K +‖Fε [LK,D fρ ]‖K

≤ ‖Fε [(LK,D + λ I)1/2]‖‖(LK,D + λ I)−1/2(LK + λ I)1/2‖
× ‖(LK + λ I)−1/2( fK,D −LK,D fρ)‖K +‖FεLK,DLr−1/2

K ‖‖L1/2
K hρ‖K

≤ (ε + λ )1/2
QD,λ PD,λ +‖FεLK,DLr−1/2

K ‖‖hρ‖ρ , (55)

where the operatorsFε(LK,D + λ I)1/2 andFεLK,DLr−1/2
K are defined by spectral cal-

culus.
When 1/2≤ r ≤ 3/2, we have

‖FεLK,DLr−1/2
K ‖ ≤ ‖FεLK,D(LK,D + λ I)r−1/2‖Q2r−1

D,λ ≤ ε(λ + ε)r−1/2
Q

2r−1
D,λ .

Whenr > 3/2, it follows from (51) that

‖FεLK,DLr−1/2
K ‖ ≤ ‖FεLK,DLr−1/2

K,D ‖+‖FεLK,D(Lr−1/2
K −Lr−1/2

K,D )‖
≤ ε r+1/2 +(r −1/2)κ2r−3εRD.

Combining the above bounds for‖FεLK,DLr−1/2
K ‖ with (55) and noticing the

choiceε = λ/3 and the definition (17) of the quantityΛρ ,λ ,r , we find

‖Fε [p
[v]
m̂−1(LK,D) fK,D]‖K ≤ 1

2
λ 1/2Λρ ,λ ,r .

But m̂ is the smallest nonnegative integer satisfying (16), the integerm̂−1 does not
satisfy (16). Hence (22) implies

λ 1/2Λρ ,λ ,r ≤ ‖LK,D f [1]
D,m̂−1− fK,D‖K = [p[1]

m̂−1, p[1]
m̂−1]

1/2
[0]

.

Then the desired statement of the proposition is verified. The proof of Proposition 1
is completed. �
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Proof of Proposition 2.We first prove (38). Since|(p[1]
0 )′(0)| = 0, (38) obviously

holds form̂= 0. We then consider the case ˆm≥ 1. By (29),

|(p[1]
m̂ )′(0)| = −(p[1]

m̂ )′(0) = (p[1]
m̂−1)

′(0)− (p[1]
m̂ )′(0)+ |(p[1]

m̂−1)
′(0)|. (56)

From (24), we have

(p[1]
m̂−1)

′(0)− (p[1]
m̂ )′(0) =

[p[1]
m̂−1, p[1]

m̂−1][0]− [p[1]
m̂ , p[1]

m̂ ][0]

[p[2]
m̂−1, p[2]

m̂−1][1]

.

Therefore,

(p[1]
m̂−1)

′(0)− (p[1]
m̂ )′(0) ≤

[p[1]
m̂−1, p[1]

m̂−1][0]

[p[2]
m̂−1, p[2]

m̂−1][1]

. (57)

Then, it follows from (54), (22) and (5) that

[p[1]
m̂−1, p[1]

m̂−1]
1/2
0 = ‖p[1]

m̂−1(LK,D) fK,D‖K = ‖LK,D f [1]
D,m̂−1− fK,D‖K

≤ ‖LK,D f [2]
D,m̂−1− fK,D‖K = ‖p[2]

m̂−1(LK,D) fK,D‖K

≤ ‖Fε [p
[2]
m̂−1(LK,D) fK,D]‖K +‖F⊥

ε [p[2]
m̂−1(LK,D) fK,D]‖K .

But Proposition 1 withv = 2 gives

‖Fε [p
[2]
m̂−1(LK,D) fK,D]‖K ≤ 1

2
[p[1]

m̂−1, p[1]
m̂−1]

1/2
[0]

.

Hence

[p[1]
m̂−1, p[1]

m̂−1]
1/2
[0] ≤ 1

2
[p[1]

m̂−1, p[1]
m̂−1]

1/2
[0] + ε−1/2‖p[2]

m̂−1(LK,D)L1/2
K,D fK,D‖K

=
1
2
[p[1]

m̂−1, p[1]
m̂−1]

1/2
[0]

+ ε−1/2[p[2]
m̂−1, p[2]

m̂−1]
1/2
[1]

.

Therefore,

[p[1]
m̂−1, p[1]

m̂−1]
1/2
[0]

≤ 2ε−1/2[p[2]
m̂−1, p[2]

m̂−1]
1/2
[1]

,

which together with (56), (57) and Proposition 1 yields

|(p[1]
m̂ )′(0)| ≤ 3λ−1 +12λ−1 = 15λ−1.

This proves the first statement (38) of Proposition 2.
To prove the second statement, we denoteε0 = λ/15 and

f [1]∗
D,m̂ =

{
q[1]

m̂−1(LK,D)LK,D fρ , if m̂≥ 1,
0, if m̂= 0.

(58)
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We can decompose‖ f [1]
D,m̂− fρ‖ρ as

‖ f [1]
D,m̂− fρ‖ρ = ‖L1/2

K ( f [1]
D,m̂− fρ)‖K ≤ ‖(LK + λ I)1/2( f [1]

D,m̂− fρ)‖K

≤ QD,λ‖Fε0[(LK,D + λ I)1/2( f [1]
D,m̂− f [1]∗

D,m̂)]‖K +QD,λ‖Fε0[(LK,D + λ I)1/2( f [1]∗
D,m̂− fρ)]‖K

+ QD,λ‖F⊥
ε0

[(LK,D + λ I)1/2( f [1]
D,m̂− fρ)]‖K

=: QD,λ (A1 +A2+A3). (59)

Due to (29) and (38), we have

ε0 = λ/15≤ |(p[1]
m̂ )′(0)|−1 ≤

[
m̂

∑
k=1

(tk,m̂)−1

]−1

≤ t [1]
1,m̂. (60)

Note thatA1 = 0 and f [1]∗
D,m̂− fρ = − fρ = −p[1]

m̂ (LK,D) fρ whenm̂= 0. If m̂≥ 1, we
use (20), (58), (34), the definitions ofPD,λ andQD,λ to boundA1 as

A1 = ‖Fε0[(LK,D + λ I)1/2q[1]
m̂−1(LK,D)( fK,D −LK,D fρ )]‖K

≤ ‖Fε0[(LK,D + λ I)1/2q[1]
m̂−1(LK,D)(LK + λ I)1/2]‖‖(LK + λ I)−1/2( fK,D −LK,D fρ )‖K

≤ QD,λ PD,λ max
0≤t<ε0

|(t + λ )q[1]
m̂−1(t)|.

By (31), for 0≤ t < ε0 ≤ t [1]
1,m̂, we have

|tq[1]
m̂−1(t)| = |1− p[1]

m̂ (t)| ≤ 1.

Furthermore, (31), (29), (60) and (38) imply

max
0≤t<ε0

|q[1]
m̂−1(t)| ≤ q[1]

m̂−1(0) = |(p[1]
m̂ )′(0)| ≤ 15λ−1.

Therefore, the first term in (59) can be bounded as

A1 ≤ 16QD,λ PD,λ . (61)

We then bound the second termA2 in two cases involvingr.

When 1/2≤ r ≤ 3/2, we haver−1/2≤ 1, and the bound sup
0≤t<ε0≤t

[1]
1,m̂

|p[1]
m̂ (t)| ≤

1 together with (34) and the regularization condition (7) yields

A2 ≤ ‖Fε0(LK,D + λ I)1/2p[1]
m̂ (LK,D)Lr−1/2

K ‖‖hρ‖ρ

≤ Q
2r−1
D,λ ‖Fε0(LK,D + λ I)1/2(LK,D + λ I)r−1/2‖‖hρ‖ρ

≤ Q
2r−1
D,λ ‖hρ‖ρ(ε0 + λ )r . (62)

Whenr > 3/2, we use (21), (58) and the regularization condition (7) to get

A2 ≤ ‖Fε0(LK,D + λ I)1/2p[1]
m̂ (LK,D)(Lr−1/2

K,D −Lr−1/2
K )‖‖hρ‖ρ

+ ‖Fε0(LK,D + λ I)1/2p[1]
m̂ (LK,D)Lr−1/2

K,D ‖‖hρ‖ρ .
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Since|p[1]
m̂ (t)| ≤ 1 for all 0≤ t < ε0 ≤ t [1]

1,m̂, we get

‖Fε0(LK,D + λ I)1/2p[1]
m̂ (LK,D)Lr−1/2

K,D ‖ ≤ ε r−1/2
0 (ε0 + λ )1/2.

Combining these with (51) and the definition ofRD yields

A2 ≤ (ε r−1/2
0 +(r −1/2)κ2r−3

RD)(ε0 + λ )1/2‖hρ‖ρ . (63)

Finally, we turn to boundA3. From Lemma 1 andfρ ∈ HK , we obtain thatfρ is
in the range ofLK,D. Since(a+b)1/2 ≤ a1/2+b1/2 for a,b > 0, we then have

A3 ≤ ‖F⊥
ε0

[L1/2
K,D( f [1]

D,m̂− fρ)]‖K + λ 1/2‖F⊥
ε0

( f [1]
D,m̂− fρ)‖K

≤
(

(ε0 + λ )1/2

ε0
1/2

+ λ 1/2(ε0 + λ )1/2

ε0

)
‖F⊥

ε0
(LK,D + λ I)−1/2LK,D( f [1]

D,m̂− fρ)‖K

≤
(

1+
λ 1/2

ε0
1/2

)(
1+

λ
ε0

)1/2

‖F⊥
ε0

(LK,D + λ I)−1/2(LK,D f [1]
D,m̂− fK,D)‖K

+

(
1+

λ 1/2

ε0
1/2

)(
1+

λ
ε0

)1/2

‖F⊥
ε0

(LK,D + λ I)−1/2( fK,D −LK,D(x) fρ)‖K

≤
(

1+
λ 1/2

ε0
1/2

)
ε0

−1/2‖LK,D f [1]
D,m̂− fK,D‖K +

√
2QD,λ PD,λ

(
1+

λ
ε0

)
.

But m̂satisfies (16). It follows that

A3 ≤
(

1+
λ 1/2

ε0
1/2

)
ε0

−1/2λ 1/2Λρ ,λ ,r +
√

2QD,λ PD,λ

(
1+

λ
ε0

)
. (64)

Inserting (61), (62), (63) and (64) into (59) and noticingε0 = λ/15, we obtain

‖ f [1]
D,m̂− fρ‖ρ ≤ 32QD,λ Λρ ,λ ,r .

This verifies the second statement of the proposition. The proof of Proposition 2 is
complete. �
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